From 2e91d92936c840544ee4b370ec55958f674df882 Mon Sep 17 00:00:00 2001 From: "stefan.haustein@gmail.com" Date: Tue, 11 Jul 2017 21:25:08 +0200 Subject: [PATCH] C++ version added --- src/main/cpp/CImg.h | 60470 ++++++++++++++++++++++++++++++++++++++++ src/main/cpp/Makefile | 13 + src/main/cpp/tiv.cpp | 414 + 3 files changed, 60897 insertions(+) create mode 100644 src/main/cpp/CImg.h create mode 100644 src/main/cpp/Makefile create mode 100644 src/main/cpp/tiv.cpp diff --git a/src/main/cpp/CImg.h b/src/main/cpp/CImg.h new file mode 100644 index 0000000..9bf1d67 --- /dev/null +++ b/src/main/cpp/CImg.h @@ -0,0 +1,60470 @@ +/* + # + # File : CImg.h + # ( C++ header file ) + # + # Description : The C++ Template Image Processing Toolkit. + # This file is the main component of the CImg Library project. + # ( http://cimg.eu ) + # + # Project manager : David Tschumperle. + # ( http://tschumperle.users.greyc.fr/ ) + # + # A complete list of contributors is available in file 'README.txt' + # distributed within the CImg package. + # + # Licenses : This file is 'dual-licensed', you have to choose one + # of the two licenses below to apply. + # + # CeCILL-C + # The CeCILL-C license is close to the GNU LGPL. + # ( http://www.cecill.info/licences/Licence_CeCILL-C_V1-en.html ) + # + # or CeCILL v2.0 + # The CeCILL license is compatible with the GNU GPL. + # ( http://www.cecill.info/licences/Licence_CeCILL_V2-en.html ) + # + # This software is governed either by the CeCILL or the CeCILL-C license + # under French law and abiding by the rules of distribution of free software. + # You can use, modify and or redistribute the software under the terms of + # the CeCILL or CeCILL-C licenses as circulated by CEA, CNRS and INRIA + # at the following URL: "http://www.cecill.info". + # + # As a counterpart to the access to the source code and rights to copy, + # modify and redistribute granted by the license, users are provided only + # with a limited warranty and the software's author, the holder of the + # economic rights, and the successive licensors have only limited + # liability. + # + # In this respect, the user's attention is drawn to the risks associated + # with loading, using, modifying and/or developing or reproducing the + # software by the user in light of its specific status of free software, + # that may mean that it is complicated to manipulate, and that also + # therefore means that it is reserved for developers and experienced + # professionals having in-depth computer knowledge. Users are therefore + # encouraged to load and test the software's suitability as regards their + # requirements in conditions enabling the security of their systems and/or + # data to be ensured and, more generally, to use and operate it in the + # same conditions as regards security. + # + # The fact that you are presently reading this means that you have had + # knowledge of the CeCILL and CeCILL-C licenses and that you accept its terms. + # +*/ + +// Set version number of the library. +#ifndef cimg_version +#define cimg_version 203 + +/*----------------------------------------------------------- + # + # Test and possibly auto-set CImg configuration variables + # and include required headers. + # + # If you find that the default configuration variables are + # not adapted to your system, you can override their values + # before including the header file "CImg.h" + # (use the #define directive). + # + ------------------------------------------------------------*/ + +// Include standard C++ headers. +// This is the minimal set of required headers to make CImg-based codes compile. +#include +#include +#include +#include +#include +#include +#include +#include +#include +#include + +// Detect/configure OS variables. +// +// Define 'cimg_OS' to: '0' for an unknown OS (will try to minize library dependencies). +// '1' for a Unix-like OS (Linux, Solaris, BSD, MacOSX, Irix, ...). +// '2' for Microsoft Windows. +// (auto-detection is performed if 'cimg_OS' is not set by the user). +#ifndef cimg_OS +#if defined(unix) || defined(__unix) || defined(__unix__) \ + || defined(linux) || defined(__linux) || defined(__linux__) \ + || defined(sun) || defined(__sun) \ + || defined(BSD) || defined(__OpenBSD__) || defined(__NetBSD__) \ + || defined(__FreeBSD__) || defined (__DragonFly__) \ + || defined(sgi) || defined(__sgi) \ + || defined(__MACOSX__) || defined(__APPLE__) \ + || defined(__CYGWIN__) +#define cimg_OS 1 +#elif defined(_MSC_VER) || defined(WIN32) || defined(_WIN32) || defined(__WIN32__) \ + || defined(WIN64) || defined(_WIN64) || defined(__WIN64__) +#define cimg_OS 2 +#else +#define cimg_OS 0 +#endif +#elif !(cimg_OS==0 || cimg_OS==1 || cimg_OS==2) +#error CImg Library: Invalid configuration variable 'cimg_OS'. +#error (correct values are '0 = unknown OS', '1 = Unix-like OS', '2 = Microsoft Windows'). +#endif +#ifndef cimg_date +#define cimg_date __DATE__ +#endif +#ifndef cimg_time +#define cimg_time __TIME__ +#endif + +// Disable silly warnings on some Microsoft VC++ compilers. +#ifdef _MSC_VER +#pragma warning(push) +#pragma warning(disable:4127) +#pragma warning(disable:4244) +#pragma warning(disable:4311) +#pragma warning(disable:4312) +#pragma warning(disable:4319) +#pragma warning(disable:4512) +#pragma warning(disable:4571) +#pragma warning(disable:4640) +#pragma warning(disable:4706) +#pragma warning(disable:4710) +#pragma warning(disable:4800) +#pragma warning(disable:4804) +#pragma warning(disable:4820) +#pragma warning(disable:4996) +#define _CRT_SECURE_NO_DEPRECATE 1 +#define _CRT_SECURE_NO_WARNINGS 1 +#define _CRT_NONSTDC_NO_DEPRECATE 1 +#endif + +// Define correct string functions for each compiler and OS. +#if cimg_OS==2 && defined(_MSC_VER) +#define cimg_sscanf std::sscanf +#define cimg_sprintf std::sprintf +#define cimg_snprintf cimg::_snprintf +#define cimg_vsnprintf cimg::_vsnprintf +#else +#include +#if defined(__MACOSX__) || defined(__APPLE__) +#define cimg_sscanf cimg::_sscanf +#define cimg_sprintf cimg::_sprintf +#define cimg_snprintf cimg::_snprintf +#define cimg_vsnprintf cimg::_vsnprintf +#else +#define cimg_sscanf std::sscanf +#define cimg_sprintf std::sprintf +#define cimg_snprintf snprintf +#define cimg_vsnprintf vsnprintf +#endif +#endif + +// Include OS-specific headers. +#if cimg_OS==1 +#include +#include +#include +#include +#include +#include +#elif cimg_OS==2 +#ifndef std_fopen +#define std_fopen cimg::win_fopen +#endif +#ifndef NOMINMAX +#define NOMINMAX +#endif +#ifndef WIN32_LEAN_AND_MEAN +#define WIN32_LEAN_AND_MEAN +#endif +#include +#ifndef _WIN32_IE +#define _WIN32_IE 0x0400 +#endif +#include +#include +#include +#endif + +// Look for C++11 features. +#ifndef cimg_use_cpp11 +#if __cplusplus>201100 +#define cimg_use_cpp11 1 +#else +#define cimg_use_cpp11 0 +#endif +#endif +#if cimg_use_cpp11==1 +#include +#include +#endif + +// Convenient macro to define pragma +#ifdef _MSC_VER +#define cimg_pragma(x) __pragma(x) +#else +#define cimg_pragma(x) _Pragma(#x) +#endif + +// Define own types 'cimg_long/ulong' and 'cimg_int64/uint64' to ensure portability. +// ( constrained to 'sizeof(cimg_ulong/cimg_long) = sizeof(void*)' and 'sizeof(cimg_int64/cimg_uint64)=8' ). +#if cimg_OS==2 + +#define cimg_uint64 unsigned __int64 +#define cimg_int64 __int64 +#define cimg_ulong UINT_PTR +#define cimg_long INT_PTR +#ifdef _MSC_VER +#define cimg_fuint64 "%I64u" +#define cimg_fint64 "%I64d" +#else +#define cimg_fuint64 "%llu" +#define cimg_fint64 "%lld" +#endif + +#else + +#if UINTPTR_MAX==0xffffffff || defined(__arm__) || defined(_M_ARM) +#define cimg_uint64 unsigned long long +#define cimg_int64 long long +#define cimg_fuint64 "%llu" +#define cimg_fint64 "%lld" +#else +#define cimg_uint64 unsigned long +#define cimg_int64 long +#define cimg_fuint64 "%lu" +#define cimg_fint64 "%ld" +#endif + +#if defined(__arm__) || defined(_M_ARM) +#define cimg_ulong unsigned long long +#define cimg_long long long +#else +#define cimg_ulong unsigned long +#define cimg_long long +#endif + +#endif + +// Configure filename separator. +// +// Filename separator is set by default to '/', except for Windows where it is '\'. +#ifndef cimg_file_separator +#if cimg_OS==2 +#define cimg_file_separator '\\' +#else +#define cimg_file_separator '/' +#endif +#endif + +// Configure verbosity of output messages. +// +// Define 'cimg_verbosity' to: '0' to hide library messages (quiet mode). +// '1' to output library messages on the console. +// '2' to output library messages on a basic dialog window (default behavior). +// '3' to do as '1' + add extra warnings (may slow down the code!). +// '4' to do as '2' + add extra warnings (may slow down the code!). +// +// Define 'cimg_strict_warnings' to replace warning messages by exception throwns. +// +// Define 'cimg_use_vt100' to allow output of color messages on VT100-compatible terminals. +#ifndef cimg_verbosity +#if cimg_OS==2 +#define cimg_verbosity 2 +#else +#define cimg_verbosity 1 +#endif +#elif !(cimg_verbosity==0 || cimg_verbosity==1 || cimg_verbosity==2 || cimg_verbosity==3 || cimg_verbosity==4) +#error CImg Library: Configuration variable 'cimg_verbosity' is badly defined. +#error (should be { 0=quiet | 1=console | 2=dialog | 3=console+warnings | 4=dialog+warnings }). +#endif + +// Configure display framework. +// +// Define 'cimg_display' to: '0' to disable display capabilities. +// '1' to use the X-Window framework (X11). +// '2' to use the Microsoft GDI32 framework. +#ifndef cimg_display +#if cimg_OS==0 +#define cimg_display 0 +#elif cimg_OS==1 +#define cimg_display 1 +#elif cimg_OS==2 +#define cimg_display 2 +#endif +#elif !(cimg_display==0 || cimg_display==1 || cimg_display==2) +#error CImg Library: Configuration variable 'cimg_display' is badly defined. +#error (should be { 0=none | 1=X-Window (X11) | 2=Microsoft GDI32 }). +#endif + +// Configure the 'abort' signal handler (does nothing by default). +// A typical signal handler can be defined in your own source like this: +// #define cimg_abort_test() if (is_abort) throw CImgAbortException("") +// +// where 'is_abort' is a boolean variable defined somewhere in your code and reachable in the method. +// 'cimg_abort_test2()' does the same but is called more often (in inner loops). +#if defined(cimg_abort_test) && defined(cimg_use_openmp) + +// Define abort macros to be used with OpenMP. +#ifndef cimg_abort_init +#define cimg_abort_init bool cimg_abort_go = true; cimg::unused(cimg_abort_go) +#endif +#ifndef cimg_abort_try +#define cimg_abort_try if (cimg_abort_go) try +#endif +#ifndef cimg_abort_catch +#define cimg_abort_catch() catch (CImgAbortException&) { cimg_pragma(omp atomic) cimg_abort_go&=false; } +#endif +#ifdef cimg_abort_test2 +#ifndef cimg_abort_try2 +#define cimg_abort_try2 cimg_abort_try +#endif +#ifndef cimg_abort_catch2 +#define cimg_abort_catch2() cimg_abort_catch() +#endif +#ifndef cimg_abort_catch_fill +#define cimg_abort_catch_fill() \ + catch (CImgException& e) { cimg_pragma(omp critical) CImg::string(e._message).move_to(is_error); \ + cimg_pragma(omp atomic) cimg_abort_go&=false; } +#endif +#endif + +#endif + +#ifndef cimg_abort_test +#define cimg_abort_test() +#endif +#ifndef cimg_abort_test2 +#define cimg_abort_test2() +#endif +#ifndef cimg_abort_init +#define cimg_abort_init +#endif +#ifndef cimg_abort_try +#define cimg_abort_try +#endif +#ifndef cimg_abort_catch +#define cimg_abort_catch() +#endif +#ifndef cimg_abort_try2 +#define cimg_abort_try2 +#endif +#ifndef cimg_abort_catch2 +#define cimg_abort_catch2() +#endif +#ifndef cimg_abort_catch_fill +#define cimg_abort_catch_fill() +#endif +#ifndef std_fopen +#define std_fopen std::fopen +#endif + +// Include display-specific headers. +#if cimg_display==1 +#include +#include +#include +#include +#ifdef cimg_use_xshm +#include +#include +#include +#endif +#ifdef cimg_use_xrandr +#include +#endif +#endif +#ifndef cimg_appname +#define cimg_appname "CImg" +#endif + +// Configure OpenMP support. +// (http://www.openmp.org) +// +// Define 'cimg_use_openmp' to enable OpenMP support. +// +// OpenMP directives may be used in a (very) few CImg functions to get +// advantages of multi-core CPUs. +#ifdef cimg_use_openmp +#include +#define cimg_pragma_openmp(p) cimg_pragma(omp p) +#else +#define cimg_pragma_openmp(p) +#endif + +// Configure OpenCV support. +// (http://opencv.willowgarage.com/wiki/) +// +// Define 'cimg_use_opencv' to enable OpenCV support. +// +// OpenCV library may be used to access images from cameras +// (see method 'CImg::load_camera()'). +#ifdef cimg_use_opencv +#ifdef True +#undef True +#define _cimg_redefine_True +#endif +#ifdef False +#undef False +#define _cimg_redefine_False +#endif +#include +#include "cv.h" +#include "highgui.h" +#endif + +// Configure LibPNG support. +// (http://www.libpng.org) +// +// Define 'cimg_use_png' to enable LibPNG support. +// +// PNG library may be used to get a native support of '.png' files. +// (see methods 'CImg::{load,save}_png()'. +#ifdef cimg_use_png +extern "C" { +#include "png.h" +} +#endif + +// Configure LibJPEG support. +// (http://en.wikipedia.org/wiki/Libjpeg) +// +// Define 'cimg_use_jpeg' to enable LibJPEG support. +// +// JPEG library may be used to get a native support of '.jpg' files. +// (see methods 'CImg::{load,save}_jpeg()'). +#ifdef cimg_use_jpeg +extern "C" { +#include "jpeglib.h" +#include "setjmp.h" +} +#endif + +// Configure LibTIFF support. +// (http://www.libtiff.org) +// +// Define 'cimg_use_tiff' to enable LibTIFF support. +// +// TIFF library may be used to get a native support of '.tif' files. +// (see methods 'CImg[List]::{load,save}_tiff()'). +#ifdef cimg_use_tiff +extern "C" { +#define uint64 uint64_hack_ +#define int64 int64_hack_ +#include "tiffio.h" +#undef uint64 +#undef int64 +} +#endif + +// Configure LibMINC2 support. +// (http://en.wikibooks.org/wiki/MINC/Reference/MINC2.0_File_Format_Reference) +// +// Define 'cimg_use_minc2' to enable LibMINC2 support. +// +// MINC2 library may be used to get a native support of '.mnc' files. +// (see methods 'CImg::{load,save}_minc2()'). +#ifdef cimg_use_minc2 +#include "minc_io_simple_volume.h" +#include "minc_1_simple.h" +#include "minc_1_simple_rw.h" +#endif + +// Configure Zlib support. +// (http://www.zlib.net) +// +// Define 'cimg_use_zlib' to enable Zlib support. +// +// Zlib library may be used to allow compressed data in '.cimgz' files +// (see methods 'CImg[List]::{load,save}_cimg()'). +#ifdef cimg_use_zlib +extern "C" { +#include "zlib.h" +} +#endif + +// Configure libcurl support. +// (http://curl.haxx.se/libcurl/) +// +// Define 'cimg_use_curl' to enable libcurl support. +// +// Libcurl may be used to get a native support of file downloading from the network. +// (see method 'cimg::load_network()'.) +#ifdef cimg_use_curl +#include "curl/curl.h" +#endif + +// Configure Magick++ support. +// (http://www.imagemagick.org/Magick++) +// +// Define 'cimg_use_magick' to enable Magick++ support. +// +// Magick++ library may be used to get a native support of various image file formats. +// (see methods 'CImg::{load,save}()'). +#ifdef cimg_use_magick +#include "Magick++.h" +#endif + +// Configure FFTW3 support. +// (http://www.fftw.org) +// +// Define 'cimg_use_fftw3' to enable libFFTW3 support. +// +// FFTW3 library may be used to efficiently compute the Fast Fourier Transform +// of image data, without restriction on the image size. +// (see method 'CImg[List]::FFT()'). +#ifdef cimg_use_fftw3 +extern "C" { +#include "fftw3.h" +} +#endif + +// Configure LibBoard support. +// (http://libboard.sourceforge.net/) +// +// Define 'cimg_use_board' to enable Board support. +// +// Board library may be used to draw 3d objects in vector-graphics canvas +// that can be saved as '.ps' or '.svg' files afterwards. +// (see method 'CImg::draw_object3d()'). +#ifdef cimg_use_board +#include "Board.h" +#endif + +// Configure OpenEXR support. +// (http://www.openexr.com/) +// +// Define 'cimg_use_openexr' to enable OpenEXR support. +// +// OpenEXR library may be used to get a native support of '.exr' files. +// (see methods 'CImg::{load,save}_exr()'). +#ifdef cimg_use_openexr +#include "ImfRgbaFile.h" +#include "ImfInputFile.h" +#include "ImfChannelList.h" +#include "ImfMatrixAttribute.h" +#include "ImfArray.h" +#endif + +// Configure TinyEXR support. +// (https://github.com/syoyo/tinyexr) +// +// Define 'cimg_use_tinyexr' to enable TinyEXR support. +// +// TinyEXR is a small, single header-only library to load and save OpenEXR(.exr) images. +#ifdef cimg_use_tinyexr +#ifndef TINYEXR_IMPLEMENTATION +#define TINYEXR_IMPLEMENTATION +#endif +#include "tinyexr.h" +#endif + +// Lapack configuration. +// (http://www.netlib.org/lapack) +// +// Define 'cimg_use_lapack' to enable LAPACK support. +// +// Lapack library may be used in several CImg methods to speed up +// matrix computations (eigenvalues, inverse, ...). +#ifdef cimg_use_lapack +extern "C" { + extern void sgetrf_(int*, int*, float*, int*, int*, int*); + extern void sgetri_(int*, float*, int*, int*, float*, int*, int*); + extern void sgetrs_(char*, int*, int*, float*, int*, int*, float*, int*, int*); + extern void sgesvd_(char*, char*, int*, int*, float*, int*, float*, float*, int*, float*, int*, float*, int*, int*); + extern void ssyev_(char*, char*, int*, float*, int*, float*, float*, int*, int*); + extern void dgetrf_(int*, int*, double*, int*, int*, int*); + extern void dgetri_(int*, double*, int*, int*, double*, int*, int*); + extern void dgetrs_(char*, int*, int*, double*, int*, int*, double*, int*, int*); + extern void dgesvd_(char*, char*, int*, int*, double*, int*, double*, double*, + int*, double*, int*, double*, int*, int*); + extern void dsyev_(char*, char*, int*, double*, int*, double*, double*, int*, int*); + extern void dgels_(char*, int*,int*,int*,double*,int*,double*,int*,double*,int*,int*); + extern void sgels_(char*, int*,int*,int*,float*,int*,float*,int*,float*,int*,int*); +} +#endif + +// Check if min/max/PI macros are defined. +// +// CImg does not compile if macros 'min', 'max' or 'PI' are defined, +// because it redefines functions min(), max() and const variable PI in the cimg:: namespace. +// so it '#undef' these macros if necessary, and restore them to reasonable +// values at the end of this file. +#ifdef min +#undef min +#define _cimg_redefine_min +#endif +#ifdef max +#undef max +#define _cimg_redefine_max +#endif +#ifdef PI +#undef PI +#define _cimg_redefine_PI +#endif + +// Define 'cimg_library' namespace suffix. +// +// You may want to add a suffix to the 'cimg_library' namespace, for instance if you need to work +// with several versions of the library at the same time. +#ifdef cimg_namespace_suffix +#define __cimg_library_suffixed(s) cimg_library_##s +#define _cimg_library_suffixed(s) __cimg_library_suffixed(s) +#define cimg_library_suffixed _cimg_library_suffixed(cimg_namespace_suffix) +#else +#define cimg_library_suffixed cimg_library +#endif + +/*------------------------------------------------------------------------------ + # + # Define user-friendly macros. + # + # These CImg macros are prefixed by 'cimg_' and can be used safely in your own + # code. They are useful to parse command line options, or to write image loops. + # + ------------------------------------------------------------------------------*/ + +// Macros to define program usage, and retrieve command line arguments. +#define cimg_usage(usage) cimg_library_suffixed::cimg::option((char*)0,argc,argv,(char*)0,usage,false) +#define cimg_help(str) cimg_library_suffixed::cimg::option((char*)0,argc,argv,str,(char*)0) +#define cimg_option(name,defaut,usage) cimg_library_suffixed::cimg::option(name,argc,argv,defaut,usage) + +// Macros to define and manipulate local neighborhoods. +#define CImg_2x2(I,T) T I[4]; \ + T& I##cc = I[0]; T& I##nc = I[1]; \ + T& I##cn = I[2]; T& I##nn = I[3]; \ + I##cc = I##nc = \ + I##cn = I##nn = 0 + +#define CImg_3x3(I,T) T I[9]; \ + T& I##pp = I[0]; T& I##cp = I[1]; T& I##np = I[2]; \ + T& I##pc = I[3]; T& I##cc = I[4]; T& I##nc = I[5]; \ + T& I##pn = I[6]; T& I##cn = I[7]; T& I##nn = I[8]; \ + I##pp = I##cp = I##np = \ + I##pc = I##cc = I##nc = \ + I##pn = I##cn = I##nn = 0 + +#define CImg_4x4(I,T) T I[16]; \ + T& I##pp = I[0]; T& I##cp = I[1]; T& I##np = I[2]; T& I##ap = I[3]; \ + T& I##pc = I[4]; T& I##cc = I[5]; T& I##nc = I[6]; T& I##ac = I[7]; \ + T& I##pn = I[8]; T& I##cn = I[9]; T& I##nn = I[10]; T& I##an = I[11]; \ + T& I##pa = I[12]; T& I##ca = I[13]; T& I##na = I[14]; T& I##aa = I[15]; \ + I##pp = I##cp = I##np = I##ap = \ + I##pc = I##cc = I##nc = I##ac = \ + I##pn = I##cn = I##nn = I##an = \ + I##pa = I##ca = I##na = I##aa = 0 + +#define CImg_5x5(I,T) T I[25]; \ + T& I##bb = I[0]; T& I##pb = I[1]; T& I##cb = I[2]; T& I##nb = I[3]; T& I##ab = I[4]; \ + T& I##bp = I[5]; T& I##pp = I[6]; T& I##cp = I[7]; T& I##np = I[8]; T& I##ap = I[9]; \ + T& I##bc = I[10]; T& I##pc = I[11]; T& I##cc = I[12]; T& I##nc = I[13]; T& I##ac = I[14]; \ + T& I##bn = I[15]; T& I##pn = I[16]; T& I##cn = I[17]; T& I##nn = I[18]; T& I##an = I[19]; \ + T& I##ba = I[20]; T& I##pa = I[21]; T& I##ca = I[22]; T& I##na = I[23]; T& I##aa = I[24]; \ + I##bb = I##pb = I##cb = I##nb = I##ab = \ + I##bp = I##pp = I##cp = I##np = I##ap = \ + I##bc = I##pc = I##cc = I##nc = I##ac = \ + I##bn = I##pn = I##cn = I##nn = I##an = \ + I##ba = I##pa = I##ca = I##na = I##aa = 0 + +#define CImg_2x2x2(I,T) T I[8]; \ + T& I##ccc = I[0]; T& I##ncc = I[1]; \ + T& I##cnc = I[2]; T& I##nnc = I[3]; \ + T& I##ccn = I[4]; T& I##ncn = I[5]; \ + T& I##cnn = I[6]; T& I##nnn = I[7]; \ + I##ccc = I##ncc = \ + I##cnc = I##nnc = \ + I##ccn = I##ncn = \ + I##cnn = I##nnn = 0 + +#define CImg_3x3x3(I,T) T I[27]; \ + T& I##ppp = I[0]; T& I##cpp = I[1]; T& I##npp = I[2]; \ + T& I##pcp = I[3]; T& I##ccp = I[4]; T& I##ncp = I[5]; \ + T& I##pnp = I[6]; T& I##cnp = I[7]; T& I##nnp = I[8]; \ + T& I##ppc = I[9]; T& I##cpc = I[10]; T& I##npc = I[11]; \ + T& I##pcc = I[12]; T& I##ccc = I[13]; T& I##ncc = I[14]; \ + T& I##pnc = I[15]; T& I##cnc = I[16]; T& I##nnc = I[17]; \ + T& I##ppn = I[18]; T& I##cpn = I[19]; T& I##npn = I[20]; \ + T& I##pcn = I[21]; T& I##ccn = I[22]; T& I##ncn = I[23]; \ + T& I##pnn = I[24]; T& I##cnn = I[25]; T& I##nnn = I[26]; \ + I##ppp = I##cpp = I##npp = \ + I##pcp = I##ccp = I##ncp = \ + I##pnp = I##cnp = I##nnp = \ + I##ppc = I##cpc = I##npc = \ + I##pcc = I##ccc = I##ncc = \ + I##pnc = I##cnc = I##nnc = \ + I##ppn = I##cpn = I##npn = \ + I##pcn = I##ccn = I##ncn = \ + I##pnn = I##cnn = I##nnn = 0 + +#define cimg_get2x2(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(x,y,z,c), I[1] = (T)(img)(_n1##x,y,z,c), I[2] = (T)(img)(x,_n1##y,z,c), \ + I[3] = (T)(img)(_n1##x,_n1##y,z,c) + +#define cimg_get3x3(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(_p1##x,_p1##y,z,c), I[1] = (T)(img)(x,_p1##y,z,c), I[2] = (T)(img)(_n1##x,_p1##y,z,c), \ + I[3] = (T)(img)(_p1##x,y,z,c), I[4] = (T)(img)(x,y,z,c), I[5] = (T)(img)(_n1##x,y,z,c), \ + I[6] = (T)(img)(_p1##x,_n1##y,z,c), I[7] = (T)(img)(x,_n1##y,z,c), I[8] = (T)(img)(_n1##x,_n1##y,z,c) + +#define cimg_get4x4(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(_p1##x,_p1##y,z,c), I[1] = (T)(img)(x,_p1##y,z,c), I[2] = (T)(img)(_n1##x,_p1##y,z,c), \ + I[3] = (T)(img)(_n2##x,_p1##y,z,c), I[4] = (T)(img)(_p1##x,y,z,c), I[5] = (T)(img)(x,y,z,c), \ + I[6] = (T)(img)(_n1##x,y,z,c), I[7] = (T)(img)(_n2##x,y,z,c), I[8] = (T)(img)(_p1##x,_n1##y,z,c), \ + I[9] = (T)(img)(x,_n1##y,z,c), I[10] = (T)(img)(_n1##x,_n1##y,z,c), I[11] = (T)(img)(_n2##x,_n1##y,z,c), \ + I[12] = (T)(img)(_p1##x,_n2##y,z,c), I[13] = (T)(img)(x,_n2##y,z,c), I[14] = (T)(img)(_n1##x,_n2##y,z,c), \ + I[15] = (T)(img)(_n2##x,_n2##y,z,c) + +#define cimg_get5x5(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(_p2##x,_p2##y,z,c), I[1] = (T)(img)(_p1##x,_p2##y,z,c), I[2] = (T)(img)(x,_p2##y,z,c), \ + I[3] = (T)(img)(_n1##x,_p2##y,z,c), I[4] = (T)(img)(_n2##x,_p2##y,z,c), I[5] = (T)(img)(_p2##x,_p1##y,z,c), \ + I[6] = (T)(img)(_p1##x,_p1##y,z,c), I[7] = (T)(img)(x,_p1##y,z,c), I[8] = (T)(img)(_n1##x,_p1##y,z,c), \ + I[9] = (T)(img)(_n2##x,_p1##y,z,c), I[10] = (T)(img)(_p2##x,y,z,c), I[11] = (T)(img)(_p1##x,y,z,c), \ + I[12] = (T)(img)(x,y,z,c), I[13] = (T)(img)(_n1##x,y,z,c), I[14] = (T)(img)(_n2##x,y,z,c), \ + I[15] = (T)(img)(_p2##x,_n1##y,z,c), I[16] = (T)(img)(_p1##x,_n1##y,z,c), I[17] = (T)(img)(x,_n1##y,z,c), \ + I[18] = (T)(img)(_n1##x,_n1##y,z,c), I[19] = (T)(img)(_n2##x,_n1##y,z,c), I[20] = (T)(img)(_p2##x,_n2##y,z,c), \ + I[21] = (T)(img)(_p1##x,_n2##y,z,c), I[22] = (T)(img)(x,_n2##y,z,c), I[23] = (T)(img)(_n1##x,_n2##y,z,c), \ + I[24] = (T)(img)(_n2##x,_n2##y,z,c) + +#define cimg_get6x6(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(_p2##x,_p2##y,z,c), I[1] = (T)(img)(_p1##x,_p2##y,z,c), I[2] = (T)(img)(x,_p2##y,z,c), \ + I[3] = (T)(img)(_n1##x,_p2##y,z,c), I[4] = (T)(img)(_n2##x,_p2##y,z,c), I[5] = (T)(img)(_n3##x,_p2##y,z,c), \ + I[6] = (T)(img)(_p2##x,_p1##y,z,c), I[7] = (T)(img)(_p1##x,_p1##y,z,c), I[8] = (T)(img)(x,_p1##y,z,c), \ + I[9] = (T)(img)(_n1##x,_p1##y,z,c), I[10] = (T)(img)(_n2##x,_p1##y,z,c), I[11] = (T)(img)(_n3##x,_p1##y,z,c), \ + I[12] = (T)(img)(_p2##x,y,z,c), I[13] = (T)(img)(_p1##x,y,z,c), I[14] = (T)(img)(x,y,z,c), \ + I[15] = (T)(img)(_n1##x,y,z,c), I[16] = (T)(img)(_n2##x,y,z,c), I[17] = (T)(img)(_n3##x,y,z,c), \ + I[18] = (T)(img)(_p2##x,_n1##y,z,c), I[19] = (T)(img)(_p1##x,_n1##y,z,c), I[20] = (T)(img)(x,_n1##y,z,c), \ + I[21] = (T)(img)(_n1##x,_n1##y,z,c), I[22] = (T)(img)(_n2##x,_n1##y,z,c), I[23] = (T)(img)(_n3##x,_n1##y,z,c), \ + I[24] = (T)(img)(_p2##x,_n2##y,z,c), I[25] = (T)(img)(_p1##x,_n2##y,z,c), I[26] = (T)(img)(x,_n2##y,z,c), \ + I[27] = (T)(img)(_n1##x,_n2##y,z,c), I[28] = (T)(img)(_n2##x,_n2##y,z,c), I[29] = (T)(img)(_n3##x,_n2##y,z,c), \ + I[30] = (T)(img)(_p2##x,_n3##y,z,c), I[31] = (T)(img)(_p1##x,_n3##y,z,c), I[32] = (T)(img)(x,_n3##y,z,c), \ + I[33] = (T)(img)(_n1##x,_n3##y,z,c), I[34] = (T)(img)(_n2##x,_n3##y,z,c), I[35] = (T)(img)(_n3##x,_n3##y,z,c) + +#define cimg_get7x7(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(_p3##x,_p3##y,z,c), I[1] = (T)(img)(_p2##x,_p3##y,z,c), I[2] = (T)(img)(_p1##x,_p3##y,z,c), \ + I[3] = (T)(img)(x,_p3##y,z,c), I[4] = (T)(img)(_n1##x,_p3##y,z,c), I[5] = (T)(img)(_n2##x,_p3##y,z,c), \ + I[6] = (T)(img)(_n3##x,_p3##y,z,c), I[7] = (T)(img)(_p3##x,_p2##y,z,c), I[8] = (T)(img)(_p2##x,_p2##y,z,c), \ + I[9] = (T)(img)(_p1##x,_p2##y,z,c), I[10] = (T)(img)(x,_p2##y,z,c), I[11] = (T)(img)(_n1##x,_p2##y,z,c), \ + I[12] = (T)(img)(_n2##x,_p2##y,z,c), I[13] = (T)(img)(_n3##x,_p2##y,z,c), I[14] = (T)(img)(_p3##x,_p1##y,z,c), \ + I[15] = (T)(img)(_p2##x,_p1##y,z,c), I[16] = (T)(img)(_p1##x,_p1##y,z,c), I[17] = (T)(img)(x,_p1##y,z,c), \ + I[18] = (T)(img)(_n1##x,_p1##y,z,c), I[19] = (T)(img)(_n2##x,_p1##y,z,c), I[20] = (T)(img)(_n3##x,_p1##y,z,c), \ + I[21] = (T)(img)(_p3##x,y,z,c), I[22] = (T)(img)(_p2##x,y,z,c), I[23] = (T)(img)(_p1##x,y,z,c), \ + I[24] = (T)(img)(x,y,z,c), I[25] = (T)(img)(_n1##x,y,z,c), I[26] = (T)(img)(_n2##x,y,z,c), \ + I[27] = (T)(img)(_n3##x,y,z,c), I[28] = (T)(img)(_p3##x,_n1##y,z,c), I[29] = (T)(img)(_p2##x,_n1##y,z,c), \ + I[30] = (T)(img)(_p1##x,_n1##y,z,c), I[31] = (T)(img)(x,_n1##y,z,c), I[32] = (T)(img)(_n1##x,_n1##y,z,c), \ + I[33] = (T)(img)(_n2##x,_n1##y,z,c), I[34] = (T)(img)(_n3##x,_n1##y,z,c), I[35] = (T)(img)(_p3##x,_n2##y,z,c), \ + I[36] = (T)(img)(_p2##x,_n2##y,z,c), I[37] = (T)(img)(_p1##x,_n2##y,z,c), I[38] = (T)(img)(x,_n2##y,z,c), \ + I[39] = (T)(img)(_n1##x,_n2##y,z,c), I[40] = (T)(img)(_n2##x,_n2##y,z,c), I[41] = (T)(img)(_n3##x,_n2##y,z,c), \ + I[42] = (T)(img)(_p3##x,_n3##y,z,c), I[43] = (T)(img)(_p2##x,_n3##y,z,c), I[44] = (T)(img)(_p1##x,_n3##y,z,c), \ + I[45] = (T)(img)(x,_n3##y,z,c), I[46] = (T)(img)(_n1##x,_n3##y,z,c), I[47] = (T)(img)(_n2##x,_n3##y,z,c), \ + I[48] = (T)(img)(_n3##x,_n3##y,z,c) + +#define cimg_get8x8(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(_p3##x,_p3##y,z,c), I[1] = (T)(img)(_p2##x,_p3##y,z,c), I[2] = (T)(img)(_p1##x,_p3##y,z,c), \ + I[3] = (T)(img)(x,_p3##y,z,c), I[4] = (T)(img)(_n1##x,_p3##y,z,c), I[5] = (T)(img)(_n2##x,_p3##y,z,c), \ + I[6] = (T)(img)(_n3##x,_p3##y,z,c), I[7] = (T)(img)(_n4##x,_p3##y,z,c), I[8] = (T)(img)(_p3##x,_p2##y,z,c), \ + I[9] = (T)(img)(_p2##x,_p2##y,z,c), I[10] = (T)(img)(_p1##x,_p2##y,z,c), I[11] = (T)(img)(x,_p2##y,z,c), \ + I[12] = (T)(img)(_n1##x,_p2##y,z,c), I[13] = (T)(img)(_n2##x,_p2##y,z,c), I[14] = (T)(img)(_n3##x,_p2##y,z,c), \ + I[15] = (T)(img)(_n4##x,_p2##y,z,c), I[16] = (T)(img)(_p3##x,_p1##y,z,c), I[17] = (T)(img)(_p2##x,_p1##y,z,c), \ + I[18] = (T)(img)(_p1##x,_p1##y,z,c), I[19] = (T)(img)(x,_p1##y,z,c), I[20] = (T)(img)(_n1##x,_p1##y,z,c), \ + I[21] = (T)(img)(_n2##x,_p1##y,z,c), I[22] = (T)(img)(_n3##x,_p1##y,z,c), I[23] = (T)(img)(_n4##x,_p1##y,z,c), \ + I[24] = (T)(img)(_p3##x,y,z,c), I[25] = (T)(img)(_p2##x,y,z,c), I[26] = (T)(img)(_p1##x,y,z,c), \ + I[27] = (T)(img)(x,y,z,c), I[28] = (T)(img)(_n1##x,y,z,c), I[29] = (T)(img)(_n2##x,y,z,c), \ + I[30] = (T)(img)(_n3##x,y,z,c), I[31] = (T)(img)(_n4##x,y,z,c), I[32] = (T)(img)(_p3##x,_n1##y,z,c), \ + I[33] = (T)(img)(_p2##x,_n1##y,z,c), I[34] = (T)(img)(_p1##x,_n1##y,z,c), I[35] = (T)(img)(x,_n1##y,z,c), \ + I[36] = (T)(img)(_n1##x,_n1##y,z,c), I[37] = (T)(img)(_n2##x,_n1##y,z,c), I[38] = (T)(img)(_n3##x,_n1##y,z,c), \ + I[39] = (T)(img)(_n4##x,_n1##y,z,c), I[40] = (T)(img)(_p3##x,_n2##y,z,c), I[41] = (T)(img)(_p2##x,_n2##y,z,c), \ + I[42] = (T)(img)(_p1##x,_n2##y,z,c), I[43] = (T)(img)(x,_n2##y,z,c), I[44] = (T)(img)(_n1##x,_n2##y,z,c), \ + I[45] = (T)(img)(_n2##x,_n2##y,z,c), I[46] = (T)(img)(_n3##x,_n2##y,z,c), I[47] = (T)(img)(_n4##x,_n2##y,z,c), \ + I[48] = (T)(img)(_p3##x,_n3##y,z,c), I[49] = (T)(img)(_p2##x,_n3##y,z,c), I[50] = (T)(img)(_p1##x,_n3##y,z,c), \ + I[51] = (T)(img)(x,_n3##y,z,c), I[52] = (T)(img)(_n1##x,_n3##y,z,c), I[53] = (T)(img)(_n2##x,_n3##y,z,c), \ + I[54] = (T)(img)(_n3##x,_n3##y,z,c), I[55] = (T)(img)(_n4##x,_n3##y,z,c), I[56] = (T)(img)(_p3##x,_n4##y,z,c), \ + I[57] = (T)(img)(_p2##x,_n4##y,z,c), I[58] = (T)(img)(_p1##x,_n4##y,z,c), I[59] = (T)(img)(x,_n4##y,z,c), \ + I[60] = (T)(img)(_n1##x,_n4##y,z,c), I[61] = (T)(img)(_n2##x,_n4##y,z,c), I[62] = (T)(img)(_n3##x,_n4##y,z,c), \ + I[63] = (T)(img)(_n4##x,_n4##y,z,c); + +#define cimg_get9x9(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(_p4##x,_p4##y,z,c), I[1] = (T)(img)(_p3##x,_p4##y,z,c), I[2] = (T)(img)(_p2##x,_p4##y,z,c), \ + I[3] = (T)(img)(_p1##x,_p4##y,z,c), I[4] = (T)(img)(x,_p4##y,z,c), I[5] = (T)(img)(_n1##x,_p4##y,z,c), \ + I[6] = (T)(img)(_n2##x,_p4##y,z,c), I[7] = (T)(img)(_n3##x,_p4##y,z,c), I[8] = (T)(img)(_n4##x,_p4##y,z,c), \ + I[9] = (T)(img)(_p4##x,_p3##y,z,c), I[10] = (T)(img)(_p3##x,_p3##y,z,c), I[11] = (T)(img)(_p2##x,_p3##y,z,c), \ + I[12] = (T)(img)(_p1##x,_p3##y,z,c), I[13] = (T)(img)(x,_p3##y,z,c), I[14] = (T)(img)(_n1##x,_p3##y,z,c), \ + I[15] = (T)(img)(_n2##x,_p3##y,z,c), I[16] = (T)(img)(_n3##x,_p3##y,z,c), I[17] = (T)(img)(_n4##x,_p3##y,z,c), \ + I[18] = (T)(img)(_p4##x,_p2##y,z,c), I[19] = (T)(img)(_p3##x,_p2##y,z,c), I[20] = (T)(img)(_p2##x,_p2##y,z,c), \ + I[21] = (T)(img)(_p1##x,_p2##y,z,c), I[22] = (T)(img)(x,_p2##y,z,c), I[23] = (T)(img)(_n1##x,_p2##y,z,c), \ + I[24] = (T)(img)(_n2##x,_p2##y,z,c), I[25] = (T)(img)(_n3##x,_p2##y,z,c), I[26] = (T)(img)(_n4##x,_p2##y,z,c), \ + I[27] = (T)(img)(_p4##x,_p1##y,z,c), I[28] = (T)(img)(_p3##x,_p1##y,z,c), I[29] = (T)(img)(_p2##x,_p1##y,z,c), \ + I[30] = (T)(img)(_p1##x,_p1##y,z,c), I[31] = (T)(img)(x,_p1##y,z,c), I[32] = (T)(img)(_n1##x,_p1##y,z,c), \ + I[33] = (T)(img)(_n2##x,_p1##y,z,c), I[34] = (T)(img)(_n3##x,_p1##y,z,c), I[35] = (T)(img)(_n4##x,_p1##y,z,c), \ + I[36] = (T)(img)(_p4##x,y,z,c), I[37] = (T)(img)(_p3##x,y,z,c), I[38] = (T)(img)(_p2##x,y,z,c), \ + I[39] = (T)(img)(_p1##x,y,z,c), I[40] = (T)(img)(x,y,z,c), I[41] = (T)(img)(_n1##x,y,z,c), \ + I[42] = (T)(img)(_n2##x,y,z,c), I[43] = (T)(img)(_n3##x,y,z,c), I[44] = (T)(img)(_n4##x,y,z,c), \ + I[45] = (T)(img)(_p4##x,_n1##y,z,c), I[46] = (T)(img)(_p3##x,_n1##y,z,c), I[47] = (T)(img)(_p2##x,_n1##y,z,c), \ + I[48] = (T)(img)(_p1##x,_n1##y,z,c), I[49] = (T)(img)(x,_n1##y,z,c), I[50] = (T)(img)(_n1##x,_n1##y,z,c), \ + I[51] = (T)(img)(_n2##x,_n1##y,z,c), I[52] = (T)(img)(_n3##x,_n1##y,z,c), I[53] = (T)(img)(_n4##x,_n1##y,z,c), \ + I[54] = (T)(img)(_p4##x,_n2##y,z,c), I[55] = (T)(img)(_p3##x,_n2##y,z,c), I[56] = (T)(img)(_p2##x,_n2##y,z,c), \ + I[57] = (T)(img)(_p1##x,_n2##y,z,c), I[58] = (T)(img)(x,_n2##y,z,c), I[59] = (T)(img)(_n1##x,_n2##y,z,c), \ + I[60] = (T)(img)(_n2##x,_n2##y,z,c), I[61] = (T)(img)(_n3##x,_n2##y,z,c), I[62] = (T)(img)(_n4##x,_n2##y,z,c), \ + I[63] = (T)(img)(_p4##x,_n3##y,z,c), I[64] = (T)(img)(_p3##x,_n3##y,z,c), I[65] = (T)(img)(_p2##x,_n3##y,z,c), \ + I[66] = (T)(img)(_p1##x,_n3##y,z,c), I[67] = (T)(img)(x,_n3##y,z,c), I[68] = (T)(img)(_n1##x,_n3##y,z,c), \ + I[69] = (T)(img)(_n2##x,_n3##y,z,c), I[70] = (T)(img)(_n3##x,_n3##y,z,c), I[71] = (T)(img)(_n4##x,_n3##y,z,c), \ + I[72] = (T)(img)(_p4##x,_n4##y,z,c), I[73] = (T)(img)(_p3##x,_n4##y,z,c), I[74] = (T)(img)(_p2##x,_n4##y,z,c), \ + I[75] = (T)(img)(_p1##x,_n4##y,z,c), I[76] = (T)(img)(x,_n4##y,z,c), I[77] = (T)(img)(_n1##x,_n4##y,z,c), \ + I[78] = (T)(img)(_n2##x,_n4##y,z,c), I[79] = (T)(img)(_n3##x,_n4##y,z,c), I[80] = (T)(img)(_n4##x,_n4##y,z,c) + +#define cimg_get2x2x2(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(x,y,z,c), I[1] = (T)(img)(_n1##x,y,z,c), I[2] = (T)(img)(x,_n1##y,z,c), \ + I[3] = (T)(img)(_n1##x,_n1##y,z,c), I[4] = (T)(img)(x,y,_n1##z,c), I[5] = (T)(img)(_n1##x,y,_n1##z,c), \ + I[6] = (T)(img)(x,_n1##y,_n1##z,c), I[7] = (T)(img)(_n1##x,_n1##y,_n1##z,c) + +#define cimg_get3x3x3(img,x,y,z,c,I,T) \ + I[0] = (T)(img)(_p1##x,_p1##y,_p1##z,c), I[1] = (T)(img)(x,_p1##y,_p1##z,c), \ + I[2] = (T)(img)(_n1##x,_p1##y,_p1##z,c), I[3] = (T)(img)(_p1##x,y,_p1##z,c), I[4] = (T)(img)(x,y,_p1##z,c), \ + I[5] = (T)(img)(_n1##x,y,_p1##z,c), I[6] = (T)(img)(_p1##x,_n1##y,_p1##z,c), I[7] = (T)(img)(x,_n1##y,_p1##z,c), \ + I[8] = (T)(img)(_n1##x,_n1##y,_p1##z,c), I[9] = (T)(img)(_p1##x,_p1##y,z,c), I[10] = (T)(img)(x,_p1##y,z,c), \ + I[11] = (T)(img)(_n1##x,_p1##y,z,c), I[12] = (T)(img)(_p1##x,y,z,c), I[13] = (T)(img)(x,y,z,c), \ + I[14] = (T)(img)(_n1##x,y,z,c), I[15] = (T)(img)(_p1##x,_n1##y,z,c), I[16] = (T)(img)(x,_n1##y,z,c), \ + I[17] = (T)(img)(_n1##x,_n1##y,z,c), I[18] = (T)(img)(_p1##x,_p1##y,_n1##z,c), I[19] = (T)(img)(x,_p1##y,_n1##z,c), \ + I[20] = (T)(img)(_n1##x,_p1##y,_n1##z,c), I[21] = (T)(img)(_p1##x,y,_n1##z,c), I[22] = (T)(img)(x,y,_n1##z,c), \ + I[23] = (T)(img)(_n1##x,y,_n1##z,c), I[24] = (T)(img)(_p1##x,_n1##y,_n1##z,c), I[25] = (T)(img)(x,_n1##y,_n1##z,c), \ + I[26] = (T)(img)(_n1##x,_n1##y,_n1##z,c) + +// Macros to perform various image loops. +// +// These macros are simpler to use than loops with C++ iterators. +#define cimg_for(img,ptrs,T_ptrs) \ + for (T_ptrs *ptrs = (img)._data, *_max##ptrs = (img)._data + (img).size(); ptrs<_max##ptrs; ++ptrs) +#define cimg_rof(img,ptrs,T_ptrs) for (T_ptrs *ptrs = (img)._data + (img).size() - 1; ptrs>=(img)._data; --ptrs) +#define cimg_foroff(img,off) for (cimg_ulong off = 0, _max##off = (img).size(); off<_max##off; ++off) + +#define cimg_for1(bound,i) for (int i = 0; i<(int)(bound); ++i) +#define cimg_forX(img,x) cimg_for1((img)._width,x) +#define cimg_forY(img,y) cimg_for1((img)._height,y) +#define cimg_forZ(img,z) cimg_for1((img)._depth,z) +#define cimg_forC(img,c) cimg_for1((img)._spectrum,c) +#define cimg_forXY(img,x,y) cimg_forY(img,y) cimg_forX(img,x) +#define cimg_forXZ(img,x,z) cimg_forZ(img,z) cimg_forX(img,x) +#define cimg_forYZ(img,y,z) cimg_forZ(img,z) cimg_forY(img,y) +#define cimg_forXC(img,x,c) cimg_forC(img,c) cimg_forX(img,x) +#define cimg_forYC(img,y,c) cimg_forC(img,c) cimg_forY(img,y) +#define cimg_forZC(img,z,c) cimg_forC(img,c) cimg_forZ(img,z) +#define cimg_forXYZ(img,x,y,z) cimg_forZ(img,z) cimg_forXY(img,x,y) +#define cimg_forXYC(img,x,y,c) cimg_forC(img,c) cimg_forXY(img,x,y) +#define cimg_forXZC(img,x,z,c) cimg_forC(img,c) cimg_forXZ(img,x,z) +#define cimg_forYZC(img,y,z,c) cimg_forC(img,c) cimg_forYZ(img,y,z) +#define cimg_forXYZC(img,x,y,z,c) cimg_forC(img,c) cimg_forXYZ(img,x,y,z) + +#define cimg_rof1(bound,i) for (int i = (int)(bound) - 1; i>=0; --i) +#define cimg_rofX(img,x) cimg_rof1((img)._width,x) +#define cimg_rofY(img,y) cimg_rof1((img)._height,y) +#define cimg_rofZ(img,z) cimg_rof1((img)._depth,z) +#define cimg_rofC(img,c) cimg_rof1((img)._spectrum,c) +#define cimg_rofXY(img,x,y) cimg_rofY(img,y) cimg_rofX(img,x) +#define cimg_rofXZ(img,x,z) cimg_rofZ(img,z) cimg_rofX(img,x) +#define cimg_rofYZ(img,y,z) cimg_rofZ(img,z) cimg_rofY(img,y) +#define cimg_rofXC(img,x,c) cimg_rofC(img,c) cimg_rofX(img,x) +#define cimg_rofYC(img,y,c) cimg_rofC(img,c) cimg_rofY(img,y) +#define cimg_rofZC(img,z,c) cimg_rofC(img,c) cimg_rofZ(img,z) +#define cimg_rofXYZ(img,x,y,z) cimg_rofZ(img,z) cimg_rofXY(img,x,y) +#define cimg_rofXYC(img,x,y,c) cimg_rofC(img,c) cimg_rofXY(img,x,y) +#define cimg_rofXZC(img,x,z,c) cimg_rofC(img,c) cimg_rofXZ(img,x,z) +#define cimg_rofYZC(img,y,z,c) cimg_rofC(img,c) cimg_rofYZ(img,y,z) +#define cimg_rofXYZC(img,x,y,z,c) cimg_rofC(img,c) cimg_rofXYZ(img,x,y,z) + +#define cimg_for_in1(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), _max##i = (int)(i1)<(int)(bound)?(int)(i1):(int)(bound) - 1; i<=_max##i; ++i) +#define cimg_for_inX(img,x0,x1,x) cimg_for_in1((img)._width,x0,x1,x) +#define cimg_for_inY(img,y0,y1,y) cimg_for_in1((img)._height,y0,y1,y) +#define cimg_for_inZ(img,z0,z1,z) cimg_for_in1((img)._depth,z0,z1,z) +#define cimg_for_inC(img,c0,c1,c) cimg_for_in1((img)._spectrum,c0,c1,c) +#define cimg_for_inXY(img,x0,y0,x1,y1,x,y) cimg_for_inY(img,y0,y1,y) cimg_for_inX(img,x0,x1,x) +#define cimg_for_inXZ(img,x0,z0,x1,z1,x,z) cimg_for_inZ(img,z0,z1,z) cimg_for_inX(img,x0,x1,x) +#define cimg_for_inXC(img,x0,c0,x1,c1,x,c) cimg_for_inC(img,c0,c1,c) cimg_for_inX(img,x0,x1,x) +#define cimg_for_inYZ(img,y0,z0,y1,z1,y,z) cimg_for_inZ(img,x0,z1,z) cimg_for_inY(img,y0,y1,y) +#define cimg_for_inYC(img,y0,c0,y1,c1,y,c) cimg_for_inC(img,c0,c1,c) cimg_for_inY(img,y0,y1,y) +#define cimg_for_inZC(img,z0,c0,z1,c1,z,c) cimg_for_inC(img,c0,c1,c) cimg_for_inZ(img,z0,z1,z) +#define cimg_for_inXYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_inZ(img,z0,z1,z) cimg_for_inXY(img,x0,y0,x1,y1,x,y) +#define cimg_for_inXYC(img,x0,y0,c0,x1,y1,c1,x,y,c) cimg_for_inC(img,c0,c1,c) cimg_for_inXY(img,x0,y0,x1,y1,x,y) +#define cimg_for_inXZC(img,x0,z0,c0,x1,z1,c1,x,z,c) cimg_for_inC(img,c0,c1,c) cimg_for_inXZ(img,x0,z0,x1,z1,x,z) +#define cimg_for_inYZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_inC(img,c0,c1,c) cimg_for_inYZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_inXYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_inC(img,c0,c1,c) cimg_for_inXYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) +#define cimg_for_insideX(img,x,n) cimg_for_inX(img,n,(img)._width - 1 - (n),x) +#define cimg_for_insideY(img,y,n) cimg_for_inY(img,n,(img)._height - 1 - (n),y) +#define cimg_for_insideZ(img,z,n) cimg_for_inZ(img,n,(img)._depth - 1 - (n),z) +#define cimg_for_insideC(img,c,n) cimg_for_inC(img,n,(img)._spectrum - 1 - (n),c) +#define cimg_for_insideXY(img,x,y,n) cimg_for_inXY(img,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n),x,y) +#define cimg_for_insideXYZ(img,x,y,z,n) \ + cimg_for_inXYZ(img,n,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n),(img)._depth - 1 - (n),x,y,z) +#define cimg_for_insideXYZC(img,x,y,z,c,n) \ + cimg_for_inXYZ(img,n,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n),(img)._depth - 1 - (n),x,y,z) + +#define cimg_for_out1(boundi,i0,i1,i) \ + for (int i = (int)(i0)>0?0:(int)(i1) + 1; i<(int)(boundi); ++i, i = i==(int)(i0)?(int)(i1) + 1:i) +#define cimg_for_out2(boundi,boundj,i0,j0,i1,j1,i,j) \ + for (int j = 0; j<(int)(boundj); ++j) \ + for (int _n1j = (int)(j<(int)(j0) || j>(int)(j1)), i = _n1j?0:(int)(i0)>0?0:(int)(i1) + 1; i<(int)(boundi); \ + ++i, i = _n1j?i:(i==(int)(i0)?(int)(i1) + 1:i)) +#define cimg_for_out3(boundi,boundj,boundk,i0,j0,k0,i1,j1,k1,i,j,k) \ + for (int k = 0; k<(int)(boundk); ++k) \ + for (int _n1k = (int)(k<(int)(k0) || k>(int)(k1)), j = 0; j<(int)(boundj); ++j) \ + for (int _n1j = (int)(j<(int)(j0) || j>(int)(j1)), i = _n1j || _n1k?0:(int)(i0)>0?0:(int)(i1) + 1; i<(int)(boundi); \ + ++i, i = _n1j || _n1k?i:(i==(int)(i0)?(int)(i1) + 1:i)) +#define cimg_for_out4(boundi,boundj,boundk,boundl,i0,j0,k0,l0,i1,j1,k1,l1,i,j,k,l) \ + for (int l = 0; l<(int)(boundl); ++l) \ + for (int _n1l = (int)(l<(int)(l0) || l>(int)(l1)), k = 0; k<(int)(boundk); ++k) \ + for (int _n1k = (int)(k<(int)(k0) || k>(int)(k1)), j = 0; j<(int)(boundj); ++j) \ + for (int _n1j = (int)(j<(int)(j0) || j>(int)(j1)), i = _n1j || _n1k || _n1l?0:(int)(i0)>0?0:(int)(i1) + 1; \ + i<(int)(boundi); ++i, i = _n1j || _n1k || _n1l?i:(i==(int)(i0)?(int)(i1) + 1:i)) +#define cimg_for_outX(img,x0,x1,x) cimg_for_out1((img)._width,x0,x1,x) +#define cimg_for_outY(img,y0,y1,y) cimg_for_out1((img)._height,y0,y1,y) +#define cimg_for_outZ(img,z0,z1,z) cimg_for_out1((img)._depth,z0,z1,z) +#define cimg_for_outC(img,c0,c1,c) cimg_for_out1((img)._spectrum,c0,c1,c) +#define cimg_for_outXY(img,x0,y0,x1,y1,x,y) cimg_for_out2((img)._width,(img)._height,x0,y0,x1,y1,x,y) +#define cimg_for_outXZ(img,x0,z0,x1,z1,x,z) cimg_for_out2((img)._width,(img)._depth,x0,z0,x1,z1,x,z) +#define cimg_for_outXC(img,x0,c0,x1,c1,x,c) cimg_for_out2((img)._width,(img)._spectrum,x0,c0,x1,c1,x,c) +#define cimg_for_outYZ(img,y0,z0,y1,z1,y,z) cimg_for_out2((img)._height,(img)._depth,y0,z0,y1,z1,y,z) +#define cimg_for_outYC(img,y0,c0,y1,c1,y,c) cimg_for_out2((img)._height,(img)._spectrum,y0,c0,y1,c1,y,c) +#define cimg_for_outZC(img,z0,c0,z1,c1,z,c) cimg_for_out2((img)._depth,(img)._spectrum,z0,c0,z1,c1,z,c) +#define cimg_for_outXYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) \ + cimg_for_out3((img)._width,(img)._height,(img)._depth,x0,y0,z0,x1,y1,z1,x,y,z) +#define cimg_for_outXYC(img,x0,y0,c0,x1,y1,c1,x,y,c) \ + cimg_for_out3((img)._width,(img)._height,(img)._spectrum,x0,y0,c0,x1,y1,c1,x,y,c) +#define cimg_for_outXZC(img,x0,z0,c0,x1,z1,c1,x,z,c) \ + cimg_for_out3((img)._width,(img)._depth,(img)._spectrum,x0,z0,c0,x1,z1,c1,x,z,c) +#define cimg_for_outYZC(img,y0,z0,c0,y1,z1,c1,y,z,c) \ + cimg_for_out3((img)._height,(img)._depth,(img)._spectrum,y0,z0,c0,y1,z1,c1,y,z,c) +#define cimg_for_outXYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_out4((img)._width,(img)._height,(img)._depth,(img)._spectrum,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) +#define cimg_for_borderX(img,x,n) cimg_for_outX(img,n,(img)._width - 1 - (n),x) +#define cimg_for_borderY(img,y,n) cimg_for_outY(img,n,(img)._height - 1 - (n),y) +#define cimg_for_borderZ(img,z,n) cimg_for_outZ(img,n,(img)._depth - 1 - (n),z) +#define cimg_for_borderC(img,c,n) cimg_for_outC(img,n,(img)._spectrum - 1 - (n),c) +#define cimg_for_borderXY(img,x,y,n) cimg_for_outXY(img,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n),x,y) +#define cimg_for_borderXYZ(img,x,y,z,n) \ + cimg_for_outXYZ(img,n,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n),(img)._depth - 1 - (n),x,y,z) +#define cimg_for_borderXYZC(img,x,y,z,c,n) \ + cimg_for_outXYZC(img,n,n,n,n,(img)._width - 1 - (n),(img)._height - 1 - (n), \ + (img)._depth - 1 - (n),(img)._spectrum - 1 - (n),x,y,z,c) + +#define cimg_for_spiralXY(img,x,y) \ + for (int x = 0, y = 0, _n1##x = 1, _n1##y = (img).width()*(img).height(); _n1##y; \ + --_n1##y, _n1##x+=(_n1##x>>2) - ((!(_n1##x&3)?--y:((_n1##x&3)==1?(img)._width - 1 - ++x:\ + ((_n1##x&3)==2?(img)._height - 1 - ++y:--x))))?0:1) + +#define cimg_for_lineXY(x,y,x0,y0,x1,y1) \ + for (int x = (int)(x0), y = (int)(y0), _sx = 1, _sy = 1, _steep = 0, \ + _dx=(x1)>(x0)?(int)(x1) - (int)(x0):(_sx=-1,(int)(x0) - (int)(x1)), \ + _dy=(y1)>(y0)?(int)(y1) - (int)(y0):(_sy=-1,(int)(y0) - (int)(y1)), \ + _counter = _dx, \ + _err = _dx>_dy?(_dy>>1):((_steep=1),(_counter=_dy),(_dx>>1)); \ + _counter>=0; \ + --_counter, x+=_steep? \ + (y+=_sy,(_err-=_dx)<0?_err+=_dy,_sx:0): \ + (y+=(_err-=_dy)<0?_err+=_dx,_sy:0,_sx)) + +#define cimg_for2(bound,i) \ + for (int i = 0, _n1##i = 1>=(bound)?(int)(bound) - 1:1; \ + _n1##i<(int)(bound) || i==--_n1##i; \ + ++i, ++_n1##i) +#define cimg_for2X(img,x) cimg_for2((img)._width,x) +#define cimg_for2Y(img,y) cimg_for2((img)._height,y) +#define cimg_for2Z(img,z) cimg_for2((img)._depth,z) +#define cimg_for2C(img,c) cimg_for2((img)._spectrum,c) +#define cimg_for2XY(img,x,y) cimg_for2Y(img,y) cimg_for2X(img,x) +#define cimg_for2XZ(img,x,z) cimg_for2Z(img,z) cimg_for2X(img,x) +#define cimg_for2XC(img,x,c) cimg_for2C(img,c) cimg_for2X(img,x) +#define cimg_for2YZ(img,y,z) cimg_for2Z(img,z) cimg_for2Y(img,y) +#define cimg_for2YC(img,y,c) cimg_for2C(img,c) cimg_for2Y(img,y) +#define cimg_for2ZC(img,z,c) cimg_for2C(img,c) cimg_for2Z(img,z) +#define cimg_for2XYZ(img,x,y,z) cimg_for2Z(img,z) cimg_for2XY(img,x,y) +#define cimg_for2XZC(img,x,z,c) cimg_for2C(img,c) cimg_for2XZ(img,x,z) +#define cimg_for2YZC(img,y,z,c) cimg_for2C(img,c) cimg_for2YZ(img,y,z) +#define cimg_for2XYZC(img,x,y,z,c) cimg_for2C(img,c) cimg_for2XYZ(img,x,y,z) + +#define cimg_for_in2(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), \ + _n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1; \ + i<=(int)(i1) && (_n1##i<(int)(bound) || i==--_n1##i); \ + ++i, ++_n1##i) +#define cimg_for_in2X(img,x0,x1,x) cimg_for_in2((img)._width,x0,x1,x) +#define cimg_for_in2Y(img,y0,y1,y) cimg_for_in2((img)._height,y0,y1,y) +#define cimg_for_in2Z(img,z0,z1,z) cimg_for_in2((img)._depth,z0,z1,z) +#define cimg_for_in2C(img,c0,c1,c) cimg_for_in2((img)._spectrum,c0,c1,c) +#define cimg_for_in2XY(img,x0,y0,x1,y1,x,y) cimg_for_in2Y(img,y0,y1,y) cimg_for_in2X(img,x0,x1,x) +#define cimg_for_in2XZ(img,x0,z0,x1,z1,x,z) cimg_for_in2Z(img,z0,z1,z) cimg_for_in2X(img,x0,x1,x) +#define cimg_for_in2XC(img,x0,c0,x1,c1,x,c) cimg_for_in2C(img,c0,c1,c) cimg_for_in2X(img,x0,x1,x) +#define cimg_for_in2YZ(img,y0,z0,y1,z1,y,z) cimg_for_in2Z(img,z0,z1,z) cimg_for_in2Y(img,y0,y1,y) +#define cimg_for_in2YC(img,y0,c0,y1,c1,y,c) cimg_for_in2C(img,c0,c1,c) cimg_for_in2Y(img,y0,y1,y) +#define cimg_for_in2ZC(img,z0,c0,z1,c1,z,c) cimg_for_in2C(img,c0,c1,c) cimg_for_in2Z(img,z0,z1,z) +#define cimg_for_in2XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in2Z(img,z0,z1,z) cimg_for_in2XY(img,x0,y0,x1,y1,x,y) +#define cimg_for_in2XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in2C(img,c0,c1,c) cimg_for_in2XZ(img,x0,y0,x1,y1,x,z) +#define cimg_for_in2YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in2C(img,c0,c1,c) cimg_for_in2YZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_in2XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_in2C(img,c0,c1,c) cimg_for_in2XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) + +#define cimg_for3(bound,i) \ + for (int i = 0, _p1##i = 0, \ + _n1##i = 1>=(bound)?(int)(bound) - 1:1; \ + _n1##i<(int)(bound) || i==--_n1##i; \ + _p1##i = i++, ++_n1##i) +#define cimg_for3X(img,x) cimg_for3((img)._width,x) +#define cimg_for3Y(img,y) cimg_for3((img)._height,y) +#define cimg_for3Z(img,z) cimg_for3((img)._depth,z) +#define cimg_for3C(img,c) cimg_for3((img)._spectrum,c) +#define cimg_for3XY(img,x,y) cimg_for3Y(img,y) cimg_for3X(img,x) +#define cimg_for3XZ(img,x,z) cimg_for3Z(img,z) cimg_for3X(img,x) +#define cimg_for3XC(img,x,c) cimg_for3C(img,c) cimg_for3X(img,x) +#define cimg_for3YZ(img,y,z) cimg_for3Z(img,z) cimg_for3Y(img,y) +#define cimg_for3YC(img,y,c) cimg_for3C(img,c) cimg_for3Y(img,y) +#define cimg_for3ZC(img,z,c) cimg_for3C(img,c) cimg_for3Z(img,z) +#define cimg_for3XYZ(img,x,y,z) cimg_for3Z(img,z) cimg_for3XY(img,x,y) +#define cimg_for3XZC(img,x,z,c) cimg_for3C(img,c) cimg_for3XZ(img,x,z) +#define cimg_for3YZC(img,y,z,c) cimg_for3C(img,c) cimg_for3YZ(img,y,z) +#define cimg_for3XYZC(img,x,y,z,c) cimg_for3C(img,c) cimg_for3XYZ(img,x,y,z) + +#define cimg_for_in3(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), \ + _p1##i = i - 1<0?0:i - 1, \ + _n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1; \ + i<=(int)(i1) && (_n1##i<(int)(bound) || i==--_n1##i); \ + _p1##i = i++, ++_n1##i) +#define cimg_for_in3X(img,x0,x1,x) cimg_for_in3((img)._width,x0,x1,x) +#define cimg_for_in3Y(img,y0,y1,y) cimg_for_in3((img)._height,y0,y1,y) +#define cimg_for_in3Z(img,z0,z1,z) cimg_for_in3((img)._depth,z0,z1,z) +#define cimg_for_in3C(img,c0,c1,c) cimg_for_in3((img)._spectrum,c0,c1,c) +#define cimg_for_in3XY(img,x0,y0,x1,y1,x,y) cimg_for_in3Y(img,y0,y1,y) cimg_for_in3X(img,x0,x1,x) +#define cimg_for_in3XZ(img,x0,z0,x1,z1,x,z) cimg_for_in3Z(img,z0,z1,z) cimg_for_in3X(img,x0,x1,x) +#define cimg_for_in3XC(img,x0,c0,x1,c1,x,c) cimg_for_in3C(img,c0,c1,c) cimg_for_in3X(img,x0,x1,x) +#define cimg_for_in3YZ(img,y0,z0,y1,z1,y,z) cimg_for_in3Z(img,z0,z1,z) cimg_for_in3Y(img,y0,y1,y) +#define cimg_for_in3YC(img,y0,c0,y1,c1,y,c) cimg_for_in3C(img,c0,c1,c) cimg_for_in3Y(img,y0,y1,y) +#define cimg_for_in3ZC(img,z0,c0,z1,c1,z,c) cimg_for_in3C(img,c0,c1,c) cimg_for_in3Z(img,z0,z1,z) +#define cimg_for_in3XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in3Z(img,z0,z1,z) cimg_for_in3XY(img,x0,y0,x1,y1,x,y) +#define cimg_for_in3XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in3C(img,c0,c1,c) cimg_for_in3XZ(img,x0,y0,x1,y1,x,z) +#define cimg_for_in3YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in3C(img,c0,c1,c) cimg_for_in3YZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_in3XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_in3C(img,c0,c1,c) cimg_for_in3XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) + +#define cimg_for4(bound,i) \ + for (int i = 0, _p1##i = 0, _n1##i = 1>=(bound)?(int)(bound) - 1:1, \ + _n2##i = 2>=(bound)?(int)(bound) - 1:2; \ + _n2##i<(int)(bound) || _n1##i==--_n2##i || i==(_n2##i = --_n1##i); \ + _p1##i = i++, ++_n1##i, ++_n2##i) +#define cimg_for4X(img,x) cimg_for4((img)._width,x) +#define cimg_for4Y(img,y) cimg_for4((img)._height,y) +#define cimg_for4Z(img,z) cimg_for4((img)._depth,z) +#define cimg_for4C(img,c) cimg_for4((img)._spectrum,c) +#define cimg_for4XY(img,x,y) cimg_for4Y(img,y) cimg_for4X(img,x) +#define cimg_for4XZ(img,x,z) cimg_for4Z(img,z) cimg_for4X(img,x) +#define cimg_for4XC(img,x,c) cimg_for4C(img,c) cimg_for4X(img,x) +#define cimg_for4YZ(img,y,z) cimg_for4Z(img,z) cimg_for4Y(img,y) +#define cimg_for4YC(img,y,c) cimg_for4C(img,c) cimg_for4Y(img,y) +#define cimg_for4ZC(img,z,c) cimg_for4C(img,c) cimg_for4Z(img,z) +#define cimg_for4XYZ(img,x,y,z) cimg_for4Z(img,z) cimg_for4XY(img,x,y) +#define cimg_for4XZC(img,x,z,c) cimg_for4C(img,c) cimg_for4XZ(img,x,z) +#define cimg_for4YZC(img,y,z,c) cimg_for4C(img,c) cimg_for4YZ(img,y,z) +#define cimg_for4XYZC(img,x,y,z,c) cimg_for4C(img,c) cimg_for4XYZ(img,x,y,z) + +#define cimg_for_in4(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), \ + _p1##i = i - 1<0?0:i - 1, \ + _n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \ + _n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2; \ + i<=(int)(i1) && (_n2##i<(int)(bound) || _n1##i==--_n2##i || i==(_n2##i = --_n1##i)); \ + _p1##i = i++, ++_n1##i, ++_n2##i) +#define cimg_for_in4X(img,x0,x1,x) cimg_for_in4((img)._width,x0,x1,x) +#define cimg_for_in4Y(img,y0,y1,y) cimg_for_in4((img)._height,y0,y1,y) +#define cimg_for_in4Z(img,z0,z1,z) cimg_for_in4((img)._depth,z0,z1,z) +#define cimg_for_in4C(img,c0,c1,c) cimg_for_in4((img)._spectrum,c0,c1,c) +#define cimg_for_in4XY(img,x0,y0,x1,y1,x,y) cimg_for_in4Y(img,y0,y1,y) cimg_for_in4X(img,x0,x1,x) +#define cimg_for_in4XZ(img,x0,z0,x1,z1,x,z) cimg_for_in4Z(img,z0,z1,z) cimg_for_in4X(img,x0,x1,x) +#define cimg_for_in4XC(img,x0,c0,x1,c1,x,c) cimg_for_in4C(img,c0,c1,c) cimg_for_in4X(img,x0,x1,x) +#define cimg_for_in4YZ(img,y0,z0,y1,z1,y,z) cimg_for_in4Z(img,z0,z1,z) cimg_for_in4Y(img,y0,y1,y) +#define cimg_for_in4YC(img,y0,c0,y1,c1,y,c) cimg_for_in4C(img,c0,c1,c) cimg_for_in4Y(img,y0,y1,y) +#define cimg_for_in4ZC(img,z0,c0,z1,c1,z,c) cimg_for_in4C(img,c0,c1,c) cimg_for_in4Z(img,z0,z1,z) +#define cimg_for_in4XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in4Z(img,z0,z1,z) cimg_for_in4XY(img,x0,y0,x1,y1,x,y) +#define cimg_for_in4XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in4C(img,c0,c1,c) cimg_for_in4XZ(img,x0,y0,x1,y1,x,z) +#define cimg_for_in4YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in4C(img,c0,c1,c) cimg_for_in4YZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_in4XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_in4C(img,c0,c1,c) cimg_for_in4XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) + +#define cimg_for5(bound,i) \ + for (int i = 0, _p2##i = 0, _p1##i = 0, \ + _n1##i = 1>=(bound)?(int)(bound) - 1:1, \ + _n2##i = 2>=(bound)?(int)(bound) - 1:2; \ + _n2##i<(int)(bound) || _n1##i==--_n2##i || i==(_n2##i = --_n1##i); \ + _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i) +#define cimg_for5X(img,x) cimg_for5((img)._width,x) +#define cimg_for5Y(img,y) cimg_for5((img)._height,y) +#define cimg_for5Z(img,z) cimg_for5((img)._depth,z) +#define cimg_for5C(img,c) cimg_for5((img)._spectrum,c) +#define cimg_for5XY(img,x,y) cimg_for5Y(img,y) cimg_for5X(img,x) +#define cimg_for5XZ(img,x,z) cimg_for5Z(img,z) cimg_for5X(img,x) +#define cimg_for5XC(img,x,c) cimg_for5C(img,c) cimg_for5X(img,x) +#define cimg_for5YZ(img,y,z) cimg_for5Z(img,z) cimg_for5Y(img,y) +#define cimg_for5YC(img,y,c) cimg_for5C(img,c) cimg_for5Y(img,y) +#define cimg_for5ZC(img,z,c) cimg_for5C(img,c) cimg_for5Z(img,z) +#define cimg_for5XYZ(img,x,y,z) cimg_for5Z(img,z) cimg_for5XY(img,x,y) +#define cimg_for5XZC(img,x,z,c) cimg_for5C(img,c) cimg_for5XZ(img,x,z) +#define cimg_for5YZC(img,y,z,c) cimg_for5C(img,c) cimg_for5YZ(img,y,z) +#define cimg_for5XYZC(img,x,y,z,c) cimg_for5C(img,c) cimg_for5XYZ(img,x,y,z) + +#define cimg_for_in5(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), \ + _p2##i = i - 2<0?0:i - 2, \ + _p1##i = i - 1<0?0:i - 1, \ + _n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \ + _n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2; \ + i<=(int)(i1) && (_n2##i<(int)(bound) || _n1##i==--_n2##i || i==(_n2##i = --_n1##i)); \ + _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i) +#define cimg_for_in5X(img,x0,x1,x) cimg_for_in5((img)._width,x0,x1,x) +#define cimg_for_in5Y(img,y0,y1,y) cimg_for_in5((img)._height,y0,y1,y) +#define cimg_for_in5Z(img,z0,z1,z) cimg_for_in5((img)._depth,z0,z1,z) +#define cimg_for_in5C(img,c0,c1,c) cimg_for_in5((img)._spectrum,c0,c1,c) +#define cimg_for_in5XY(img,x0,y0,x1,y1,x,y) cimg_for_in5Y(img,y0,y1,y) cimg_for_in5X(img,x0,x1,x) +#define cimg_for_in5XZ(img,x0,z0,x1,z1,x,z) cimg_for_in5Z(img,z0,z1,z) cimg_for_in5X(img,x0,x1,x) +#define cimg_for_in5XC(img,x0,c0,x1,c1,x,c) cimg_for_in5C(img,c0,c1,c) cimg_for_in5X(img,x0,x1,x) +#define cimg_for_in5YZ(img,y0,z0,y1,z1,y,z) cimg_for_in5Z(img,z0,z1,z) cimg_for_in5Y(img,y0,y1,y) +#define cimg_for_in5YC(img,y0,c0,y1,c1,y,c) cimg_for_in5C(img,c0,c1,c) cimg_for_in5Y(img,y0,y1,y) +#define cimg_for_in5ZC(img,z0,c0,z1,c1,z,c) cimg_for_in5C(img,c0,c1,c) cimg_for_in5Z(img,z0,z1,z) +#define cimg_for_in5XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in5Z(img,z0,z1,z) cimg_for_in5XY(img,x0,y0,x1,y1,x,y) +#define cimg_for_in5XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in5C(img,c0,c1,c) cimg_for_in5XZ(img,x0,y0,x1,y1,x,z) +#define cimg_for_in5YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in5C(img,c0,c1,c) cimg_for_in5YZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_in5XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_in5C(img,c0,c1,c) cimg_for_in5XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) + +#define cimg_for6(bound,i) \ + for (int i = 0, _p2##i = 0, _p1##i = 0, \ + _n1##i = 1>=(bound)?(int)(bound) - 1:1, \ + _n2##i = 2>=(bound)?(int)(bound) - 1:2, \ + _n3##i = 3>=(bound)?(int)(bound) - 1:3; \ + _n3##i<(int)(bound) || _n2##i==--_n3##i || _n1##i==--_n2##i || i==(_n3##i = _n2##i = --_n1##i); \ + _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i) +#define cimg_for6X(img,x) cimg_for6((img)._width,x) +#define cimg_for6Y(img,y) cimg_for6((img)._height,y) +#define cimg_for6Z(img,z) cimg_for6((img)._depth,z) +#define cimg_for6C(img,c) cimg_for6((img)._spectrum,c) +#define cimg_for6XY(img,x,y) cimg_for6Y(img,y) cimg_for6X(img,x) +#define cimg_for6XZ(img,x,z) cimg_for6Z(img,z) cimg_for6X(img,x) +#define cimg_for6XC(img,x,c) cimg_for6C(img,c) cimg_for6X(img,x) +#define cimg_for6YZ(img,y,z) cimg_for6Z(img,z) cimg_for6Y(img,y) +#define cimg_for6YC(img,y,c) cimg_for6C(img,c) cimg_for6Y(img,y) +#define cimg_for6ZC(img,z,c) cimg_for6C(img,c) cimg_for6Z(img,z) +#define cimg_for6XYZ(img,x,y,z) cimg_for6Z(img,z) cimg_for6XY(img,x,y) +#define cimg_for6XZC(img,x,z,c) cimg_for6C(img,c) cimg_for6XZ(img,x,z) +#define cimg_for6YZC(img,y,z,c) cimg_for6C(img,c) cimg_for6YZ(img,y,z) +#define cimg_for6XYZC(img,x,y,z,c) cimg_for6C(img,c) cimg_for6XYZ(img,x,y,z) + +#define cimg_for_in6(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), \ + _p2##i = i - 2<0?0:i - 2, \ + _p1##i = i - 1<0?0:i - 1, \ + _n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \ + _n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \ + _n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3; \ + i<=(int)(i1) && \ + (_n3##i<(int)(bound) || _n2##i==--_n3##i || _n1##i==--_n2##i || i==(_n3##i = _n2##i = --_n1##i)); \ + _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i) +#define cimg_for_in6X(img,x0,x1,x) cimg_for_in6((img)._width,x0,x1,x) +#define cimg_for_in6Y(img,y0,y1,y) cimg_for_in6((img)._height,y0,y1,y) +#define cimg_for_in6Z(img,z0,z1,z) cimg_for_in6((img)._depth,z0,z1,z) +#define cimg_for_in6C(img,c0,c1,c) cimg_for_in6((img)._spectrum,c0,c1,c) +#define cimg_for_in6XY(img,x0,y0,x1,y1,x,y) cimg_for_in6Y(img,y0,y1,y) cimg_for_in6X(img,x0,x1,x) +#define cimg_for_in6XZ(img,x0,z0,x1,z1,x,z) cimg_for_in6Z(img,z0,z1,z) cimg_for_in6X(img,x0,x1,x) +#define cimg_for_in6XC(img,x0,c0,x1,c1,x,c) cimg_for_in6C(img,c0,c1,c) cimg_for_in6X(img,x0,x1,x) +#define cimg_for_in6YZ(img,y0,z0,y1,z1,y,z) cimg_for_in6Z(img,z0,z1,z) cimg_for_in6Y(img,y0,y1,y) +#define cimg_for_in6YC(img,y0,c0,y1,c1,y,c) cimg_for_in6C(img,c0,c1,c) cimg_for_in6Y(img,y0,y1,y) +#define cimg_for_in6ZC(img,z0,c0,z1,c1,z,c) cimg_for_in6C(img,c0,c1,c) cimg_for_in6Z(img,z0,z1,z) +#define cimg_for_in6XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in6Z(img,z0,z1,z) cimg_for_in6XY(img,x0,y0,x1,y1,x,y) +#define cimg_for_in6XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in6C(img,c0,c1,c) cimg_for_in6XZ(img,x0,y0,x1,y1,x,z) +#define cimg_for_in6YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in6C(img,c0,c1,c) cimg_for_in6YZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_in6XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_in6C(img,c0,c1,c) cimg_for_in6XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) + +#define cimg_for7(bound,i) \ + for (int i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ + _n1##i = 1>=(bound)?(int)(bound) - 1:1, \ + _n2##i = 2>=(bound)?(int)(bound) - 1:2, \ + _n3##i = 3>=(bound)?(int)(bound) - 1:3; \ + _n3##i<(int)(bound) || _n2##i==--_n3##i || _n1##i==--_n2##i || i==(_n3##i = _n2##i = --_n1##i); \ + _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i) +#define cimg_for7X(img,x) cimg_for7((img)._width,x) +#define cimg_for7Y(img,y) cimg_for7((img)._height,y) +#define cimg_for7Z(img,z) cimg_for7((img)._depth,z) +#define cimg_for7C(img,c) cimg_for7((img)._spectrum,c) +#define cimg_for7XY(img,x,y) cimg_for7Y(img,y) cimg_for7X(img,x) +#define cimg_for7XZ(img,x,z) cimg_for7Z(img,z) cimg_for7X(img,x) +#define cimg_for7XC(img,x,c) cimg_for7C(img,c) cimg_for7X(img,x) +#define cimg_for7YZ(img,y,z) cimg_for7Z(img,z) cimg_for7Y(img,y) +#define cimg_for7YC(img,y,c) cimg_for7C(img,c) cimg_for7Y(img,y) +#define cimg_for7ZC(img,z,c) cimg_for7C(img,c) cimg_for7Z(img,z) +#define cimg_for7XYZ(img,x,y,z) cimg_for7Z(img,z) cimg_for7XY(img,x,y) +#define cimg_for7XZC(img,x,z,c) cimg_for7C(img,c) cimg_for7XZ(img,x,z) +#define cimg_for7YZC(img,y,z,c) cimg_for7C(img,c) cimg_for7YZ(img,y,z) +#define cimg_for7XYZC(img,x,y,z,c) cimg_for7C(img,c) cimg_for7XYZ(img,x,y,z) + +#define cimg_for_in7(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), \ + _p3##i = i - 3<0?0:i - 3, \ + _p2##i = i - 2<0?0:i - 2, \ + _p1##i = i - 1<0?0:i - 1, \ + _n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \ + _n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \ + _n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3; \ + i<=(int)(i1) && \ + (_n3##i<(int)(bound) || _n2##i==--_n3##i || _n1##i==--_n2##i || i==(_n3##i = _n2##i = --_n1##i)); \ + _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i) +#define cimg_for_in7X(img,x0,x1,x) cimg_for_in7((img)._width,x0,x1,x) +#define cimg_for_in7Y(img,y0,y1,y) cimg_for_in7((img)._height,y0,y1,y) +#define cimg_for_in7Z(img,z0,z1,z) cimg_for_in7((img)._depth,z0,z1,z) +#define cimg_for_in7C(img,c0,c1,c) cimg_for_in7((img)._spectrum,c0,c1,c) +#define cimg_for_in7XY(img,x0,y0,x1,y1,x,y) cimg_for_in7Y(img,y0,y1,y) cimg_for_in7X(img,x0,x1,x) +#define cimg_for_in7XZ(img,x0,z0,x1,z1,x,z) cimg_for_in7Z(img,z0,z1,z) cimg_for_in7X(img,x0,x1,x) +#define cimg_for_in7XC(img,x0,c0,x1,c1,x,c) cimg_for_in7C(img,c0,c1,c) cimg_for_in7X(img,x0,x1,x) +#define cimg_for_in7YZ(img,y0,z0,y1,z1,y,z) cimg_for_in7Z(img,z0,z1,z) cimg_for_in7Y(img,y0,y1,y) +#define cimg_for_in7YC(img,y0,c0,y1,c1,y,c) cimg_for_in7C(img,c0,c1,c) cimg_for_in7Y(img,y0,y1,y) +#define cimg_for_in7ZC(img,z0,c0,z1,c1,z,c) cimg_for_in7C(img,c0,c1,c) cimg_for_in7Z(img,z0,z1,z) +#define cimg_for_in7XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in7Z(img,z0,z1,z) cimg_for_in7XY(img,x0,y0,x1,y1,x,y) +#define cimg_for_in7XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in7C(img,c0,c1,c) cimg_for_in7XZ(img,x0,y0,x1,y1,x,z) +#define cimg_for_in7YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in7C(img,c0,c1,c) cimg_for_in7YZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_in7XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_in7C(img,c0,c1,c) cimg_for_in7XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) + +#define cimg_for8(bound,i) \ + for (int i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ + _n1##i = 1>=(bound)?(int)(bound) - 1:1, \ + _n2##i = 2>=(bound)?(int)(bound) - 1:2, \ + _n3##i = 3>=(bound)?(int)(bound) - 1:3, \ + _n4##i = 4>=(bound)?(int)(bound) - 1:4; \ + _n4##i<(int)(bound) || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ + i==(_n4##i = _n3##i = _n2##i = --_n1##i); \ + _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i) +#define cimg_for8X(img,x) cimg_for8((img)._width,x) +#define cimg_for8Y(img,y) cimg_for8((img)._height,y) +#define cimg_for8Z(img,z) cimg_for8((img)._depth,z) +#define cimg_for8C(img,c) cimg_for8((img)._spectrum,c) +#define cimg_for8XY(img,x,y) cimg_for8Y(img,y) cimg_for8X(img,x) +#define cimg_for8XZ(img,x,z) cimg_for8Z(img,z) cimg_for8X(img,x) +#define cimg_for8XC(img,x,c) cimg_for8C(img,c) cimg_for8X(img,x) +#define cimg_for8YZ(img,y,z) cimg_for8Z(img,z) cimg_for8Y(img,y) +#define cimg_for8YC(img,y,c) cimg_for8C(img,c) cimg_for8Y(img,y) +#define cimg_for8ZC(img,z,c) cimg_for8C(img,c) cimg_for8Z(img,z) +#define cimg_for8XYZ(img,x,y,z) cimg_for8Z(img,z) cimg_for8XY(img,x,y) +#define cimg_for8XZC(img,x,z,c) cimg_for8C(img,c) cimg_for8XZ(img,x,z) +#define cimg_for8YZC(img,y,z,c) cimg_for8C(img,c) cimg_for8YZ(img,y,z) +#define cimg_for8XYZC(img,x,y,z,c) cimg_for8C(img,c) cimg_for8XYZ(img,x,y,z) + +#define cimg_for_in8(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), \ + _p3##i = i - 3<0?0:i - 3, \ + _p2##i = i - 2<0?0:i - 2, \ + _p1##i = i - 1<0?0:i - 1, \ + _n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \ + _n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \ + _n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \ + _n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4; \ + i<=(int)(i1) && (_n4##i<(int)(bound) || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ + i==(_n4##i = _n3##i = _n2##i = --_n1##i)); \ + _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i) +#define cimg_for_in8X(img,x0,x1,x) cimg_for_in8((img)._width,x0,x1,x) +#define cimg_for_in8Y(img,y0,y1,y) cimg_for_in8((img)._height,y0,y1,y) +#define cimg_for_in8Z(img,z0,z1,z) cimg_for_in8((img)._depth,z0,z1,z) +#define cimg_for_in8C(img,c0,c1,c) cimg_for_in8((img)._spectrum,c0,c1,c) +#define cimg_for_in8XY(img,x0,y0,x1,y1,x,y) cimg_for_in8Y(img,y0,y1,y) cimg_for_in8X(img,x0,x1,x) +#define cimg_for_in8XZ(img,x0,z0,x1,z1,x,z) cimg_for_in8Z(img,z0,z1,z) cimg_for_in8X(img,x0,x1,x) +#define cimg_for_in8XC(img,x0,c0,x1,c1,x,c) cimg_for_in8C(img,c0,c1,c) cimg_for_in8X(img,x0,x1,x) +#define cimg_for_in8YZ(img,y0,z0,y1,z1,y,z) cimg_for_in8Z(img,z0,z1,z) cimg_for_in8Y(img,y0,y1,y) +#define cimg_for_in8YC(img,y0,c0,y1,c1,y,c) cimg_for_in8C(img,c0,c1,c) cimg_for_in8Y(img,y0,y1,y) +#define cimg_for_in8ZC(img,z0,c0,z1,c1,z,c) cimg_for_in8C(img,c0,c1,c) cimg_for_in8Z(img,z0,z1,z) +#define cimg_for_in8XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in8Z(img,z0,z1,z) cimg_for_in8XY(img,x0,y0,x1,y1,x,y) +#define cimg_for_in8XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in8C(img,c0,c1,c) cimg_for_in8XZ(img,x0,y0,x1,y1,x,z) +#define cimg_for_in8YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in8C(img,c0,c1,c) cimg_for_in8YZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_in8XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_in8C(img,c0,c1,c) cimg_for_in8XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) + +#define cimg_for9(bound,i) \ + for (int i = 0, _p4##i = 0, _p3##i = 0, _p2##i = 0, _p1##i = 0, \ + _n1##i = 1>=(int)(bound)?(int)(bound) - 1:1, \ + _n2##i = 2>=(int)(bound)?(int)(bound) - 1:2, \ + _n3##i = 3>=(int)(bound)?(int)(bound) - 1:3, \ + _n4##i = 4>=(int)(bound)?(int)(bound) - 1:4; \ + _n4##i<(int)(bound) || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ + i==(_n4##i = _n3##i = _n2##i = --_n1##i); \ + _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i) +#define cimg_for9X(img,x) cimg_for9((img)._width,x) +#define cimg_for9Y(img,y) cimg_for9((img)._height,y) +#define cimg_for9Z(img,z) cimg_for9((img)._depth,z) +#define cimg_for9C(img,c) cimg_for9((img)._spectrum,c) +#define cimg_for9XY(img,x,y) cimg_for9Y(img,y) cimg_for9X(img,x) +#define cimg_for9XZ(img,x,z) cimg_for9Z(img,z) cimg_for9X(img,x) +#define cimg_for9XC(img,x,c) cimg_for9C(img,c) cimg_for9X(img,x) +#define cimg_for9YZ(img,y,z) cimg_for9Z(img,z) cimg_for9Y(img,y) +#define cimg_for9YC(img,y,c) cimg_for9C(img,c) cimg_for9Y(img,y) +#define cimg_for9ZC(img,z,c) cimg_for9C(img,c) cimg_for9Z(img,z) +#define cimg_for9XYZ(img,x,y,z) cimg_for9Z(img,z) cimg_for9XY(img,x,y) +#define cimg_for9XZC(img,x,z,c) cimg_for9C(img,c) cimg_for9XZ(img,x,z) +#define cimg_for9YZC(img,y,z,c) cimg_for9C(img,c) cimg_for9YZ(img,y,z) +#define cimg_for9XYZC(img,x,y,z,c) cimg_for9C(img,c) cimg_for9XYZ(img,x,y,z) + +#define cimg_for_in9(bound,i0,i1,i) \ + for (int i = (int)(i0)<0?0:(int)(i0), \ + _p4##i = i - 4<0?0:i - 4, \ + _p3##i = i - 3<0?0:i - 3, \ + _p2##i = i - 2<0?0:i - 2, \ + _p1##i = i - 1<0?0:i - 1, \ + _n1##i = i + 1>=(int)(bound)?(int)(bound) - 1:i + 1, \ + _n2##i = i + 2>=(int)(bound)?(int)(bound) - 1:i + 2, \ + _n3##i = i + 3>=(int)(bound)?(int)(bound) - 1:i + 3, \ + _n4##i = i + 4>=(int)(bound)?(int)(bound) - 1:i + 4; \ + i<=(int)(i1) && (_n4##i<(int)(bound) || _n3##i==--_n4##i || _n2##i==--_n3##i || _n1##i==--_n2##i || \ + i==(_n4##i = _n3##i = _n2##i = --_n1##i)); \ + _p4##i = _p3##i, _p3##i = _p2##i, _p2##i = _p1##i, _p1##i = i++, ++_n1##i, ++_n2##i, ++_n3##i, ++_n4##i) +#define cimg_for_in9X(img,x0,x1,x) cimg_for_in9((img)._width,x0,x1,x) +#define cimg_for_in9Y(img,y0,y1,y) cimg_for_in9((img)._height,y0,y1,y) +#define cimg_for_in9Z(img,z0,z1,z) cimg_for_in9((img)._depth,z0,z1,z) +#define cimg_for_in9C(img,c0,c1,c) cimg_for_in9((img)._spectrum,c0,c1,c) +#define cimg_for_in9XY(img,x0,y0,x1,y1,x,y) cimg_for_in9Y(img,y0,y1,y) cimg_for_in9X(img,x0,x1,x) +#define cimg_for_in9XZ(img,x0,z0,x1,z1,x,z) cimg_for_in9Z(img,z0,z1,z) cimg_for_in9X(img,x0,x1,x) +#define cimg_for_in9XC(img,x0,c0,x1,c1,x,c) cimg_for_in9C(img,c0,c1,c) cimg_for_in9X(img,x0,x1,x) +#define cimg_for_in9YZ(img,y0,z0,y1,z1,y,z) cimg_for_in9Z(img,z0,z1,z) cimg_for_in9Y(img,y0,y1,y) +#define cimg_for_in9YC(img,y0,c0,y1,c1,y,c) cimg_for_in9C(img,c0,c1,c) cimg_for_in9Y(img,y0,y1,y) +#define cimg_for_in9ZC(img,z0,c0,z1,c1,z,c) cimg_for_in9C(img,c0,c1,c) cimg_for_in9Z(img,z0,z1,z) +#define cimg_for_in9XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) cimg_for_in9Z(img,z0,z1,z) cimg_for_in9XY(img,x0,y0,x1,y1,x,y) +#define cimg_for_in9XZC(img,x0,z0,c0,x1,y1,c1,x,z,c) cimg_for_in9C(img,c0,c1,c) cimg_for_in9XZ(img,x0,y0,x1,y1,x,z) +#define cimg_for_in9YZC(img,y0,z0,c0,y1,z1,c1,y,z,c) cimg_for_in9C(img,c0,c1,c) cimg_for_in9YZ(img,y0,z0,y1,z1,y,z) +#define cimg_for_in9XYZC(img,x0,y0,z0,c0,x1,y1,z1,c1,x,y,z,c) \ + cimg_for_in9C(img,c0,c1,c) cimg_for_in9XYZ(img,x0,y0,z0,x1,y1,z1,x,y,z) + +#define cimg_for2x2(img,x,y,z,c,I,T) \ + cimg_for2((img)._height,y) for (int x = 0, \ + _n1##x = (int)( \ + (I[0] = (T)(img)(0,y,z,c)), \ + (I[2] = (T)(img)(0,_n1##y,z,c)), \ + 1>=(img)._width?(img).width() - 1:1); \ + (_n1##x<(img).width() && ( \ + (I[1] = (T)(img)(_n1##x,y,z,c)), \ + (I[3] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \ + x==--_n1##x; \ + I[0] = I[1], \ + I[2] = I[3], \ + ++x, ++_n1##x) + +#define cimg_for_in2x2(img,x0,y0,x1,y1,x,y,z,c,I,T) \ + cimg_for_in2((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _n1##x = (int)( \ + (I[0] = (T)(img)(x,y,z,c)), \ + (I[2] = (T)(img)(x,_n1##y,z,c)), \ + x + 1>=(int)(img)._width?(img).width() - 1:x + 1); \ + x<=(int)(x1) && ((_n1##x<(img).width() && ( \ + (I[1] = (T)(img)(_n1##x,y,z,c)), \ + (I[3] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \ + x==--_n1##x); \ + I[0] = I[1], \ + I[2] = I[3], \ + ++x, ++_n1##x) + +#define cimg_for3x3(img,x,y,z,c,I,T) \ + cimg_for3((img)._height,y) for (int x = 0, \ + _p1##x = 0, \ + _n1##x = (int)( \ + (I[0] = I[1] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[3] = I[4] = (T)(img)(0,y,z,c)), \ + (I[6] = I[7] = (T)(img)(0,_n1##y,z,c)), \ + 1>=(img)._width?(img).width() - 1:1); \ + (_n1##x<(img).width() && ( \ + (I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[5] = (T)(img)(_n1##x,y,z,c)), \ + (I[8] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \ + x==--_n1##x; \ + I[0] = I[1], I[1] = I[2], \ + I[3] = I[4], I[4] = I[5], \ + I[6] = I[7], I[7] = I[8], \ + _p1##x = x++, ++_n1##x) + +#define cimg_for_in3x3(img,x0,y0,x1,y1,x,y,z,c,I,T) \ + cimg_for_in3((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _p1##x = x - 1<0?0:x - 1, \ + _n1##x = (int)( \ + (I[0] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[3] = (T)(img)(_p1##x,y,z,c)), \ + (I[6] = (T)(img)(_p1##x,_n1##y,z,c)), \ + (I[1] = (T)(img)(x,_p1##y,z,c)), \ + (I[4] = (T)(img)(x,y,z,c)), \ + (I[7] = (T)(img)(x,_n1##y,z,c)), \ + x + 1>=(int)(img)._width?(img).width() - 1:x + 1); \ + x<=(int)(x1) && ((_n1##x<(img).width() && ( \ + (I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[5] = (T)(img)(_n1##x,y,z,c)), \ + (I[8] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \ + x==--_n1##x); \ + I[0] = I[1], I[1] = I[2], \ + I[3] = I[4], I[4] = I[5], \ + I[6] = I[7], I[7] = I[8], \ + _p1##x = x++, ++_n1##x) + +#define cimg_for4x4(img,x,y,z,c,I,T) \ + cimg_for4((img)._height,y) for (int x = 0, \ + _p1##x = 0, \ + _n1##x = 1>=(img)._width?(img).width() - 1:1, \ + _n2##x = (int)( \ + (I[0] = I[1] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[4] = I[5] = (T)(img)(0,y,z,c)), \ + (I[8] = I[9] = (T)(img)(0,_n1##y,z,c)), \ + (I[12] = I[13] = (T)(img)(0,_n2##y,z,c)), \ + (I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[6] = (T)(img)(_n1##x,y,z,c)), \ + (I[10] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[14] = (T)(img)(_n1##x,_n2##y,z,c)), \ + 2>=(img)._width?(img).width() - 1:2); \ + (_n2##x<(img).width() && ( \ + (I[3] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[7] = (T)(img)(_n2##x,y,z,c)), \ + (I[11] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[15] = (T)(img)(_n2##x,_n2##y,z,c)),1)) || \ + _n1##x==--_n2##x || x==(_n2##x = --_n1##x); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], \ + I[4] = I[5], I[5] = I[6], I[6] = I[7], \ + I[8] = I[9], I[9] = I[10], I[10] = I[11], \ + I[12] = I[13], I[13] = I[14], I[14] = I[15], \ + _p1##x = x++, ++_n1##x, ++_n2##x) + +#define cimg_for_in4x4(img,x0,y0,x1,y1,x,y,z,c,I,T) \ + cimg_for_in4((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _p1##x = x - 1<0?0:x - 1, \ + _n1##x = x + 1>=(int)(img)._width?(img).width() - 1:x + 1, \ + _n2##x = (int)( \ + (I[0] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[4] = (T)(img)(_p1##x,y,z,c)), \ + (I[8] = (T)(img)(_p1##x,_n1##y,z,c)), \ + (I[12] = (T)(img)(_p1##x,_n2##y,z,c)), \ + (I[1] = (T)(img)(x,_p1##y,z,c)), \ + (I[5] = (T)(img)(x,y,z,c)), \ + (I[9] = (T)(img)(x,_n1##y,z,c)), \ + (I[13] = (T)(img)(x,_n2##y,z,c)), \ + (I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[6] = (T)(img)(_n1##x,y,z,c)), \ + (I[10] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[14] = (T)(img)(_n1##x,_n2##y,z,c)), \ + x + 2>=(int)(img)._width?(img).width() - 1:x + 2); \ + x<=(int)(x1) && ((_n2##x<(img).width() && ( \ + (I[3] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[7] = (T)(img)(_n2##x,y,z,c)), \ + (I[11] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[15] = (T)(img)(_n2##x,_n2##y,z,c)),1)) || \ + _n1##x==--_n2##x || x==(_n2##x = --_n1##x)); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], \ + I[4] = I[5], I[5] = I[6], I[6] = I[7], \ + I[8] = I[9], I[9] = I[10], I[10] = I[11], \ + I[12] = I[13], I[13] = I[14], I[14] = I[15], \ + _p1##x = x++, ++_n1##x, ++_n2##x) + +#define cimg_for5x5(img,x,y,z,c,I,T) \ + cimg_for5((img)._height,y) for (int x = 0, \ + _p2##x = 0, _p1##x = 0, \ + _n1##x = 1>=(img)._width?(img).width() - 1:1, \ + _n2##x = (int)( \ + (I[0] = I[1] = I[2] = (T)(img)(_p2##x,_p2##y,z,c)), \ + (I[5] = I[6] = I[7] = (T)(img)(0,_p1##y,z,c)), \ + (I[10] = I[11] = I[12] = (T)(img)(0,y,z,c)), \ + (I[15] = I[16] = I[17] = (T)(img)(0,_n1##y,z,c)), \ + (I[20] = I[21] = I[22] = (T)(img)(0,_n2##y,z,c)), \ + (I[3] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[8] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[13] = (T)(img)(_n1##x,y,z,c)), \ + (I[18] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[23] = (T)(img)(_n1##x,_n2##y,z,c)), \ + 2>=(img)._width?(img).width() - 1:2); \ + (_n2##x<(img).width() && ( \ + (I[4] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[9] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[14] = (T)(img)(_n2##x,y,z,c)), \ + (I[19] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[24] = (T)(img)(_n2##x,_n2##y,z,c)),1)) || \ + _n1##x==--_n2##x || x==(_n2##x = --_n1##x); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \ + I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \ + I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \ + I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \ + I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \ + _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x) + +#define cimg_for_in5x5(img,x0,y0,x1,y1,x,y,z,c,I,T) \ + cimg_for_in5((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _p2##x = x - 2<0?0:x - 2, \ + _p1##x = x - 1<0?0:x - 1, \ + _n1##x = x + 1>=(int)(img)._width?(img).width() - 1:x + 1, \ + _n2##x = (int)( \ + (I[0] = (T)(img)(_p2##x,_p2##y,z,c)), \ + (I[5] = (T)(img)(_p2##x,_p1##y,z,c)), \ + (I[10] = (T)(img)(_p2##x,y,z,c)), \ + (I[15] = (T)(img)(_p2##x,_n1##y,z,c)), \ + (I[20] = (T)(img)(_p2##x,_n2##y,z,c)), \ + (I[1] = (T)(img)(_p1##x,_p2##y,z,c)), \ + (I[6] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[11] = (T)(img)(_p1##x,y,z,c)), \ + (I[16] = (T)(img)(_p1##x,_n1##y,z,c)), \ + (I[21] = (T)(img)(_p1##x,_n2##y,z,c)), \ + (I[2] = (T)(img)(x,_p2##y,z,c)), \ + (I[7] = (T)(img)(x,_p1##y,z,c)), \ + (I[12] = (T)(img)(x,y,z,c)), \ + (I[17] = (T)(img)(x,_n1##y,z,c)), \ + (I[22] = (T)(img)(x,_n2##y,z,c)), \ + (I[3] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[8] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[13] = (T)(img)(_n1##x,y,z,c)), \ + (I[18] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[23] = (T)(img)(_n1##x,_n2##y,z,c)), \ + x + 2>=(int)(img)._width?(img).width() - 1:x + 2); \ + x<=(int)(x1) && ((_n2##x<(img).width() && ( \ + (I[4] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[9] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[14] = (T)(img)(_n2##x,y,z,c)), \ + (I[19] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[24] = (T)(img)(_n2##x,_n2##y,z,c)),1)) || \ + _n1##x==--_n2##x || x==(_n2##x = --_n1##x)); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], \ + I[5] = I[6], I[6] = I[7], I[7] = I[8], I[8] = I[9], \ + I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], \ + I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], \ + I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \ + _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x) + +#define cimg_for6x6(img,x,y,z,c,I,T) \ + cimg_for6((img)._height,y) for (int x = 0, \ + _p2##x = 0, _p1##x = 0, \ + _n1##x = 1>=(img)._width?(img).width() - 1:1, \ + _n2##x = 2>=(img)._width?(img).width() - 1:2, \ + _n3##x = (int)( \ + (I[0] = I[1] = I[2] = (T)(img)(_p2##x,_p2##y,z,c)), \ + (I[6] = I[7] = I[8] = (T)(img)(0,_p1##y,z,c)), \ + (I[12] = I[13] = I[14] = (T)(img)(0,y,z,c)), \ + (I[18] = I[19] = I[20] = (T)(img)(0,_n1##y,z,c)), \ + (I[24] = I[25] = I[26] = (T)(img)(0,_n2##y,z,c)), \ + (I[30] = I[31] = I[32] = (T)(img)(0,_n3##y,z,c)), \ + (I[3] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[9] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[15] = (T)(img)(_n1##x,y,z,c)), \ + (I[21] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[27] = (T)(img)(_n1##x,_n2##y,z,c)), \ + (I[33] = (T)(img)(_n1##x,_n3##y,z,c)), \ + (I[4] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[10] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[16] = (T)(img)(_n2##x,y,z,c)), \ + (I[22] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[28] = (T)(img)(_n2##x,_n2##y,z,c)), \ + (I[34] = (T)(img)(_n2##x,_n3##y,z,c)), \ + 3>=(img)._width?(img).width() - 1:3); \ + (_n3##x<(img).width() && ( \ + (I[5] = (T)(img)(_n3##x,_p2##y,z,c)), \ + (I[11] = (T)(img)(_n3##x,_p1##y,z,c)), \ + (I[17] = (T)(img)(_n3##x,y,z,c)), \ + (I[23] = (T)(img)(_n3##x,_n1##y,z,c)), \ + (I[29] = (T)(img)(_n3##x,_n2##y,z,c)), \ + (I[35] = (T)(img)(_n3##x,_n3##y,z,c)),1)) || \ + _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3## x = _n2##x = --_n1##x); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], \ + I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \ + I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \ + I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ + I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \ + I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \ + _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x) + +#define cimg_for_in6x6(img,x0,y0,x1,y1,x,y,z,c,I,T) \ + cimg_for_in6((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)x0, \ + _p2##x = x - 2<0?0:x - 2, \ + _p1##x = x - 1<0?0:x - 1, \ + _n1##x = x + 1>=(int)(img)._width?(img).width() - 1:x + 1, \ + _n2##x = x + 2>=(int)(img)._width?(img).width() - 1:x + 2, \ + _n3##x = (int)( \ + (I[0] = (T)(img)(_p2##x,_p2##y,z,c)), \ + (I[6] = (T)(img)(_p2##x,_p1##y,z,c)), \ + (I[12] = (T)(img)(_p2##x,y,z,c)), \ + (I[18] = (T)(img)(_p2##x,_n1##y,z,c)), \ + (I[24] = (T)(img)(_p2##x,_n2##y,z,c)), \ + (I[30] = (T)(img)(_p2##x,_n3##y,z,c)), \ + (I[1] = (T)(img)(_p1##x,_p2##y,z,c)), \ + (I[7] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[13] = (T)(img)(_p1##x,y,z,c)), \ + (I[19] = (T)(img)(_p1##x,_n1##y,z,c)), \ + (I[25] = (T)(img)(_p1##x,_n2##y,z,c)), \ + (I[31] = (T)(img)(_p1##x,_n3##y,z,c)), \ + (I[2] = (T)(img)(x,_p2##y,z,c)), \ + (I[8] = (T)(img)(x,_p1##y,z,c)), \ + (I[14] = (T)(img)(x,y,z,c)), \ + (I[20] = (T)(img)(x,_n1##y,z,c)), \ + (I[26] = (T)(img)(x,_n2##y,z,c)), \ + (I[32] = (T)(img)(x,_n3##y,z,c)), \ + (I[3] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[9] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[15] = (T)(img)(_n1##x,y,z,c)), \ + (I[21] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[27] = (T)(img)(_n1##x,_n2##y,z,c)), \ + (I[33] = (T)(img)(_n1##x,_n3##y,z,c)), \ + (I[4] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[10] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[16] = (T)(img)(_n2##x,y,z,c)), \ + (I[22] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[28] = (T)(img)(_n2##x,_n2##y,z,c)), \ + (I[34] = (T)(img)(_n2##x,_n3##y,z,c)), \ + x + 3>=(int)(img)._width?(img).width() - 1:x + 3); \ + x<=(int)(x1) && ((_n3##x<(img).width() && ( \ + (I[5] = (T)(img)(_n3##x,_p2##y,z,c)), \ + (I[11] = (T)(img)(_n3##x,_p1##y,z,c)), \ + (I[17] = (T)(img)(_n3##x,y,z,c)), \ + (I[23] = (T)(img)(_n3##x,_n1##y,z,c)), \ + (I[29] = (T)(img)(_n3##x,_n2##y,z,c)), \ + (I[35] = (T)(img)(_n3##x,_n3##y,z,c)),1)) || \ + _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3## x = _n2##x = --_n1##x)); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], \ + I[6] = I[7], I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], \ + I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], I[16] = I[17], \ + I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ + I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], \ + I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], I[34] = I[35], \ + _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x) + +#define cimg_for7x7(img,x,y,z,c,I,T) \ + cimg_for7((img)._height,y) for (int x = 0, \ + _p3##x = 0, _p2##x = 0, _p1##x = 0, \ + _n1##x = 1>=(img)._width?(img).width() - 1:1, \ + _n2##x = 2>=(img)._width?(img).width() - 1:2, \ + _n3##x = (int)( \ + (I[0] = I[1] = I[2] = I[3] = (T)(img)(_p3##x,_p3##y,z,c)), \ + (I[7] = I[8] = I[9] = I[10] = (T)(img)(0,_p2##y,z,c)), \ + (I[14] = I[15] = I[16] = I[17] = (T)(img)(0,_p1##y,z,c)), \ + (I[21] = I[22] = I[23] = I[24] = (T)(img)(0,y,z,c)), \ + (I[28] = I[29] = I[30] = I[31] = (T)(img)(0,_n1##y,z,c)), \ + (I[35] = I[36] = I[37] = I[38] = (T)(img)(0,_n2##y,z,c)), \ + (I[42] = I[43] = I[44] = I[45] = (T)(img)(0,_n3##y,z,c)), \ + (I[4] = (T)(img)(_n1##x,_p3##y,z,c)), \ + (I[11] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[18] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[25] = (T)(img)(_n1##x,y,z,c)), \ + (I[32] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[39] = (T)(img)(_n1##x,_n2##y,z,c)), \ + (I[46] = (T)(img)(_n1##x,_n3##y,z,c)), \ + (I[5] = (T)(img)(_n2##x,_p3##y,z,c)), \ + (I[12] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[19] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[26] = (T)(img)(_n2##x,y,z,c)), \ + (I[33] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[40] = (T)(img)(_n2##x,_n2##y,z,c)), \ + (I[47] = (T)(img)(_n2##x,_n3##y,z,c)), \ + 3>=(img)._width?(img).width() - 1:3); \ + (_n3##x<(img).width() && ( \ + (I[6] = (T)(img)(_n3##x,_p3##y,z,c)), \ + (I[13] = (T)(img)(_n3##x,_p2##y,z,c)), \ + (I[20] = (T)(img)(_n3##x,_p1##y,z,c)), \ + (I[27] = (T)(img)(_n3##x,y,z,c)), \ + (I[34] = (T)(img)(_n3##x,_n1##y,z,c)), \ + (I[41] = (T)(img)(_n3##x,_n2##y,z,c)), \ + (I[48] = (T)(img)(_n3##x,_n3##y,z,c)),1)) || \ + _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], \ + I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \ + I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \ + I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \ + I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \ + I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \ + I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], \ + _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x) + +#define cimg_for_in7x7(img,x0,y0,x1,y1,x,y,z,c,I,T) \ + cimg_for_in7((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _p3##x = x - 3<0?0:x - 3, \ + _p2##x = x - 2<0?0:x - 2, \ + _p1##x = x - 1<0?0:x - 1, \ + _n1##x = x + 1>=(int)(img)._width?(img).width() - 1:x + 1, \ + _n2##x = x + 2>=(int)(img)._width?(img).width() - 1:x + 2, \ + _n3##x = (int)( \ + (I[0] = (T)(img)(_p3##x,_p3##y,z,c)), \ + (I[7] = (T)(img)(_p3##x,_p2##y,z,c)), \ + (I[14] = (T)(img)(_p3##x,_p1##y,z,c)), \ + (I[21] = (T)(img)(_p3##x,y,z,c)), \ + (I[28] = (T)(img)(_p3##x,_n1##y,z,c)), \ + (I[35] = (T)(img)(_p3##x,_n2##y,z,c)), \ + (I[42] = (T)(img)(_p3##x,_n3##y,z,c)), \ + (I[1] = (T)(img)(_p2##x,_p3##y,z,c)), \ + (I[8] = (T)(img)(_p2##x,_p2##y,z,c)), \ + (I[15] = (T)(img)(_p2##x,_p1##y,z,c)), \ + (I[22] = (T)(img)(_p2##x,y,z,c)), \ + (I[29] = (T)(img)(_p2##x,_n1##y,z,c)), \ + (I[36] = (T)(img)(_p2##x,_n2##y,z,c)), \ + (I[43] = (T)(img)(_p2##x,_n3##y,z,c)), \ + (I[2] = (T)(img)(_p1##x,_p3##y,z,c)), \ + (I[9] = (T)(img)(_p1##x,_p2##y,z,c)), \ + (I[16] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[23] = (T)(img)(_p1##x,y,z,c)), \ + (I[30] = (T)(img)(_p1##x,_n1##y,z,c)), \ + (I[37] = (T)(img)(_p1##x,_n2##y,z,c)), \ + (I[44] = (T)(img)(_p1##x,_n3##y,z,c)), \ + (I[3] = (T)(img)(x,_p3##y,z,c)), \ + (I[10] = (T)(img)(x,_p2##y,z,c)), \ + (I[17] = (T)(img)(x,_p1##y,z,c)), \ + (I[24] = (T)(img)(x,y,z,c)), \ + (I[31] = (T)(img)(x,_n1##y,z,c)), \ + (I[38] = (T)(img)(x,_n2##y,z,c)), \ + (I[45] = (T)(img)(x,_n3##y,z,c)), \ + (I[4] = (T)(img)(_n1##x,_p3##y,z,c)), \ + (I[11] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[18] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[25] = (T)(img)(_n1##x,y,z,c)), \ + (I[32] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[39] = (T)(img)(_n1##x,_n2##y,z,c)), \ + (I[46] = (T)(img)(_n1##x,_n3##y,z,c)), \ + (I[5] = (T)(img)(_n2##x,_p3##y,z,c)), \ + (I[12] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[19] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[26] = (T)(img)(_n2##x,y,z,c)), \ + (I[33] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[40] = (T)(img)(_n2##x,_n2##y,z,c)), \ + (I[47] = (T)(img)(_n2##x,_n3##y,z,c)), \ + x + 3>=(int)(img)._width?(img).width() - 1:x + 3); \ + x<=(int)(x1) && ((_n3##x<(img).width() && ( \ + (I[6] = (T)(img)(_n3##x,_p3##y,z,c)), \ + (I[13] = (T)(img)(_n3##x,_p2##y,z,c)), \ + (I[20] = (T)(img)(_n3##x,_p1##y,z,c)), \ + (I[27] = (T)(img)(_n3##x,y,z,c)), \ + (I[34] = (T)(img)(_n3##x,_n1##y,z,c)), \ + (I[41] = (T)(img)(_n3##x,_n2##y,z,c)), \ + (I[48] = (T)(img)(_n3##x,_n3##y,z,c)),1)) || \ + _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n3##x = _n2##x = --_n1##x)); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], \ + I[7] = I[8], I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], \ + I[14] = I[15], I[15] = I[16], I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], \ + I[21] = I[22], I[22] = I[23], I[23] = I[24], I[24] = I[25], I[25] = I[26], I[26] = I[27], \ + I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], I[32] = I[33], I[33] = I[34], \ + I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], I[40] = I[41], \ + I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], I[47] = I[48], \ + _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x) + +#define cimg_for8x8(img,x,y,z,c,I,T) \ + cimg_for8((img)._height,y) for (int x = 0, \ + _p3##x = 0, _p2##x = 0, _p1##x = 0, \ + _n1##x = 1>=((img)._width)?(img).width() - 1:1, \ + _n2##x = 2>=((img)._width)?(img).width() - 1:2, \ + _n3##x = 3>=((img)._width)?(img).width() - 1:3, \ + _n4##x = (int)( \ + (I[0] = I[1] = I[2] = I[3] = (T)(img)(_p3##x,_p3##y,z,c)), \ + (I[8] = I[9] = I[10] = I[11] = (T)(img)(0,_p2##y,z,c)), \ + (I[16] = I[17] = I[18] = I[19] = (T)(img)(0,_p1##y,z,c)), \ + (I[24] = I[25] = I[26] = I[27] = (T)(img)(0,y,z,c)), \ + (I[32] = I[33] = I[34] = I[35] = (T)(img)(0,_n1##y,z,c)), \ + (I[40] = I[41] = I[42] = I[43] = (T)(img)(0,_n2##y,z,c)), \ + (I[48] = I[49] = I[50] = I[51] = (T)(img)(0,_n3##y,z,c)), \ + (I[56] = I[57] = I[58] = I[59] = (T)(img)(0,_n4##y,z,c)), \ + (I[4] = (T)(img)(_n1##x,_p3##y,z,c)), \ + (I[12] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[20] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[28] = (T)(img)(_n1##x,y,z,c)), \ + (I[36] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[44] = (T)(img)(_n1##x,_n2##y,z,c)), \ + (I[52] = (T)(img)(_n1##x,_n3##y,z,c)), \ + (I[60] = (T)(img)(_n1##x,_n4##y,z,c)), \ + (I[5] = (T)(img)(_n2##x,_p3##y,z,c)), \ + (I[13] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[21] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[29] = (T)(img)(_n2##x,y,z,c)), \ + (I[37] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[45] = (T)(img)(_n2##x,_n2##y,z,c)), \ + (I[53] = (T)(img)(_n2##x,_n3##y,z,c)), \ + (I[61] = (T)(img)(_n2##x,_n4##y,z,c)), \ + (I[6] = (T)(img)(_n3##x,_p3##y,z,c)), \ + (I[14] = (T)(img)(_n3##x,_p2##y,z,c)), \ + (I[22] = (T)(img)(_n3##x,_p1##y,z,c)), \ + (I[30] = (T)(img)(_n3##x,y,z,c)), \ + (I[38] = (T)(img)(_n3##x,_n1##y,z,c)), \ + (I[46] = (T)(img)(_n3##x,_n2##y,z,c)), \ + (I[54] = (T)(img)(_n3##x,_n3##y,z,c)), \ + (I[62] = (T)(img)(_n3##x,_n4##y,z,c)), \ + 4>=((img)._width)?(img).width() - 1:4); \ + (_n4##x<(img).width() && ( \ + (I[7] = (T)(img)(_n4##x,_p3##y,z,c)), \ + (I[15] = (T)(img)(_n4##x,_p2##y,z,c)), \ + (I[23] = (T)(img)(_n4##x,_p1##y,z,c)), \ + (I[31] = (T)(img)(_n4##x,y,z,c)), \ + (I[39] = (T)(img)(_n4##x,_n1##y,z,c)), \ + (I[47] = (T)(img)(_n4##x,_n2##y,z,c)), \ + (I[55] = (T)(img)(_n4##x,_n3##y,z,c)), \ + (I[63] = (T)(img)(_n4##x,_n4##y,z,c)),1)) || \ + _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], \ + I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \ + I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ + I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \ + I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \ + I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \ + I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \ + I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \ + _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x) + +#define cimg_for_in8x8(img,x0,y0,x1,y1,x,y,z,c,I,T) \ + cimg_for_in8((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _p3##x = x - 3<0?0:x - 3, \ + _p2##x = x - 2<0?0:x - 2, \ + _p1##x = x - 1<0?0:x - 1, \ + _n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \ + _n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \ + _n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \ + _n4##x = (int)( \ + (I[0] = (T)(img)(_p3##x,_p3##y,z,c)), \ + (I[8] = (T)(img)(_p3##x,_p2##y,z,c)), \ + (I[16] = (T)(img)(_p3##x,_p1##y,z,c)), \ + (I[24] = (T)(img)(_p3##x,y,z,c)), \ + (I[32] = (T)(img)(_p3##x,_n1##y,z,c)), \ + (I[40] = (T)(img)(_p3##x,_n2##y,z,c)), \ + (I[48] = (T)(img)(_p3##x,_n3##y,z,c)), \ + (I[56] = (T)(img)(_p3##x,_n4##y,z,c)), \ + (I[1] = (T)(img)(_p2##x,_p3##y,z,c)), \ + (I[9] = (T)(img)(_p2##x,_p2##y,z,c)), \ + (I[17] = (T)(img)(_p2##x,_p1##y,z,c)), \ + (I[25] = (T)(img)(_p2##x,y,z,c)), \ + (I[33] = (T)(img)(_p2##x,_n1##y,z,c)), \ + (I[41] = (T)(img)(_p2##x,_n2##y,z,c)), \ + (I[49] = (T)(img)(_p2##x,_n3##y,z,c)), \ + (I[57] = (T)(img)(_p2##x,_n4##y,z,c)), \ + (I[2] = (T)(img)(_p1##x,_p3##y,z,c)), \ + (I[10] = (T)(img)(_p1##x,_p2##y,z,c)), \ + (I[18] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[26] = (T)(img)(_p1##x,y,z,c)), \ + (I[34] = (T)(img)(_p1##x,_n1##y,z,c)), \ + (I[42] = (T)(img)(_p1##x,_n2##y,z,c)), \ + (I[50] = (T)(img)(_p1##x,_n3##y,z,c)), \ + (I[58] = (T)(img)(_p1##x,_n4##y,z,c)), \ + (I[3] = (T)(img)(x,_p3##y,z,c)), \ + (I[11] = (T)(img)(x,_p2##y,z,c)), \ + (I[19] = (T)(img)(x,_p1##y,z,c)), \ + (I[27] = (T)(img)(x,y,z,c)), \ + (I[35] = (T)(img)(x,_n1##y,z,c)), \ + (I[43] = (T)(img)(x,_n2##y,z,c)), \ + (I[51] = (T)(img)(x,_n3##y,z,c)), \ + (I[59] = (T)(img)(x,_n4##y,z,c)), \ + (I[4] = (T)(img)(_n1##x,_p3##y,z,c)), \ + (I[12] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[20] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[28] = (T)(img)(_n1##x,y,z,c)), \ + (I[36] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[44] = (T)(img)(_n1##x,_n2##y,z,c)), \ + (I[52] = (T)(img)(_n1##x,_n3##y,z,c)), \ + (I[60] = (T)(img)(_n1##x,_n4##y,z,c)), \ + (I[5] = (T)(img)(_n2##x,_p3##y,z,c)), \ + (I[13] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[21] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[29] = (T)(img)(_n2##x,y,z,c)), \ + (I[37] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[45] = (T)(img)(_n2##x,_n2##y,z,c)), \ + (I[53] = (T)(img)(_n2##x,_n3##y,z,c)), \ + (I[61] = (T)(img)(_n2##x,_n4##y,z,c)), \ + (I[6] = (T)(img)(_n3##x,_p3##y,z,c)), \ + (I[14] = (T)(img)(_n3##x,_p2##y,z,c)), \ + (I[22] = (T)(img)(_n3##x,_p1##y,z,c)), \ + (I[30] = (T)(img)(_n3##x,y,z,c)), \ + (I[38] = (T)(img)(_n3##x,_n1##y,z,c)), \ + (I[46] = (T)(img)(_n3##x,_n2##y,z,c)), \ + (I[54] = (T)(img)(_n3##x,_n3##y,z,c)), \ + (I[62] = (T)(img)(_n3##x,_n4##y,z,c)), \ + x + 4>=(img).width()?(img).width() - 1:x + 4); \ + x<=(int)(x1) && ((_n4##x<(img).width() && ( \ + (I[7] = (T)(img)(_n4##x,_p3##y,z,c)), \ + (I[15] = (T)(img)(_n4##x,_p2##y,z,c)), \ + (I[23] = (T)(img)(_n4##x,_p1##y,z,c)), \ + (I[31] = (T)(img)(_n4##x,y,z,c)), \ + (I[39] = (T)(img)(_n4##x,_n1##y,z,c)), \ + (I[47] = (T)(img)(_n4##x,_n2##y,z,c)), \ + (I[55] = (T)(img)(_n4##x,_n3##y,z,c)), \ + (I[63] = (T)(img)(_n4##x,_n4##y,z,c)),1)) || \ + _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x)); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], \ + I[8] = I[9], I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], \ + I[16] = I[17], I[17] = I[18], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], \ + I[24] = I[25], I[25] = I[26], I[26] = I[27], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], \ + I[32] = I[33], I[33] = I[34], I[34] = I[35], I[35] = I[36], I[36] = I[37], I[37] = I[38], I[38] = I[39], \ + I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[44] = I[45], I[45] = I[46], I[46] = I[47], \ + I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[53] = I[54], I[54] = I[55], \ + I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[62] = I[63], \ + _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x) + +#define cimg_for9x9(img,x,y,z,c,I,T) \ + cimg_for9((img)._height,y) for (int x = 0, \ + _p4##x = 0, _p3##x = 0, _p2##x = 0, _p1##x = 0, \ + _n1##x = 1>=((img)._width)?(img).width() - 1:1, \ + _n2##x = 2>=((img)._width)?(img).width() - 1:2, \ + _n3##x = 3>=((img)._width)?(img).width() - 1:3, \ + _n4##x = (int)( \ + (I[0] = I[1] = I[2] = I[3] = I[4] = (T)(img)(_p4##x,_p4##y,z,c)), \ + (I[9] = I[10] = I[11] = I[12] = I[13] = (T)(img)(0,_p3##y,z,c)), \ + (I[18] = I[19] = I[20] = I[21] = I[22] = (T)(img)(0,_p2##y,z,c)), \ + (I[27] = I[28] = I[29] = I[30] = I[31] = (T)(img)(0,_p1##y,z,c)), \ + (I[36] = I[37] = I[38] = I[39] = I[40] = (T)(img)(0,y,z,c)), \ + (I[45] = I[46] = I[47] = I[48] = I[49] = (T)(img)(0,_n1##y,z,c)), \ + (I[54] = I[55] = I[56] = I[57] = I[58] = (T)(img)(0,_n2##y,z,c)), \ + (I[63] = I[64] = I[65] = I[66] = I[67] = (T)(img)(0,_n3##y,z,c)), \ + (I[72] = I[73] = I[74] = I[75] = I[76] = (T)(img)(0,_n4##y,z,c)), \ + (I[5] = (T)(img)(_n1##x,_p4##y,z,c)), \ + (I[14] = (T)(img)(_n1##x,_p3##y,z,c)), \ + (I[23] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[32] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[41] = (T)(img)(_n1##x,y,z,c)), \ + (I[50] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[59] = (T)(img)(_n1##x,_n2##y,z,c)), \ + (I[68] = (T)(img)(_n1##x,_n3##y,z,c)), \ + (I[77] = (T)(img)(_n1##x,_n4##y,z,c)), \ + (I[6] = (T)(img)(_n2##x,_p4##y,z,c)), \ + (I[15] = (T)(img)(_n2##x,_p3##y,z,c)), \ + (I[24] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[33] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[42] = (T)(img)(_n2##x,y,z,c)), \ + (I[51] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[60] = (T)(img)(_n2##x,_n2##y,z,c)), \ + (I[69] = (T)(img)(_n2##x,_n3##y,z,c)), \ + (I[78] = (T)(img)(_n2##x,_n4##y,z,c)), \ + (I[7] = (T)(img)(_n3##x,_p4##y,z,c)), \ + (I[16] = (T)(img)(_n3##x,_p3##y,z,c)), \ + (I[25] = (T)(img)(_n3##x,_p2##y,z,c)), \ + (I[34] = (T)(img)(_n3##x,_p1##y,z,c)), \ + (I[43] = (T)(img)(_n3##x,y,z,c)), \ + (I[52] = (T)(img)(_n3##x,_n1##y,z,c)), \ + (I[61] = (T)(img)(_n3##x,_n2##y,z,c)), \ + (I[70] = (T)(img)(_n3##x,_n3##y,z,c)), \ + (I[79] = (T)(img)(_n3##x,_n4##y,z,c)), \ + 4>=((img)._width)?(img).width() - 1:4); \ + (_n4##x<(img).width() && ( \ + (I[8] = (T)(img)(_n4##x,_p4##y,z,c)), \ + (I[17] = (T)(img)(_n4##x,_p3##y,z,c)), \ + (I[26] = (T)(img)(_n4##x,_p2##y,z,c)), \ + (I[35] = (T)(img)(_n4##x,_p1##y,z,c)), \ + (I[44] = (T)(img)(_n4##x,y,z,c)), \ + (I[53] = (T)(img)(_n4##x,_n1##y,z,c)), \ + (I[62] = (T)(img)(_n4##x,_n2##y,z,c)), \ + (I[71] = (T)(img)(_n4##x,_n3##y,z,c)), \ + (I[80] = (T)(img)(_n4##x,_n4##y,z,c)),1)) || \ + _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], \ + I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], \ + I[16] = I[17], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \ + I[24] = I[25], I[25] = I[26], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], \ + I[32] = I[33], I[33] = I[34], I[34] = I[35], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], \ + I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[45] = I[46], I[46] = I[47], I[47] = I[48], \ + I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[54] = I[55], I[55] = I[56], \ + I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[63] = I[64], \ + I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \ + I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \ + I[79] = I[80], \ + _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x) + +#define cimg_for_in9x9(img,x0,y0,x1,y1,x,y,z,c,I,T) \ + cimg_for_in9((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _p4##x = x - 4<0?0:x - 4, \ + _p3##x = x - 3<0?0:x - 3, \ + _p2##x = x - 2<0?0:x - 2, \ + _p1##x = x - 1<0?0:x - 1, \ + _n1##x = x + 1>=(img).width()?(img).width() - 1:x + 1, \ + _n2##x = x + 2>=(img).width()?(img).width() - 1:x + 2, \ + _n3##x = x + 3>=(img).width()?(img).width() - 1:x + 3, \ + _n4##x = (int)( \ + (I[0] = (T)(img)(_p4##x,_p4##y,z,c)), \ + (I[9] = (T)(img)(_p4##x,_p3##y,z,c)), \ + (I[18] = (T)(img)(_p4##x,_p2##y,z,c)), \ + (I[27] = (T)(img)(_p4##x,_p1##y,z,c)), \ + (I[36] = (T)(img)(_p4##x,y,z,c)), \ + (I[45] = (T)(img)(_p4##x,_n1##y,z,c)), \ + (I[54] = (T)(img)(_p4##x,_n2##y,z,c)), \ + (I[63] = (T)(img)(_p4##x,_n3##y,z,c)), \ + (I[72] = (T)(img)(_p4##x,_n4##y,z,c)), \ + (I[1] = (T)(img)(_p3##x,_p4##y,z,c)), \ + (I[10] = (T)(img)(_p3##x,_p3##y,z,c)), \ + (I[19] = (T)(img)(_p3##x,_p2##y,z,c)), \ + (I[28] = (T)(img)(_p3##x,_p1##y,z,c)), \ + (I[37] = (T)(img)(_p3##x,y,z,c)), \ + (I[46] = (T)(img)(_p3##x,_n1##y,z,c)), \ + (I[55] = (T)(img)(_p3##x,_n2##y,z,c)), \ + (I[64] = (T)(img)(_p3##x,_n3##y,z,c)), \ + (I[73] = (T)(img)(_p3##x,_n4##y,z,c)), \ + (I[2] = (T)(img)(_p2##x,_p4##y,z,c)), \ + (I[11] = (T)(img)(_p2##x,_p3##y,z,c)), \ + (I[20] = (T)(img)(_p2##x,_p2##y,z,c)), \ + (I[29] = (T)(img)(_p2##x,_p1##y,z,c)), \ + (I[38] = (T)(img)(_p2##x,y,z,c)), \ + (I[47] = (T)(img)(_p2##x,_n1##y,z,c)), \ + (I[56] = (T)(img)(_p2##x,_n2##y,z,c)), \ + (I[65] = (T)(img)(_p2##x,_n3##y,z,c)), \ + (I[74] = (T)(img)(_p2##x,_n4##y,z,c)), \ + (I[3] = (T)(img)(_p1##x,_p4##y,z,c)), \ + (I[12] = (T)(img)(_p1##x,_p3##y,z,c)), \ + (I[21] = (T)(img)(_p1##x,_p2##y,z,c)), \ + (I[30] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[39] = (T)(img)(_p1##x,y,z,c)), \ + (I[48] = (T)(img)(_p1##x,_n1##y,z,c)), \ + (I[57] = (T)(img)(_p1##x,_n2##y,z,c)), \ + (I[66] = (T)(img)(_p1##x,_n3##y,z,c)), \ + (I[75] = (T)(img)(_p1##x,_n4##y,z,c)), \ + (I[4] = (T)(img)(x,_p4##y,z,c)), \ + (I[13] = (T)(img)(x,_p3##y,z,c)), \ + (I[22] = (T)(img)(x,_p2##y,z,c)), \ + (I[31] = (T)(img)(x,_p1##y,z,c)), \ + (I[40] = (T)(img)(x,y,z,c)), \ + (I[49] = (T)(img)(x,_n1##y,z,c)), \ + (I[58] = (T)(img)(x,_n2##y,z,c)), \ + (I[67] = (T)(img)(x,_n3##y,z,c)), \ + (I[76] = (T)(img)(x,_n4##y,z,c)), \ + (I[5] = (T)(img)(_n1##x,_p4##y,z,c)), \ + (I[14] = (T)(img)(_n1##x,_p3##y,z,c)), \ + (I[23] = (T)(img)(_n1##x,_p2##y,z,c)), \ + (I[32] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[41] = (T)(img)(_n1##x,y,z,c)), \ + (I[50] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[59] = (T)(img)(_n1##x,_n2##y,z,c)), \ + (I[68] = (T)(img)(_n1##x,_n3##y,z,c)), \ + (I[77] = (T)(img)(_n1##x,_n4##y,z,c)), \ + (I[6] = (T)(img)(_n2##x,_p4##y,z,c)), \ + (I[15] = (T)(img)(_n2##x,_p3##y,z,c)), \ + (I[24] = (T)(img)(_n2##x,_p2##y,z,c)), \ + (I[33] = (T)(img)(_n2##x,_p1##y,z,c)), \ + (I[42] = (T)(img)(_n2##x,y,z,c)), \ + (I[51] = (T)(img)(_n2##x,_n1##y,z,c)), \ + (I[60] = (T)(img)(_n2##x,_n2##y,z,c)), \ + (I[69] = (T)(img)(_n2##x,_n3##y,z,c)), \ + (I[78] = (T)(img)(_n2##x,_n4##y,z,c)), \ + (I[7] = (T)(img)(_n3##x,_p4##y,z,c)), \ + (I[16] = (T)(img)(_n3##x,_p3##y,z,c)), \ + (I[25] = (T)(img)(_n3##x,_p2##y,z,c)), \ + (I[34] = (T)(img)(_n3##x,_p1##y,z,c)), \ + (I[43] = (T)(img)(_n3##x,y,z,c)), \ + (I[52] = (T)(img)(_n3##x,_n1##y,z,c)), \ + (I[61] = (T)(img)(_n3##x,_n2##y,z,c)), \ + (I[70] = (T)(img)(_n3##x,_n3##y,z,c)), \ + (I[79] = (T)(img)(_n3##x,_n4##y,z,c)), \ + x + 4>=(img).width()?(img).width() - 1:x + 4); \ + x<=(int)(x1) && ((_n4##x<(img).width() && ( \ + (I[8] = (T)(img)(_n4##x,_p4##y,z,c)), \ + (I[17] = (T)(img)(_n4##x,_p3##y,z,c)), \ + (I[26] = (T)(img)(_n4##x,_p2##y,z,c)), \ + (I[35] = (T)(img)(_n4##x,_p1##y,z,c)), \ + (I[44] = (T)(img)(_n4##x,y,z,c)), \ + (I[53] = (T)(img)(_n4##x,_n1##y,z,c)), \ + (I[62] = (T)(img)(_n4##x,_n2##y,z,c)), \ + (I[71] = (T)(img)(_n4##x,_n3##y,z,c)), \ + (I[80] = (T)(img)(_n4##x,_n4##y,z,c)),1)) || \ + _n3##x==--_n4##x || _n2##x==--_n3##x || _n1##x==--_n2##x || x==(_n4##x = _n3##x = _n2##x = --_n1##x)); \ + I[0] = I[1], I[1] = I[2], I[2] = I[3], I[3] = I[4], I[4] = I[5], I[5] = I[6], I[6] = I[7], I[7] = I[8], \ + I[9] = I[10], I[10] = I[11], I[11] = I[12], I[12] = I[13], I[13] = I[14], I[14] = I[15], I[15] = I[16], \ + I[16] = I[17], I[18] = I[19], I[19] = I[20], I[20] = I[21], I[21] = I[22], I[22] = I[23], I[23] = I[24], \ + I[24] = I[25], I[25] = I[26], I[27] = I[28], I[28] = I[29], I[29] = I[30], I[30] = I[31], I[31] = I[32], \ + I[32] = I[33], I[33] = I[34], I[34] = I[35], I[36] = I[37], I[37] = I[38], I[38] = I[39], I[39] = I[40], \ + I[40] = I[41], I[41] = I[42], I[42] = I[43], I[43] = I[44], I[45] = I[46], I[46] = I[47], I[47] = I[48], \ + I[48] = I[49], I[49] = I[50], I[50] = I[51], I[51] = I[52], I[52] = I[53], I[54] = I[55], I[55] = I[56], \ + I[56] = I[57], I[57] = I[58], I[58] = I[59], I[59] = I[60], I[60] = I[61], I[61] = I[62], I[63] = I[64], \ + I[64] = I[65], I[65] = I[66], I[66] = I[67], I[67] = I[68], I[68] = I[69], I[69] = I[70], I[70] = I[71], \ + I[72] = I[73], I[73] = I[74], I[74] = I[75], I[75] = I[76], I[76] = I[77], I[77] = I[78], I[78] = I[79], \ + I[79] = I[80], \ + _p4##x = _p3##x, _p3##x = _p2##x, _p2##x = _p1##x, _p1##x = x++, ++_n1##x, ++_n2##x, ++_n3##x, ++_n4##x) + +#define cimg_for2x2x2(img,x,y,z,c,I,T) \ + cimg_for2((img)._depth,z) cimg_for2((img)._height,y) for (int x = 0, \ + _n1##x = (int)( \ + (I[0] = (T)(img)(0,y,z,c)), \ + (I[2] = (T)(img)(0,_n1##y,z,c)), \ + (I[4] = (T)(img)(0,y,_n1##z,c)), \ + (I[6] = (T)(img)(0,_n1##y,_n1##z,c)), \ + 1>=(img)._width?(img).width() - 1:1); \ + (_n1##x<(img).width() && ( \ + (I[1] = (T)(img)(_n1##x,y,z,c)), \ + (I[3] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[5] = (T)(img)(_n1##x,y,_n1##z,c)), \ + (I[7] = (T)(img)(_n1##x,_n1##y,_n1##z,c)),1)) || \ + x==--_n1##x; \ + I[0] = I[1], I[2] = I[3], I[4] = I[5], I[6] = I[7], \ + ++x, ++_n1##x) + +#define cimg_for_in2x2x2(img,x0,y0,z0,x1,y1,z1,x,y,z,c,I,T) \ + cimg_for_in2((img)._depth,z0,z1,z) cimg_for_in2((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _n1##x = (int)( \ + (I[0] = (T)(img)(x,y,z,c)), \ + (I[2] = (T)(img)(x,_n1##y,z,c)), \ + (I[4] = (T)(img)(x,y,_n1##z,c)), \ + (I[6] = (T)(img)(x,_n1##y,_n1##z,c)), \ + x + 1>=(int)(img)._width?(img).width() - 1:x + 1); \ + x<=(int)(x1) && ((_n1##x<(img).width() && ( \ + (I[1] = (T)(img)(_n1##x,y,z,c)), \ + (I[3] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[5] = (T)(img)(_n1##x,y,_n1##z,c)), \ + (I[7] = (T)(img)(_n1##x,_n1##y,_n1##z,c)),1)) || \ + x==--_n1##x); \ + I[0] = I[1], I[2] = I[3], I[4] = I[5], I[6] = I[7], \ + ++x, ++_n1##x) + +#define cimg_for3x3x3(img,x,y,z,c,I,T) \ + cimg_for3((img)._depth,z) cimg_for3((img)._height,y) for (int x = 0, \ + _p1##x = 0, \ + _n1##x = (int)( \ + (I[0] = I[1] = (T)(img)(_p1##x,_p1##y,_p1##z,c)), \ + (I[3] = I[4] = (T)(img)(0,y,_p1##z,c)), \ + (I[6] = I[7] = (T)(img)(0,_n1##y,_p1##z,c)), \ + (I[9] = I[10] = (T)(img)(0,_p1##y,z,c)), \ + (I[12] = I[13] = (T)(img)(0,y,z,c)), \ + (I[15] = I[16] = (T)(img)(0,_n1##y,z,c)), \ + (I[18] = I[19] = (T)(img)(0,_p1##y,_n1##z,c)), \ + (I[21] = I[22] = (T)(img)(0,y,_n1##z,c)), \ + (I[24] = I[25] = (T)(img)(0,_n1##y,_n1##z,c)), \ + 1>=(img)._width?(img).width() - 1:1); \ + (_n1##x<(img).width() && ( \ + (I[2] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \ + (I[5] = (T)(img)(_n1##x,y,_p1##z,c)), \ + (I[8] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \ + (I[11] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[14] = (T)(img)(_n1##x,y,z,c)), \ + (I[17] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[20] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \ + (I[23] = (T)(img)(_n1##x,y,_n1##z,c)), \ + (I[26] = (T)(img)(_n1##x,_n1##y,_n1##z,c)),1)) || \ + x==--_n1##x; \ + I[0] = I[1], I[1] = I[2], I[3] = I[4], I[4] = I[5], I[6] = I[7], I[7] = I[8], \ + I[9] = I[10], I[10] = I[11], I[12] = I[13], I[13] = I[14], I[15] = I[16], I[16] = I[17], \ + I[18] = I[19], I[19] = I[20], I[21] = I[22], I[22] = I[23], I[24] = I[25], I[25] = I[26], \ + _p1##x = x++, ++_n1##x) + +#define cimg_for_in3x3x3(img,x0,y0,z0,x1,y1,z1,x,y,z,c,I,T) \ + cimg_for_in3((img)._depth,z0,z1,z) cimg_for_in3((img)._height,y0,y1,y) for (int x = (int)(x0)<0?0:(int)(x0), \ + _p1##x = x - 1<0?0:x - 1, \ + _n1##x = (int)( \ + (I[0] = (T)(img)(_p1##x,_p1##y,_p1##z,c)), \ + (I[3] = (T)(img)(_p1##x,y,_p1##z,c)), \ + (I[6] = (T)(img)(_p1##x,_n1##y,_p1##z,c)), \ + (I[9] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[12] = (T)(img)(_p1##x,y,z,c)), \ + (I[15] = (T)(img)(_p1##x,_n1##y,z,c)), \ + (I[18] = (T)(img)(_p1##x,_p1##y,_n1##z,c)), \ + (I[21] = (T)(img)(_p1##x,y,_n1##z,c)), \ + (I[24] = (T)(img)(_p1##x,_n1##y,_n1##z,c)), \ + (I[1] = (T)(img)(x,_p1##y,_p1##z,c)), \ + (I[4] = (T)(img)(x,y,_p1##z,c)), \ + (I[7] = (T)(img)(x,_n1##y,_p1##z,c)), \ + (I[10] = (T)(img)(x,_p1##y,z,c)), \ + (I[13] = (T)(img)(x,y,z,c)), \ + (I[16] = (T)(img)(x,_n1##y,z,c)), \ + (I[19] = (T)(img)(x,_p1##y,_n1##z,c)), \ + (I[22] = (T)(img)(x,y,_n1##z,c)), \ + (I[25] = (T)(img)(x,_n1##y,_n1##z,c)), \ + x + 1>=(int)(img)._width?(img).width() - 1:x + 1); \ + x<=(int)(x1) && ((_n1##x<(img).width() && ( \ + (I[2] = (T)(img)(_n1##x,_p1##y,_p1##z,c)), \ + (I[5] = (T)(img)(_n1##x,y,_p1##z,c)), \ + (I[8] = (T)(img)(_n1##x,_n1##y,_p1##z,c)), \ + (I[11] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[14] = (T)(img)(_n1##x,y,z,c)), \ + (I[17] = (T)(img)(_n1##x,_n1##y,z,c)), \ + (I[20] = (T)(img)(_n1##x,_p1##y,_n1##z,c)), \ + (I[23] = (T)(img)(_n1##x,y,_n1##z,c)), \ + (I[26] = (T)(img)(_n1##x,_n1##y,_n1##z,c)),1)) || \ + x==--_n1##x); \ + I[0] = I[1], I[1] = I[2], I[3] = I[4], I[4] = I[5], I[6] = I[7], I[7] = I[8], \ + I[9] = I[10], I[10] = I[11], I[12] = I[13], I[13] = I[14], I[15] = I[16], I[16] = I[17], \ + I[18] = I[19], I[19] = I[20], I[21] = I[22], I[22] = I[23], I[24] = I[25], I[25] = I[26], \ + _p1##x = x++, ++_n1##x) + +#define cimglist_for(list,l) for (int l = 0; l<(int)(list)._width; ++l) +#define cimglist_for_in(list,l0,l1,l) \ + for (int l = (int)(l0)<0?0:(int)(l0), _max##l = (unsigned int)l1<(list)._width?(int)(l1):(int)(list)._width - 1; \ + l<=_max##l; ++l) + +#define cimglist_apply(list,fn) cimglist_for(list,__##fn) (list)[__##fn].fn + +// Macros used to display error messages when exceptions are thrown. +// You should not use these macros is your own code. +#define _cimgdisplay_instance "[instance(%u,%u,%u,%c%s%c)] CImgDisplay::" +#define cimgdisplay_instance _width,_height,_normalization,_title?'\"':'[',_title?_title:"untitled",_title?'\"':']' +#define _cimg_instance "[instance(%u,%u,%u,%u,%p,%sshared)] CImg<%s>::" +#define cimg_instance _width,_height,_depth,_spectrum,_data,_is_shared?"":"non-",pixel_type() +#define _cimglist_instance "[instance(%u,%u,%p)] CImgList<%s>::" +#define cimglist_instance _width,_allocated_width,_data,pixel_type() + +/*------------------------------------------------ + # + # + # Define cimg_library:: namespace + # + # + -------------------------------------------------*/ +//! Contains all classes and functions of the \CImg library. +/** + This namespace is defined to avoid functions and class names collisions + that could happen with the inclusion of other C++ header files. + Anyway, it should not happen often and you should reasonnably start most of your + \CImg-based programs with + \code + #include "CImg.h" + using namespace cimg_library; + \endcode + to simplify the declaration of \CImg Library objects afterwards. +**/ +namespace cimg_library_suffixed { + + // Declare the four classes of the CImg Library. + template struct CImg; + template struct CImgList; + struct CImgDisplay; + struct CImgException; + + // Declare cimg:: namespace. + // This is an uncomplete namespace definition here. It only contains some + // necessary stuff to ensure a correct declaration order of the classes and functions + // defined afterwards. + namespace cimg { + + // Define ascii sequences for colored terminal output. +#ifdef cimg_use_vt100 + static const char t_normal[] = { 0x1b, '[', '0', ';', '0', ';', '0', 'm', 0 }; + static const char t_black[] = { 0x1b, '[', '0', ';', '3', '0', ';', '5', '9', 'm', 0 }; + static const char t_red[] = { 0x1b, '[', '0', ';', '3', '1', ';', '5', '9', 'm', 0 }; + static const char t_green[] = { 0x1b, '[', '0', ';', '3', '2', ';', '5', '9', 'm', 0 }; + static const char t_yellow[] = { 0x1b, '[', '0', ';', '3', '3', ';', '5', '9', 'm', 0 }; + static const char t_blue[] = { 0x1b, '[', '0', ';', '3', '4', ';', '5', '9', 'm', 0 }; + static const char t_magenta[] = { 0x1b, '[', '0', ';', '3', '5', ';', '5', '9', 'm', 0 }; + static const char t_cyan[] = { 0x1b, '[', '0', ';', '3', '6', ';', '5', '9', 'm', 0 }; + static const char t_white[] = { 0x1b, '[', '0', ';', '3', '7', ';', '5', '9', 'm', 0 }; + static const char t_bold[] = { 0x1b, '[', '1', 'm', 0 }; + static const char t_underscore[] = { 0x1b, '[', '4', 'm', 0 }; +#else + static const char t_normal[] = { 0 }; + static const char *const t_black = cimg::t_normal, + *const t_red = cimg::t_normal, + *const t_green = cimg::t_normal, + *const t_yellow = cimg::t_normal, + *const t_blue = cimg::t_normal, + *const t_magenta = cimg::t_normal, + *const t_cyan = cimg::t_normal, + *const t_white = cimg::t_normal, + *const t_bold = cimg::t_normal, + *const t_underscore = cimg::t_normal; +#endif + + inline std::FILE* output(std::FILE *file=0); + inline void info(); + + //! Avoid warning messages due to unused parameters. Do nothing actually. + template + inline void unused(const T&, ...) {} + + // [internal] Lock/unlock a mutex for managing concurrent threads. + // 'lock_mode' can be { 0=unlock | 1=lock | 2=trylock }. + // 'n' can be in [0,31] but mutex range [0,15] is reserved by CImg. + inline int mutex(const unsigned int n, const int lock_mode=1); + + inline unsigned int& _exception_mode(const unsigned int value, const bool is_set) { + static unsigned int mode = cimg_verbosity; + if (is_set) { cimg::mutex(0); mode = value<4?value:4; cimg::mutex(0,0); } + return mode; + } + + // Functions to return standard streams 'stdin', 'stdout' and 'stderr'. + inline FILE* _stdin(const bool throw_exception=true); + inline FILE* _stdout(const bool throw_exception=true); + inline FILE* _stderr(const bool throw_exception=true); + + // Mandatory because Microsoft's _snprintf() and _vsnprintf() do not add the '\0' character + // at the end of the string. +#if cimg_OS==2 && defined(_MSC_VER) + inline int _snprintf(char *const s, const size_t size, const char *const format, ...) { + va_list ap; + va_start(ap,format); + const int result = _vsnprintf(s,size,format,ap); + va_end(ap); + return result; + } + + inline int _vsnprintf(char *const s, const size_t size, const char *const format, va_list ap) { + int result = -1; + cimg::mutex(6); + if (size) result = _vsnprintf_s(s,size,_TRUNCATE,format,ap); + if (result==-1) result = _vscprintf(format,ap); + cimg::mutex(6,0); + return result; + } + + // Mutex-protected version of sscanf, sprintf and snprintf. + // Used only MacOSX, as it seems those functions are not re-entrant on MacOSX. +#elif defined(__MACOSX__) || defined(__APPLE__) + inline int _sscanf(const char *const s, const char *const format, ...) { + cimg::mutex(6); + va_list args; + va_start(args,format); + const int result = std::vsscanf(s,format,args); + va_end(args); + cimg::mutex(6,0); + return result; + } + + inline int _sprintf(char *const s, const char *const format, ...) { + cimg::mutex(6); + va_list args; + va_start(args,format); + const int result = std::vsprintf(s,format,args); + va_end(args); + cimg::mutex(6,0); + return result; + } + + inline int _snprintf(char *const s, const size_t n, const char *const format, ...) { + cimg::mutex(6); + va_list args; + va_start(args,format); + const int result = std::vsnprintf(s,n,format,args); + va_end(args); + cimg::mutex(6,0); + return result; + } + + inline int _vsnprintf(char *const s, const size_t size, const char* format, va_list ap) { + cimg::mutex(6); + const int result = std::vsnprintf(s,size,format,ap); + cimg::mutex(6,0); + return result; + } +#endif + + //! Set current \CImg exception mode. + /** + The way error messages are handled by \CImg can be changed dynamically, using this function. + \param mode Desired exception mode. Possible values are: + - \c 0: Hide library messages (quiet mode). + - \c 1: Print library messages on the console. + - \c 2: Display library messages on a dialog window. + - \c 3: Do as \c 1 + add extra debug warnings (slow down the code!). + - \c 4: Do as \c 2 + add extra debug warnings (slow down the code!). + **/ + inline unsigned int& exception_mode(const unsigned int mode) { + return _exception_mode(mode,true); + } + + //! Return current \CImg exception mode. + /** + \note By default, return the value of configuration macro \c cimg_verbosity + **/ + inline unsigned int& exception_mode() { + return _exception_mode(0,false); + } + + //! Set current \CImg openmp mode. + /** + The way openmp-based methods are handled by \CImg can be changed dynamically, using this function. + \param mode Desired openmp mode. Possible values are: + - \c 0: Never parallelize. + - \c 1: Always parallelize. + - \c 2: Adaptive parallelization mode (default behavior). + **/ + inline unsigned int& _openmp_mode(const unsigned int value, const bool is_set) { + static unsigned int mode = 2; + if (is_set) { cimg::mutex(0); mode = value<2?value:2; cimg::mutex(0,0); } + return mode; + } + + inline unsigned int& openmp_mode(const unsigned int mode) { + return _openmp_mode(mode,true); + } + + //! Return current \CImg openmp mode. + inline unsigned int& openmp_mode() { + return _openmp_mode(0,false); + } + +#define cimg_openmp_if(cond) if (cimg::openmp_mode()==1 || (cimg::openmp_mode()>1 && (cond))) + + // Display a simple dialog box, and wait for the user's response. + inline int dialog(const char *const title, const char *const msg, const char *const button1_label="OK", + const char *const button2_label=0, const char *const button3_label=0, + const char *const button4_label=0, const char *const button5_label=0, + const char *const button6_label=0, const bool centering=false); + + // Evaluate math expression. + inline double eval(const char *const expression, + const double x=0, const double y=0, const double z=0, const double c=0); + + } + + /*--------------------------------------- + # + # Define the CImgException structures + # + --------------------------------------*/ + //! Instances of \c CImgException are thrown when errors are encountered in a \CImg function call. + /** + \par Overview + + CImgException is the base class of all exceptions thrown by \CImg (except \b CImgAbortException). + CImgException is never thrown itself. Derived classes that specify the type of errord are thrown instead. + These classes can be: + + - \b CImgAbortException: Thrown when a computationally-intensive function is aborted by an external signal. + This is the only \c non-derived exception class. + + - \b CImgArgumentException: Thrown when one argument of a called \CImg function is invalid. + This is probably one of the most thrown exception by \CImg. + For instance, the following example throws a \c CImgArgumentException: + \code + CImg img(100,100,1,3); // Define a 100x100 color image with float-valued pixels. + img.mirror('e'); // Try to mirror image along the (non-existing) 'e'-axis. + \endcode + + - \b CImgDisplayException: Thrown when something went wrong during the display of images in CImgDisplay instances. + + - \b CImgInstanceException: Thrown when an instance associated to a called \CImg method does not fit + the function requirements. For instance, the following example throws a \c CImgInstanceException: + \code + const CImg img; // Define an empty image. + const float value = img.at(0); // Try to read first pixel value (does not exist). + \endcode + + - \b CImgIOException: Thrown when an error occured when trying to load or save image files. + This happens when trying to read files that do not exist or with invalid formats. + For instance, the following example throws a \c CImgIOException: + \code + const CImg img("missing_file.jpg"); // Try to load a file that does not exist. + \endcode + + - \b CImgWarningException: Thrown only if configuration macro \c cimg_strict_warnings is set, and + when a \CImg function has to display a warning message (see cimg::warn()). + + It is not recommended to throw CImgException instances by yourself, + since they are expected to be thrown only by \CImg. + When an error occurs in a library function call, \CImg may display error messages on the screen or on the + standard output, depending on the current \CImg exception mode. + The \CImg exception mode can be get and set by functions cimg::exception_mode() and + cimg::exception_mode(unsigned int). + + \par Exceptions handling + + In all cases, when an error occurs in \CImg, an instance of the corresponding exception class is thrown. + This may lead the program to break (this is the default behavior), but you can bypass this behavior by + handling the exceptions by yourself, + using a usual try { ... } catch () { ... } bloc, as in the following example: + \code + #define "CImg.h" + using namespace cimg_library; + int main() { + cimg::exception_mode(0); // Enable quiet exception mode. + try { + ... // Here, do what you want to stress CImg. + } catch (CImgException& e) { // You succeeded: something went wrong! + std::fprintf(stderr,"CImg Library Error: %s",e.what()); // Display your custom error message. + ... // Do what you want now to save the ship! + } + } + \endcode + **/ + struct CImgException : public std::exception { +#define _cimg_exception_err(etype,disp_flag) \ + std::va_list ap, ap2; \ + va_start(ap,format); va_start(ap2,format); \ + int size = cimg_vsnprintf(0,0,format,ap2); \ + if (size++>=0) { \ + delete[] _message; \ + _message = new char[size]; \ + cimg_vsnprintf(_message,size,format,ap); \ + if (cimg::exception_mode()) { \ + std::fprintf(cimg::output(),"\n%s[CImg] *** %s ***%s %s\n",cimg::t_red,etype,cimg::t_normal,_message); \ + if (cimg_display && disp_flag && !(cimg::exception_mode()%2)) try { cimg::dialog(etype,_message,"Abort"); } \ + catch (CImgException&) {} \ + if (cimg::exception_mode()>=3) cimg_library_suffixed::cimg::info(); \ + } \ + } \ + va_end(ap); va_end(ap2); \ + + char *_message; + CImgException() { _message = new char[1]; *_message = 0; } + CImgException(const char *const format, ...):_message(0) { _cimg_exception_err("CImgException",true); } + CImgException(const CImgException& e):std::exception(e) { + const size_t size = std::strlen(e._message); + _message = new char[size + 1]; + std::strncpy(_message,e._message,size); + _message[size] = 0; + } + ~CImgException() throw() { delete[] _message; } + CImgException& operator=(const CImgException& e) { + const size_t size = std::strlen(e._message); + _message = new char[size + 1]; + std::strncpy(_message,e._message,size); + _message[size] = 0; + return *this; + } + //! Return a C-string containing the error message associated to the thrown exception. + const char *what() const throw() { return _message; } + }; + + // The CImgAbortException class is used to throw an exception when + // a computationally-intensive function has been aborted by an external signal. + struct CImgAbortException : public std::exception { + char *_message; + CImgAbortException() { _message = new char[1]; *_message = 0; } + CImgAbortException(const char *const format, ...):_message(0) { _cimg_exception_err("CImgAbortException",true); } + CImgAbortException(const CImgAbortException& e):std::exception(e) { + const size_t size = std::strlen(e._message); + _message = new char[size + 1]; + std::strncpy(_message,e._message,size); + _message[size] = 0; + } + ~CImgAbortException() throw() { delete[] _message; } + CImgAbortException& operator=(const CImgAbortException& e) { + const size_t size = std::strlen(e._message); + _message = new char[size + 1]; + std::strncpy(_message,e._message,size); + _message[size] = 0; + return *this; + } + //! Return a C-string containing the error message associated to the thrown exception. + const char *what() const throw() { return _message; } + }; + + // The CImgArgumentException class is used to throw an exception related + // to invalid arguments encountered in a library function call. + struct CImgArgumentException : public CImgException { + CImgArgumentException(const char *const format, ...) { _cimg_exception_err("CImgArgumentException",true); } + }; + + // The CImgDisplayException class is used to throw an exception related + // to display problems encountered in a library function call. + struct CImgDisplayException : public CImgException { + CImgDisplayException(const char *const format, ...) { _cimg_exception_err("CImgDisplayException",false); } + }; + + // The CImgInstanceException class is used to throw an exception related + // to an invalid instance encountered in a library function call. + struct CImgInstanceException : public CImgException { + CImgInstanceException(const char *const format, ...) { _cimg_exception_err("CImgInstanceException",true); } + }; + + // The CImgIOException class is used to throw an exception related + // to input/output file problems encountered in a library function call. + struct CImgIOException : public CImgException { + CImgIOException(const char *const format, ...) { _cimg_exception_err("CImgIOException",true); } + }; + + // The CImgWarningException class is used to throw an exception for warnings + // encountered in a library function call. + struct CImgWarningException : public CImgException { + CImgWarningException(const char *const format, ...) { _cimg_exception_err("CImgWarningException",false); } + }; + + /*------------------------------------- + # + # Define cimg:: namespace + # + -----------------------------------*/ + //! Contains \a low-level functions and variables of the \CImg Library. + /** + Most of the functions and variables within this namespace are used by the \CImg library for low-level operations. + You may use them to access specific const values or environment variables internally used by \CImg. + \warning Never write using namespace cimg_library::cimg; in your source code. Lot of functions in the + cimg:: namespace have the same names as standard C functions that may be defined in the global + namespace ::. + **/ + namespace cimg { + + // Define traits that will be used to determine the best data type to work in CImg functions. + // + template struct type { + static const char* string() { + static const char* s[] = { "unknown", "unknown8", "unknown16", "unknown24", + "unknown32", "unknown40", "unknown48", "unknown56", + "unknown64", "unknown72", "unknown80", "unknown88", + "unknown96", "unknown104", "unknown112", "unknown120", + "unknown128" }; + return s[(sizeof(T)<17)?sizeof(T):0]; + } + static bool is_float() { return false; } + static bool is_inf(const T) { return false; } + static bool is_nan(const T) { return false; } + static T min() { return ~max(); } + static T max() { return (T)1<<(8*sizeof(T) - 1); } + static T inf() { return max(); } + static T cut(const double val) { return val<(double)min()?min():val>(double)max()?max():(T)val; } + static const char* format() { return "%s"; } + static const char* format_s() { return "%s"; } + static const char* format(const T& val) { static const char *const s = "unknown"; cimg::unused(val); return s; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "bool"; return s; } + static bool is_float() { return false; } + static bool is_inf(const bool) { return false; } + static bool is_nan(const bool) { return false; } + static bool min() { return false; } + static bool max() { return true; } + static bool inf() { return max(); } + static bool is_inf() { return false; } + static bool cut(const double val) { return val<(double)min()?min():val>(double)max()?max():(bool)val; } + static const char* format() { return "%s"; } + static const char* format_s() { return "%s"; } + static const char* format(const bool val) { static const char* s[] = { "false", "true" }; return s[val?1:0]; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "unsigned char"; return s; } + static bool is_float() { return false; } + static bool is_inf(const unsigned char) { return false; } + static bool is_nan(const unsigned char) { return false; } + static unsigned char min() { return 0; } + static unsigned char max() { return (unsigned char)-1; } + static unsigned char inf() { return max(); } + static unsigned char cut(const double val) { + return val<(double)min()?min():val>(double)max()?max():(unsigned char)val; } + static const char* format() { return "%u"; } + static const char* format_s() { return "%u"; } + static unsigned int format(const unsigned char val) { return (unsigned int)val; } + }; + +#if defined(CHAR_MAX) && CHAR_MAX==255 + template<> struct type { + static const char* string() { static const char *const s = "char"; return s; } + static bool is_float() { return false; } + static bool is_inf(const char) { return false; } + static bool is_nan(const char) { return false; } + static char min() { return 0; } + static char max() { return (char)-1; } + static char inf() { return max(); } + static char cut(const double val) { + return val<(double)min()?min():val>(double)max()?max():(unsigned char)val; } + static const char* format() { return "%u"; } + static const char* format_s() { return "%u"; } + static unsigned int format(const char val) { return (unsigned int)val; } + }; +#else + template<> struct type { + static const char* string() { static const char *const s = "char"; return s; } + static bool is_float() { return false; } + static bool is_inf(const char) { return false; } + static bool is_nan(const char) { return false; } + static char min() { return ~max(); } + static char max() { return (char)((unsigned char)-1>>1); } + static char inf() { return max(); } + static char cut(const double val) { return val<(double)min()?min():val>(double)max()?max():(char)val; } + static const char* format() { return "%d"; } + static const char* format_s() { return "%d"; } + static int format(const char val) { return (int)val; } + }; +#endif + + template<> struct type { + static const char* string() { static const char *const s = "signed char"; return s; } + static bool is_float() { return false; } + static bool is_inf(const signed char) { return false; } + static bool is_nan(const signed char) { return false; } + static signed char min() { return ~max(); } + static signed char max() { return (signed char)((unsigned char)-1>>1); } + static signed char inf() { return max(); } + static signed char cut(const double val) { + return val<(double)min()?min():val>(double)max()?max():(signed char)val; } + static const char* format() { return "%d"; } + static const char* format_s() { return "%d"; } + static int format(const signed char val) { return (int)val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "unsigned short"; return s; } + static bool is_float() { return false; } + static bool is_inf(const unsigned short) { return false; } + static bool is_nan(const unsigned short) { return false; } + static unsigned short min() { return 0; } + static unsigned short max() { return (unsigned short)-1; } + static unsigned short inf() { return max(); } + static unsigned short cut(const double val) { + return val<(double)min()?min():val>(double)max()?max():(unsigned short)val; } + static const char* format() { return "%u"; } + static const char* format_s() { return "%u"; } + static unsigned int format(const unsigned short val) { return (unsigned int)val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "short"; return s; } + static bool is_float() { return false; } + static bool is_inf(const short) { return false; } + static bool is_nan(const short) { return false; } + static short min() { return ~max(); } + static short max() { return (short)((unsigned short)-1>>1); } + static short inf() { return max(); } + static short cut(const double val) { return val<(double)min()?min():val>(double)max()?max():(short)val; } + static const char* format() { return "%d"; } + static const char* format_s() { return "%d"; } + static int format(const short val) { return (int)val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "unsigned int"; return s; } + static bool is_float() { return false; } + static bool is_inf(const unsigned int) { return false; } + static bool is_nan(const unsigned int) { return false; } + static unsigned int min() { return 0; } + static unsigned int max() { return (unsigned int)-1; } + static unsigned int inf() { return max(); } + static unsigned int cut(const double val) { + return val<(double)min()?min():val>(double)max()?max():(unsigned int)val; } + static const char* format() { return "%u"; } + static const char* format_s() { return "%u"; } + static unsigned int format(const unsigned int val) { return val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "int"; return s; } + static bool is_float() { return false; } + static bool is_inf(const int) { return false; } + static bool is_nan(const int) { return false; } + static int min() { return ~max(); } + static int max() { return (int)((unsigned int)-1>>1); } + static int inf() { return max(); } + static int cut(const double val) { return val<(double)min()?min():val>(double)max()?max():(int)val; } + static const char* format() { return "%d"; } + static const char* format_s() { return "%d"; } + static int format(const int val) { return val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "unsigned int64"; return s; } + static bool is_float() { return false; } + static bool is_inf(const cimg_uint64) { return false; } + static bool is_nan(const cimg_uint64) { return false; } + static cimg_uint64 min() { return 0; } + static cimg_uint64 max() { return (cimg_uint64)-1; } + static cimg_uint64 inf() { return max(); } + static cimg_uint64 cut(const double val) { + return val<(double)min()?min():val>(double)max()?max():(cimg_uint64)val; } + static const char* format() { return cimg_fuint64; } + static const char* format_s() { return cimg_fuint64; } + static unsigned long format(const cimg_uint64 val) { return (unsigned long)val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "int64"; return s; } + static bool is_float() { return false; } + static bool is_inf(const cimg_int64) { return false; } + static bool is_nan(const cimg_int64) { return false; } + static cimg_int64 min() { return ~max(); } + static cimg_int64 max() { return (cimg_int64)((cimg_uint64)-1>>1); } + static cimg_int64 inf() { return max(); } + static cimg_int64 cut(const double val) { + return val<(double)min()?min():val>(double)max()?max():(cimg_int64)val; + } + static const char* format() { return cimg_fint64; } + static const char* format_s() { return cimg_fint64; } + static long format(const long val) { return (long)val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "double"; return s; } + static bool is_float() { return true; } + static bool is_inf(const double val) { +#ifdef isinf + return (bool)isinf(val); +#else + return !is_nan(val) && (val::min() || val>cimg::type::max()); +#endif + } + static bool is_nan(const double val) { +#ifdef isnan + return (bool)isnan(val); +#else + return !(val==val); +#endif + } + static double min() { return -DBL_MAX; } + static double max() { return DBL_MAX; } + static double inf() { +#ifdef INFINITY + return (double)INFINITY; +#else + return max()*max(); +#endif + } + static double nan() { +#ifdef NAN + return (double)NAN; +#else + const double val_nan = -std::sqrt(-1.0); return val_nan; +#endif + } + static double cut(const double val) { return val; } + static const char* format() { return "%.17g"; } + static const char* format_s() { return "%g"; } + static double format(const double val) { return val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "float"; return s; } + static bool is_float() { return true; } + static bool is_inf(const float val) { +#ifdef isinf + return (bool)isinf(val); +#else + return !is_nan(val) && (val::min() || val>cimg::type::max()); +#endif + } + static bool is_nan(const float val) { +#ifdef isnan + return (bool)isnan(val); +#else + return !(val==val); +#endif + } + static float min() { return -FLT_MAX; } + static float max() { return FLT_MAX; } + static float inf() { return (float)cimg::type::inf(); } + static float nan() { return (float)cimg::type::nan(); } + static float cut(const double val) { return (float)val; } + static float cut(const float val) { return (float)val; } + static const char* format() { return "%.9g"; } + static const char* format_s() { return "%g"; } + static double format(const float val) { return (double)val; } + }; + + template<> struct type { + static const char* string() { static const char *const s = "long double"; return s; } + static bool is_float() { return true; } + static bool is_inf(const long double val) { +#ifdef isinf + return (bool)isinf(val); +#else + return !is_nan(val) && (val::min() || val>cimg::type::max()); +#endif + } + static bool is_nan(const long double val) { +#ifdef isnan + return (bool)isnan(val); +#else + return !(val==val); +#endif + } + static long double min() { return -LDBL_MAX; } + static long double max() { return LDBL_MAX; } + static long double inf() { return max()*max(); } + static long double nan() { const long double val_nan = -std::sqrt(-1.0L); return val_nan; } + static long double cut(const long double val) { return val; } + static const char* format() { return "%.17g"; } + static const char* format_s() { return "%g"; } + static double format(const long double val) { return (double)val; } + }; + +#ifdef cimg_use_half + template<> struct type { + static const char* string() { static const char *const s = "half"; return s; } + static bool is_float() { return true; } + static bool is_inf(const long double val) { +#ifdef isinf + return (bool)isinf(val); +#else + return !is_nan(val) && (val::min() || val>cimg::type::max()); +#endif + } + static bool is_nan(const long double val) { +#ifdef isnan + return (bool)isnan(val); +#else + return !(val==val); +#endif + } + static half min() { return (half)-65504; } + static half max() { return (half)65504; } + static half inf() { return max()*max(); } + static half nan() { const half val_nan = (half)-std::sqrt(-1.0); return val_nan; } + static half cut(const double val) { return (half)val; } + static const char* format() { return "%.9g"; } + static const char* format_s() { return "%g"; } + static double format(const half val) { return (double)val; } + }; +#endif + + template struct superset { typedef T type; }; + template<> struct superset { typedef unsigned char type; }; + template<> struct superset { typedef char type; }; + template<> struct superset { typedef signed char type; }; + template<> struct superset { typedef unsigned short type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef unsigned int type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef cimg_uint64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef unsigned short type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef unsigned int type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef cimg_uint64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef short type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef unsigned int type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef cimg_uint64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef int type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_uint64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef cimg_int64 type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef double type; }; + template<> struct superset { typedef double type; }; +#ifdef cimg_use_half + template<> struct superset { typedef float type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef float type; }; + template<> struct superset { typedef double type; }; +#endif + + template struct superset2 { + typedef typename superset::type>::type type; + }; + + template struct superset3 { + typedef typename superset::type>::type type; + }; + + template struct last { typedef t2 type; }; + +#define _cimg_Tt typename cimg::superset::type +#define _cimg_Tfloat typename cimg::superset::type +#define _cimg_Ttfloat typename cimg::superset2::type +#define _cimg_Ttdouble typename cimg::superset2::type + + // Define variables used internally by CImg. +#if cimg_display==1 + struct X11_info { + unsigned int nb_wins; + pthread_t *events_thread; + pthread_cond_t wait_event; + pthread_mutex_t wait_event_mutex; + CImgDisplay **wins; + Display *display; + unsigned int nb_bits; + bool is_blue_first; + bool is_shm_enabled; + bool byte_order; +#ifdef cimg_use_xrandr + XRRScreenSize *resolutions; + Rotation curr_rotation; + unsigned int curr_resolution; + unsigned int nb_resolutions; +#endif + X11_info():nb_wins(0),events_thread(0),display(0), + nb_bits(0),is_blue_first(false),is_shm_enabled(false),byte_order(false) { +#ifdef __FreeBSD__ + XInitThreads(); +#endif + wins = new CImgDisplay*[1024]; + pthread_mutex_init(&wait_event_mutex,0); + pthread_cond_init(&wait_event,0); +#ifdef cimg_use_xrandr + resolutions = 0; + curr_rotation = 0; + curr_resolution = nb_resolutions = 0; +#endif + } + + ~X11_info() { + delete[] wins; + /* + if (events_thread) { + pthread_cancel(*events_thread); + delete events_thread; + } + if (display) { } // XCloseDisplay(display); } + pthread_cond_destroy(&wait_event); + pthread_mutex_unlock(&wait_event_mutex); + pthread_mutex_destroy(&wait_event_mutex); + */ + } + }; +#if defined(cimg_module) + X11_info& X11_attr(); +#elif defined(cimg_main) + X11_info& X11_attr() { static X11_info val; return val; } +#else + inline X11_info& X11_attr() { static X11_info val; return val; } +#endif +#define cimg_lock_display() cimg::mutex(15) +#define cimg_unlock_display() cimg::mutex(15,0) + +#elif cimg_display==2 + struct Win32_info { + HANDLE wait_event; + Win32_info() { wait_event = CreateEvent(0,FALSE,FALSE,0); } + }; +#if defined(cimg_module) + Win32_info& Win32_attr(); +#elif defined(cimg_main) + Win32_info& Win32_attr() { static Win32_info val; return val; } +#else + inline Win32_info& Win32_attr() { static Win32_info val; return val; } +#endif +#endif + + struct Mutex_info { +#if cimg_OS==2 + HANDLE mutex[32]; + Mutex_info() { for (unsigned int i = 0; i<32; ++i) mutex[i] = CreateMutex(0,FALSE,0); } + void lock(const unsigned int n) { WaitForSingleObject(mutex[n],INFINITE); } + void unlock(const unsigned int n) { ReleaseMutex(mutex[n]); } + int trylock(const unsigned int) { return 0; } +#elif defined(_PTHREAD_H) + pthread_mutex_t mutex[32]; + Mutex_info() { for (unsigned int i = 0; i<32; ++i) pthread_mutex_init(&mutex[i],0); } + void lock(const unsigned int n) { pthread_mutex_lock(&mutex[n]); } + void unlock(const unsigned int n) { pthread_mutex_unlock(&mutex[n]); } + int trylock(const unsigned int n) { return pthread_mutex_trylock(&mutex[n]); } +#else + Mutex_info() {} + void lock(const unsigned int) {} + void unlock(const unsigned int) {} + int trylock(const unsigned int) { return 0; } +#endif + }; +#if defined(cimg_module) + Mutex_info& Mutex_attr(); +#elif defined(cimg_main) + Mutex_info& Mutex_attr() { static Mutex_info val; return val; } +#else + inline Mutex_info& Mutex_attr() { static Mutex_info val; return val; } +#endif + +#if defined(cimg_use_magick) + static struct Magick_info { + Magick_info() { + Magick::InitializeMagick(""); + } + } _Magick_info; +#endif + +#if cimg_display==1 + // Define keycodes for X11-based graphical systems. + const unsigned int keyESC = XK_Escape; + const unsigned int keyF1 = XK_F1; + const unsigned int keyF2 = XK_F2; + const unsigned int keyF3 = XK_F3; + const unsigned int keyF4 = XK_F4; + const unsigned int keyF5 = XK_F5; + const unsigned int keyF6 = XK_F6; + const unsigned int keyF7 = XK_F7; + const unsigned int keyF8 = XK_F8; + const unsigned int keyF9 = XK_F9; + const unsigned int keyF10 = XK_F10; + const unsigned int keyF11 = XK_F11; + const unsigned int keyF12 = XK_F12; + const unsigned int keyPAUSE = XK_Pause; + const unsigned int key1 = XK_1; + const unsigned int key2 = XK_2; + const unsigned int key3 = XK_3; + const unsigned int key4 = XK_4; + const unsigned int key5 = XK_5; + const unsigned int key6 = XK_6; + const unsigned int key7 = XK_7; + const unsigned int key8 = XK_8; + const unsigned int key9 = XK_9; + const unsigned int key0 = XK_0; + const unsigned int keyBACKSPACE = XK_BackSpace; + const unsigned int keyINSERT = XK_Insert; + const unsigned int keyHOME = XK_Home; + const unsigned int keyPAGEUP = XK_Page_Up; + const unsigned int keyTAB = XK_Tab; + const unsigned int keyQ = XK_q; + const unsigned int keyW = XK_w; + const unsigned int keyE = XK_e; + const unsigned int keyR = XK_r; + const unsigned int keyT = XK_t; + const unsigned int keyY = XK_y; + const unsigned int keyU = XK_u; + const unsigned int keyI = XK_i; + const unsigned int keyO = XK_o; + const unsigned int keyP = XK_p; + const unsigned int keyDELETE = XK_Delete; + const unsigned int keyEND = XK_End; + const unsigned int keyPAGEDOWN = XK_Page_Down; + const unsigned int keyCAPSLOCK = XK_Caps_Lock; + const unsigned int keyA = XK_a; + const unsigned int keyS = XK_s; + const unsigned int keyD = XK_d; + const unsigned int keyF = XK_f; + const unsigned int keyG = XK_g; + const unsigned int keyH = XK_h; + const unsigned int keyJ = XK_j; + const unsigned int keyK = XK_k; + const unsigned int keyL = XK_l; + const unsigned int keyENTER = XK_Return; + const unsigned int keySHIFTLEFT = XK_Shift_L; + const unsigned int keyZ = XK_z; + const unsigned int keyX = XK_x; + const unsigned int keyC = XK_c; + const unsigned int keyV = XK_v; + const unsigned int keyB = XK_b; + const unsigned int keyN = XK_n; + const unsigned int keyM = XK_m; + const unsigned int keySHIFTRIGHT = XK_Shift_R; + const unsigned int keyARROWUP = XK_Up; + const unsigned int keyCTRLLEFT = XK_Control_L; + const unsigned int keyAPPLEFT = XK_Super_L; + const unsigned int keyALT = XK_Alt_L; + const unsigned int keySPACE = XK_space; + const unsigned int keyALTGR = XK_Alt_R; + const unsigned int keyAPPRIGHT = XK_Super_R; + const unsigned int keyMENU = XK_Menu; + const unsigned int keyCTRLRIGHT = XK_Control_R; + const unsigned int keyARROWLEFT = XK_Left; + const unsigned int keyARROWDOWN = XK_Down; + const unsigned int keyARROWRIGHT = XK_Right; + const unsigned int keyPAD0 = XK_KP_0; + const unsigned int keyPAD1 = XK_KP_1; + const unsigned int keyPAD2 = XK_KP_2; + const unsigned int keyPAD3 = XK_KP_3; + const unsigned int keyPAD4 = XK_KP_4; + const unsigned int keyPAD5 = XK_KP_5; + const unsigned int keyPAD6 = XK_KP_6; + const unsigned int keyPAD7 = XK_KP_7; + const unsigned int keyPAD8 = XK_KP_8; + const unsigned int keyPAD9 = XK_KP_9; + const unsigned int keyPADADD = XK_KP_Add; + const unsigned int keyPADSUB = XK_KP_Subtract; + const unsigned int keyPADMUL = XK_KP_Multiply; + const unsigned int keyPADDIV = XK_KP_Divide; + +#elif cimg_display==2 + // Define keycodes for Windows. + const unsigned int keyESC = VK_ESCAPE; + const unsigned int keyF1 = VK_F1; + const unsigned int keyF2 = VK_F2; + const unsigned int keyF3 = VK_F3; + const unsigned int keyF4 = VK_F4; + const unsigned int keyF5 = VK_F5; + const unsigned int keyF6 = VK_F6; + const unsigned int keyF7 = VK_F7; + const unsigned int keyF8 = VK_F8; + const unsigned int keyF9 = VK_F9; + const unsigned int keyF10 = VK_F10; + const unsigned int keyF11 = VK_F11; + const unsigned int keyF12 = VK_F12; + const unsigned int keyPAUSE = VK_PAUSE; + const unsigned int key1 = '1'; + const unsigned int key2 = '2'; + const unsigned int key3 = '3'; + const unsigned int key4 = '4'; + const unsigned int key5 = '5'; + const unsigned int key6 = '6'; + const unsigned int key7 = '7'; + const unsigned int key8 = '8'; + const unsigned int key9 = '9'; + const unsigned int key0 = '0'; + const unsigned int keyBACKSPACE = VK_BACK; + const unsigned int keyINSERT = VK_INSERT; + const unsigned int keyHOME = VK_HOME; + const unsigned int keyPAGEUP = VK_PRIOR; + const unsigned int keyTAB = VK_TAB; + const unsigned int keyQ = 'Q'; + const unsigned int keyW = 'W'; + const unsigned int keyE = 'E'; + const unsigned int keyR = 'R'; + const unsigned int keyT = 'T'; + const unsigned int keyY = 'Y'; + const unsigned int keyU = 'U'; + const unsigned int keyI = 'I'; + const unsigned int keyO = 'O'; + const unsigned int keyP = 'P'; + const unsigned int keyDELETE = VK_DELETE; + const unsigned int keyEND = VK_END; + const unsigned int keyPAGEDOWN = VK_NEXT; + const unsigned int keyCAPSLOCK = VK_CAPITAL; + const unsigned int keyA = 'A'; + const unsigned int keyS = 'S'; + const unsigned int keyD = 'D'; + const unsigned int keyF = 'F'; + const unsigned int keyG = 'G'; + const unsigned int keyH = 'H'; + const unsigned int keyJ = 'J'; + const unsigned int keyK = 'K'; + const unsigned int keyL = 'L'; + const unsigned int keyENTER = VK_RETURN; + const unsigned int keySHIFTLEFT = VK_SHIFT; + const unsigned int keyZ = 'Z'; + const unsigned int keyX = 'X'; + const unsigned int keyC = 'C'; + const unsigned int keyV = 'V'; + const unsigned int keyB = 'B'; + const unsigned int keyN = 'N'; + const unsigned int keyM = 'M'; + const unsigned int keySHIFTRIGHT = VK_SHIFT; + const unsigned int keyARROWUP = VK_UP; + const unsigned int keyCTRLLEFT = VK_CONTROL; + const unsigned int keyAPPLEFT = VK_LWIN; + const unsigned int keyALT = VK_LMENU; + const unsigned int keySPACE = VK_SPACE; + const unsigned int keyALTGR = VK_CONTROL; + const unsigned int keyAPPRIGHT = VK_RWIN; + const unsigned int keyMENU = VK_APPS; + const unsigned int keyCTRLRIGHT = VK_CONTROL; + const unsigned int keyARROWLEFT = VK_LEFT; + const unsigned int keyARROWDOWN = VK_DOWN; + const unsigned int keyARROWRIGHT = VK_RIGHT; + const unsigned int keyPAD0 = 0x60; + const unsigned int keyPAD1 = 0x61; + const unsigned int keyPAD2 = 0x62; + const unsigned int keyPAD3 = 0x63; + const unsigned int keyPAD4 = 0x64; + const unsigned int keyPAD5 = 0x65; + const unsigned int keyPAD6 = 0x66; + const unsigned int keyPAD7 = 0x67; + const unsigned int keyPAD8 = 0x68; + const unsigned int keyPAD9 = 0x69; + const unsigned int keyPADADD = VK_ADD; + const unsigned int keyPADSUB = VK_SUBTRACT; + const unsigned int keyPADMUL = VK_MULTIPLY; + const unsigned int keyPADDIV = VK_DIVIDE; + +#else + // Define random keycodes when no display is available. + // (should rarely be used then!). + const unsigned int keyESC = 1U; //!< Keycode for the \c ESC key (architecture-dependent). + const unsigned int keyF1 = 2U; //!< Keycode for the \c F1 key (architecture-dependent). + const unsigned int keyF2 = 3U; //!< Keycode for the \c F2 key (architecture-dependent). + const unsigned int keyF3 = 4U; //!< Keycode for the \c F3 key (architecture-dependent). + const unsigned int keyF4 = 5U; //!< Keycode for the \c F4 key (architecture-dependent). + const unsigned int keyF5 = 6U; //!< Keycode for the \c F5 key (architecture-dependent). + const unsigned int keyF6 = 7U; //!< Keycode for the \c F6 key (architecture-dependent). + const unsigned int keyF7 = 8U; //!< Keycode for the \c F7 key (architecture-dependent). + const unsigned int keyF8 = 9U; //!< Keycode for the \c F8 key (architecture-dependent). + const unsigned int keyF9 = 10U; //!< Keycode for the \c F9 key (architecture-dependent). + const unsigned int keyF10 = 11U; //!< Keycode for the \c F10 key (architecture-dependent). + const unsigned int keyF11 = 12U; //!< Keycode for the \c F11 key (architecture-dependent). + const unsigned int keyF12 = 13U; //!< Keycode for the \c F12 key (architecture-dependent). + const unsigned int keyPAUSE = 14U; //!< Keycode for the \c PAUSE key (architecture-dependent). + const unsigned int key1 = 15U; //!< Keycode for the \c 1 key (architecture-dependent). + const unsigned int key2 = 16U; //!< Keycode for the \c 2 key (architecture-dependent). + const unsigned int key3 = 17U; //!< Keycode for the \c 3 key (architecture-dependent). + const unsigned int key4 = 18U; //!< Keycode for the \c 4 key (architecture-dependent). + const unsigned int key5 = 19U; //!< Keycode for the \c 5 key (architecture-dependent). + const unsigned int key6 = 20U; //!< Keycode for the \c 6 key (architecture-dependent). + const unsigned int key7 = 21U; //!< Keycode for the \c 7 key (architecture-dependent). + const unsigned int key8 = 22U; //!< Keycode for the \c 8 key (architecture-dependent). + const unsigned int key9 = 23U; //!< Keycode for the \c 9 key (architecture-dependent). + const unsigned int key0 = 24U; //!< Keycode for the \c 0 key (architecture-dependent). + const unsigned int keyBACKSPACE = 25U; //!< Keycode for the \c BACKSPACE key (architecture-dependent). + const unsigned int keyINSERT = 26U; //!< Keycode for the \c INSERT key (architecture-dependent). + const unsigned int keyHOME = 27U; //!< Keycode for the \c HOME key (architecture-dependent). + const unsigned int keyPAGEUP = 28U; //!< Keycode for the \c PAGEUP key (architecture-dependent). + const unsigned int keyTAB = 29U; //!< Keycode for the \c TAB key (architecture-dependent). + const unsigned int keyQ = 30U; //!< Keycode for the \c Q key (architecture-dependent). + const unsigned int keyW = 31U; //!< Keycode for the \c W key (architecture-dependent). + const unsigned int keyE = 32U; //!< Keycode for the \c E key (architecture-dependent). + const unsigned int keyR = 33U; //!< Keycode for the \c R key (architecture-dependent). + const unsigned int keyT = 34U; //!< Keycode for the \c T key (architecture-dependent). + const unsigned int keyY = 35U; //!< Keycode for the \c Y key (architecture-dependent). + const unsigned int keyU = 36U; //!< Keycode for the \c U key (architecture-dependent). + const unsigned int keyI = 37U; //!< Keycode for the \c I key (architecture-dependent). + const unsigned int keyO = 38U; //!< Keycode for the \c O key (architecture-dependent). + const unsigned int keyP = 39U; //!< Keycode for the \c P key (architecture-dependent). + const unsigned int keyDELETE = 40U; //!< Keycode for the \c DELETE key (architecture-dependent). + const unsigned int keyEND = 41U; //!< Keycode for the \c END key (architecture-dependent). + const unsigned int keyPAGEDOWN = 42U; //!< Keycode for the \c PAGEDOWN key (architecture-dependent). + const unsigned int keyCAPSLOCK = 43U; //!< Keycode for the \c CAPSLOCK key (architecture-dependent). + const unsigned int keyA = 44U; //!< Keycode for the \c A key (architecture-dependent). + const unsigned int keyS = 45U; //!< Keycode for the \c S key (architecture-dependent). + const unsigned int keyD = 46U; //!< Keycode for the \c D key (architecture-dependent). + const unsigned int keyF = 47U; //!< Keycode for the \c F key (architecture-dependent). + const unsigned int keyG = 48U; //!< Keycode for the \c G key (architecture-dependent). + const unsigned int keyH = 49U; //!< Keycode for the \c H key (architecture-dependent). + const unsigned int keyJ = 50U; //!< Keycode for the \c J key (architecture-dependent). + const unsigned int keyK = 51U; //!< Keycode for the \c K key (architecture-dependent). + const unsigned int keyL = 52U; //!< Keycode for the \c L key (architecture-dependent). + const unsigned int keyENTER = 53U; //!< Keycode for the \c ENTER key (architecture-dependent). + const unsigned int keySHIFTLEFT = 54U; //!< Keycode for the \c SHIFTLEFT key (architecture-dependent). + const unsigned int keyZ = 55U; //!< Keycode for the \c Z key (architecture-dependent). + const unsigned int keyX = 56U; //!< Keycode for the \c X key (architecture-dependent). + const unsigned int keyC = 57U; //!< Keycode for the \c C key (architecture-dependent). + const unsigned int keyV = 58U; //!< Keycode for the \c V key (architecture-dependent). + const unsigned int keyB = 59U; //!< Keycode for the \c B key (architecture-dependent). + const unsigned int keyN = 60U; //!< Keycode for the \c N key (architecture-dependent). + const unsigned int keyM = 61U; //!< Keycode for the \c M key (architecture-dependent). + const unsigned int keySHIFTRIGHT = 62U; //!< Keycode for the \c SHIFTRIGHT key (architecture-dependent). + const unsigned int keyARROWUP = 63U; //!< Keycode for the \c ARROWUP key (architecture-dependent). + const unsigned int keyCTRLLEFT = 64U; //!< Keycode for the \c CTRLLEFT key (architecture-dependent). + const unsigned int keyAPPLEFT = 65U; //!< Keycode for the \c APPLEFT key (architecture-dependent). + const unsigned int keyALT = 66U; //!< Keycode for the \c ALT key (architecture-dependent). + const unsigned int keySPACE = 67U; //!< Keycode for the \c SPACE key (architecture-dependent). + const unsigned int keyALTGR = 68U; //!< Keycode for the \c ALTGR key (architecture-dependent). + const unsigned int keyAPPRIGHT = 69U; //!< Keycode for the \c APPRIGHT key (architecture-dependent). + const unsigned int keyMENU = 70U; //!< Keycode for the \c MENU key (architecture-dependent). + const unsigned int keyCTRLRIGHT = 71U; //!< Keycode for the \c CTRLRIGHT key (architecture-dependent). + const unsigned int keyARROWLEFT = 72U; //!< Keycode for the \c ARROWLEFT key (architecture-dependent). + const unsigned int keyARROWDOWN = 73U; //!< Keycode for the \c ARROWDOWN key (architecture-dependent). + const unsigned int keyARROWRIGHT = 74U; //!< Keycode for the \c ARROWRIGHT key (architecture-dependent). + const unsigned int keyPAD0 = 75U; //!< Keycode for the \c PAD0 key (architecture-dependent). + const unsigned int keyPAD1 = 76U; //!< Keycode for the \c PAD1 key (architecture-dependent). + const unsigned int keyPAD2 = 77U; //!< Keycode for the \c PAD2 key (architecture-dependent). + const unsigned int keyPAD3 = 78U; //!< Keycode for the \c PAD3 key (architecture-dependent). + const unsigned int keyPAD4 = 79U; //!< Keycode for the \c PAD4 key (architecture-dependent). + const unsigned int keyPAD5 = 80U; //!< Keycode for the \c PAD5 key (architecture-dependent). + const unsigned int keyPAD6 = 81U; //!< Keycode for the \c PAD6 key (architecture-dependent). + const unsigned int keyPAD7 = 82U; //!< Keycode for the \c PAD7 key (architecture-dependent). + const unsigned int keyPAD8 = 83U; //!< Keycode for the \c PAD8 key (architecture-dependent). + const unsigned int keyPAD9 = 84U; //!< Keycode for the \c PAD9 key (architecture-dependent). + const unsigned int keyPADADD = 85U; //!< Keycode for the \c PADADD key (architecture-dependent). + const unsigned int keyPADSUB = 86U; //!< Keycode for the \c PADSUB key (architecture-dependent). + const unsigned int keyPADMUL = 87U; //!< Keycode for the \c PADMUL key (architecture-dependent). + const unsigned int keyPADDIV = 88U; //!< Keycode for the \c PADDDIV key (architecture-dependent). +#endif + + const double PI = 3.14159265358979323846; //!< Value of the mathematical constant PI + + // Define a 12x13 font (small size). + static const char *const data_font12x13 = + " .wjwlwmyuw>wjwkwbwjwkwRxuwmwjwkwmyuwJwjwlx`w Fw " + " mwlwlwuwnwuynwuwmyTwlwkwuwmwuwnwlwkwuwmwuw_wuxlwlwkwuwnwuynwuwTwlwlwtwnwtwnw my Qw +wlw b" + "{ \\w Wx`xTw_w[wbxawSwkw nynwkyw bwswcw" + "kwuwjwuwozpwtwuwnwtwowkwjwmwuwuwkwIxmxuxowuwmwswowswmxnwjwhwowswowsw0wmwowswuwnwrwowswpwswowkwjwrwqw" + "rwpwkwkwtwnwkxsxqxswowswpwswnwswpwswowrwnwmwrwqwqwqwswswrwswowswjwpwlxjwkxuxLw[wcw_wSwkw mw\"wlwiw=wt" + "wmxlwFw cwswnwuwnwkwjwswo{pwrwpwtwtwpwswby`w`yUwlwtwpwqwpwswowlw\\wrwrxuwHwrwfwuwjwlwlwTyuwVwlwtwawsw" + "owswowswcwuwmwuwmwuwmwuwmwuwlwkwuwnwswpwkwkwkwkwkwkwkwkwswoxswowswowswowswowswowswowrwpwswpwrwpwrwpw" + "rwpwrwpwswoznwtw Ww (wGwtwtwqwqwqwuwuwuwqwswuwqwqw=wqxtw`{nzp~q{ozowrwnxmwtwow bzawkwuwl}rwuwnwtwuw" + "nwtwowkwjwlyjwIwlwswmwiwkwnwuwnwkwhwnwswowswowkwewewixnwsytwswuwnwrwpwkwrwpwkwkwkwrwpwkwkwuwmwkxsxqw" + "uwtwpwqwqwswowqwqwswowiwmwrwpwswowtwtwpwuwmwuwjwowkwjwlxsxXynzmymznyozlzoznwkwkwtwnwkzuyrzmynzmzowux" + "myozmwswpwrwowtwtwrwrwpwrwp{mwlwiwHyuwpwtwkwmxlynzoxswmwmwswnwswowtxq|owtwtwpym{p{owswnwuwmwlwkwqwqx" + "uwuxqwrwpwtwtwqwqwowlwuwuwkwmwlwtwowuwuwdwjznwl{nwuwnwkx_wtxtwswtwlwtwWwuytwgyjwmwjwawswoyuwVwlwtwnw" + "twmwtwnwtwmwuwmwlwuwmwuwmwuwmwuwmwuwmwuwmxuwowkwkwkwkwkwkwkwkwkwrwpwuwtwpwqwqwqwqwqwqwqwqwqwowtwpwsw" + "uwqwrwpwrwpwrwpwrwowuwnwswowuwlymymymymymymyuyqymymymymynwkwkwkwjynzmymymymymykwmzowswowswowswowswpw" + "rwozowrwW}q}qwtwtwqwtwtwqwtwtwA}rwuw_{p~r~r}pwtwowrwnxmwtwow aw_w]wtwpwuwmxuwmybwjwlyjwIwlwswmwiwnyn" + "wtwnznzkwmynwswTyp}pylwmwtwtwtwswuwn{owkwrwp{o{owk|pwkwkxlwkwuwuwuwqwuwtwpwqwqwswowqwqwswoykwmwrwpws" + "wowuwuwuwowkwjwnwkwjwDwowswowkwswowswowkwswowswowkwkwuwmwkwswswswswowswowswowswoxlwswowkwswpwrwowtwt" + "wqwtwowrwlwoxkwhxVxuxpwtypwuwjwnwtwnwkwswowtxnxmwswowqwqwtwuxqwtwnwtwtwqwswowswmwm{nwuwlxnwkwqwqwtwt" + "wqwrwpwtwtwqwuyuwpwiwhwnwmwrwnwbwkwuwlwlwswoxuxowlwtw`wuwrwszmwtwo}dwuwtwuw[}qymx`wswoyuwow_ylxlwtwo" + "yuwoyuwoyuwmwlwuwmwuwmwuwmwuwmwuwmwuwmwt{swk{o{o{o{owkwkwkwlztwpwuwtwpwqwqwqwqwqwqwqwqwqwnxowtwtwqwr" + "wpwrwpwrwpwrwnwmwswowuwiwkwkwkwkwkwkwswswkwswowswowswowswowkwkwkwkwswowswowswowswowswowswowswcwtxows" + "wowswowswowswpwrwowswpwrwWwtwtwqwqwqwuwuwuwqwuwswqwqw>wowuw`}q~q|q}qwrwpwrwowtwnwtwo~ izaw]wtwoykwux" + "qwtwswfwjwmwuwuwn}eyaxlwswmwjwjwpwswjwowswmwmwswnzWy]ypwlwtwtwuwswswowrwpwkwrwpwkwkwsyqwrwpwkwkwuwmw" + "kwuwuwuwqwtwuwpwqwqznwqwqzkynwmwrwowuwnwuwuwuwowkwjwnwkxkwGzowswowkwswo{owkwswowswowkwkxlwkwswswswsw" + "owswowswowswowjxmwkwswowtwnwuwuwuwpxmwtwlwlwlwiwlytwewtwtwqwswowtxoznwswnxmwswnwuwmwuwnwswowtwtwqwtw" + "twqwtwnwtwtwqwswowswmwmwswowswmwmwkwqwqwtwtwqwrwowuwuwpwuyuwq~own~own~owbwkwuwmznwswmwbwswawuwrwgwtw" + "hwdwuytwXwJwswnxuw=wtwmwswowtxowswqxmwswowswowswowswowswowswnwtwowkwkwkwkwkwkwkwkwkwrwpwtwuwpwqwqwqw" + "qwqwqwqwqwqwnxowtwtwqwrwpwrwpwrwpwrwnwmwswowtwmznznznznznzn~swk{o{o{o{owkwkwkwkwswowswowswowswowswow" + "swowswo}qwuwuwowswowswowswowswowtwnwswowtwUwuwuwowswowswowswowsw@}qx`}q~pzo{pwrwpwrwowtwnwtwow aw_w_" + "}owuwmwuwtwrwswuwewjwkwiwJwkwswmwkwiwp|kwowswmwmwswkwWym}mypwlwszr{owrwpwkwrwpwkwkwqwqwrwpwkwkwtwnwk" + "wtwtwqwtwuwpwqwqwkwqwqwtwiwnwmwrwowuwnwuwuwuwpwuwlwkwmwjwkwHwswowswowkwswowkwkwswowswowkwkwuwmwkwsws" + "wswswowswowswowswowhwnwkwswowtwnwuwuwuwpxmwtwmwkwlwiwmwtydwtwtwqwswowswowtwnwswowkwswnwuwnwtwnwswowt" + "wtwqwtwtwqwtwnwtwtwqwswowswmwmwswowswnwlwkwqwqxuwuxqwrwnyowqwpwiwhwpwuwuwowrwpwuwuwdwkwuwlwlwswo{owk" + "xuwawtxtwszmwtwiwdwuwtwuwXwJwswmwuwKzmwtwlwtxowrwpwtxrxl{o{o{o{o{o{o{owkwkwkwkwkwkwkwkwkwrwpwtwuwpwq" + "wqwqwqwqwqwqwqwqwowtwpwuwswqwrwpwrwpwrwpwrwnwmznwswowswowswowswowswowswowswowswowkwkwkwkwkwkwkwkwkws" + "wowswowswowswowswowswowswcwuwuwowswowswowswowswowtwnwswowtwTymymymymy=wmw^wuwuwmxlxmyowrwowtwnwtwmxm" + "w bwswIwuwmwuwmwuwtwrxswdwjw]wJwkxuxmwlwlwswlwjwowswmwmwswlwSycyawlwswowrwowswpwswowkwjwrwqwrwpwkwkw" + "swowkwqwqwsxowswpwjwswpwswowrwnwmxtxnwlwswpwswmwlwlwjwkwHwswowswowkwswowswowkwswowswowkwkwtwnwkwswsw" + "swswowswowswowswowkwswowkwswnxlwswpwtwmxmwjwlwiwTxuxpwtxowswowtwnwswowkwswnynwtwnwswowtwtwqxuwuxqwtw" + "nwtwtwqwswowswmwlwuwnwswowkwjwswo{pwrwmwmwswnwjwiwnymwtwnycwkwuwlwl{mwmwiw_wrwdwtwVwrw*wswmwuw?wtwlw" + "tzqwrwpwtzswkwswowswowswowswowswowswowswnwswpwkwkwkwkwkwkwkwkwswowsxowswowswowswowswowswowrwpwswpxtx" + "pxtxpxtxpxtxnwmwkwswowswowswowswowswowswowswowtxowkwswowswowswowswowkwkwkwkwswowswowswowswowswowswow" + "swlwnxtwowswowswowswowswnxmwswnx >wlw\\wkx`wnwrwoznwtwmxl| gybw^wtwozmwsxpzuxfxlx]wnw_wlxjyn{o{nykwnz" + "mymwkynymwkwewewjwjwrwswqwp{myozn{owizpwrwpwkwkwrwp{owqwqwsxnyowiyowrwozmwlzmwlwswqxsxnwm}qwjxlwGzoz" + "mymznynwjzowswowkwkwswowkwswswswswnynzmzowjymxlznxlwswqwrwnwm{mwlwiwHxuxpzmxlymynwswmwnwrwozmxuxo{pw" + "txn{pzmykwmyo}p{owkyuynwnwrwmwly`w_w_wbwjzo{pwqwnwmwhw_z>zY}M|nwuw2wqwqwryrwqwqyowqwqwqwqwqwqwqwqwqw" + "qwqwqwr{qyo{o{o{o{owkwkwkwkznwsxnymymymymycwuynznznznzmwmwkwuynznznznznznznyuzrymymymymynwkwkwkwjynw" + "swnymymymymybzmznznznznwlzmw hwHwlwSwTw {+qnrmqapmp Kpepgpiuhpephscqfqhqfqhqfqhqfqhqfqhqfqhqixgudxdxdxdxdq]q]q]q]wcqjr" + "bt`t`t`t`taphpgplt`s_s_s_s_q`q]qmsctnqctnqctnqctnqctnqctnqbsktgs_uauauaucq]q]q]q[saqjqbs_s_s_s_sNpms" + "_snqbsnqbsnqbsnqaq`qns_q !p Zp jp#q\\q6q7q lq [sjq Qq -q OqZq]q Cq;q HqWq $rIq`qZq _q iqbqK" + "qFqIq`q hp$q]u JqYpmpLp .p jp ]p Xr`q[r !p Tp\"p\\p6q6q mq Yx Qr -r Ps\\q_s" + " Ipkq:q HqWq $qHq`qZq _q iqbqKqFqIq`q hp$q]t IqYpmpLq /q kq Fq_q[q #s Tp\"q" + "^q6p 1p Vu Rs YsJsMy &v])]2_4^U^ 6^T\\5])]1_2]T\\8^U^ K])]2`4^V^3] " + " " + " U]*\\2a4`V\\8^U^5a F]*\\1\\X\\4^U^=]*\\" + "2a5^U^ 7aV\\4]*\\1a4`V\\8^U^ J]*\\1\\X\\4^V^3\\ " + " " + " S],\\1\\W\\5g8^U^6c F],\\1\\V\\5^U^<],\\2]W]6^U^" + " 8h3],\\0\\W\\5g8^U^ I],\\1\\V\\5^V^4\\ ;] " + " " + " :\\-]2\\U\\6\\V`7^U^7]U] F\\-]2\\T\\6^U^;\\-]3]U]7^U^ 8\\" + "Va1\\-]1\\U\\6\\V`7^U^ H\\-]2\\T\\6^V^5] =a J] " + " " + " N\\/]2\\S\\7\\T]6^U^7\\S\\ E\\/]2\\R\\7^U^:\\/]3]S]8^U^" + " 8\\T^/\\/]1\\S\\7\\T]6^U^ G\\/]2\\R\\7^V^6] =c L^ " + " *^ U` " + " O^ )\\S\\ !^$^3\\ E]" + "U\\ K^$^4^ G^$^4] J^$^3\\ #^$^3\\ 4^ B[ " + " &^ Xe " + " S^ (\\S\\ )Z Q^&^3^2]S\\ A\\S\\ K^&^3^ F^&^4_ >]S" + "\\9^&^3^2]S\\ W^&^3^ 6^ Q] M[ ?` ![1^H]?` =]4](\\ %` >b4c Bb " + "?`2a .a Ib Pb Aa `0`*^ $^.` <^F]F^F]G`G] " + " F\\S\\ ;b %a2a2a2a2a a:].a !^T_ Bg ` Dd2_8n?" + "m7g3]:rD]P]P]@g <] 8] 8] B] 3e J^K^ If7^U^+b@d Fb@f5a Ad4e-] :f Ra0d AaF\\HaF\\HeJ\\?]._0_" + "0_0_0_2\\U\\0tHh@n?n?n?n?].].].]-h:_J]w " + "P[ 9[/a:aQa7[ Wl \"h E]1]T]+\\R\\;[4dL]Ag=])]2])\\ U^1f8c8k;j1`;k7h?n;h9g 5i*b:_" + "8k6kBl=n?l7mD]H]C].].]L_A].`I`H`K]>kAj6kAj9kBuB]H]F]E]E^L_L^R^L^D^I^BrBb7^+b(a D] ;] '] Gd" + " A].].].].] ;] (b:].b #^Q] Dj !a Ff3_8n?m8i4]:rD]P]P]Bk ?_ 9] 9_ C]&[0f " + "I]K]=]0g7^U^-fC\\S] IfBf6c B[S]5[S].] `K]>k]*]3]W]6^U^._V_;]Wa5]*]2\\V\\6]Wa7^V^ I]*]2\\V\\5^V^2]7]+^V^ @]W\\=v P[ 9\\1c_8m:`R`Cn?n?l9`QaE]H]C].].]M_@].aKaH`K]?`S`Bk8`S`Bk;_R_BuB]H]F]E]D]MaM]P]L]B^K^ArB]1]&])" + "c D] <] '] G] :].].].].] ;] (^6]*^ #]P^ E^P\\ V^ H^T^4_8n?m:`S`6]:rD]P]P" + "]C`S` Aa :] :a D]&[1^S\\ I^M^=]0^R[7^U^/^R^EZO\\ L^R^ N]U] :],\\0] \\H]B\\H]=\\M]>" + "]._0_0_0_0_0_/uK`R`Cn?n?n?n?].].].]-n@`K]?`S`>`S`>`S`>`S`>`S` H`ScE]H]C]H]C]H]C]H]E^K^@],^" + "T^5],]1\\V\\6\\U`7^V^6]U\\ F],]2\\T\\6^U^=],]2\\U\\6^U^-e9\\U`4],]1\\V\\6\\U`7^V^ H],]1\\V\\5^V^3]6]+^" + "V^ B`1`1`1`1`6]W]>u P[ 9]2e>eUf;^ %q $^O\\ F]1]T],]S];[5]T]N\\@]P[=]*]0]2ZR\\RZ $" + "]2]P]<_W]8]N]\\H\\A\\H\\<\\M\\=]/a2a2a2a2a1_/]V];_M]C].].].].].].].]" + "-]ObBaL]@^M^@^M^@^M^@^M^@^M^ J^N`D]H]C]H]C]H]C]H]E^K^@]-^Q]5].]1\\T\\7\\S]6^V^5c E].]2]S\\7^U" + "^<].]2\\S\\7^U^,a6\\S]2].]1\\T\\7\\S]6^V^ G].]1\\T\\6^V^4]5]+^V^ De6e6e6e6e9\\U\\>u P[ :_3f@gVf<" + "_ &r $]M[ F]1]T],\\R]>d<^T^P]A^OZ=]+].]4]T\\T] &^3^P^=[S]8[K].]4\\X];],]!]<]N]>^O^ " + " 8ZM^3`P`Ba9]M^=^J\\C]K_B].],^H\\E]H]C].].]O_>].aKaHaL]A^K^D]N^<^K^D]N^>]JZ6]6]H]E]G]C]MaM]" + "O^P^@^M^-^A]1]&]+_W_ D] >] '] H] 9] B].] ;] )]4](] %]N]:c6] G] J^P^7a8" + "_1],^K^;c=]H]D]P]P]E^K^ Ee <] " + "\\I]A\\I]<\\N]=]/a2a2a2a2a2a1]U]<^J\\C].].].].].].].]-]K_CaL]A^K^B^K^B^K^B^K^B^K^ K]K^D]H]C]H]" + "C]H]C]H]D^M^?]-]P]4]0]1\\R\\ Ha C]0]2]R] E]0]2\\Q\\ 9c 9]0]1\\R\\ !]0]1\\R\\ ?]4] Di:i:i:i:i" + ";\\6]G] P\\ :`5g@gWh>a (_ J]KZ F]1]T],\\R\\?h>]R]P\\@]1]+].]3^V\\V^.] T]2]N]5]8ZJ]-]" + "6]X];]-]!^=]L]?]M] *]5_J_Ec:]L^>]H[C]I^C].],]F[E]H]C].].]P_=].]X]M]X]HbM]A]I]D]M]<]I]D]" + "M]?]%]6]H]E]G]C^NaN^N]Q^>^O^-^@]0]'],_U_ &] '] H] 9] B].] ;] )]4](] %]N]:d7] " + " F] K]N]8c8^1],]I]>i@]H]D]P]P]E]I] Fg =] =g G]&[2] <]O];]1] 1\\F\\=\\ Q\\F\\ S\\Q\\+]3\\." + "] IeU\\ M\\3\\N\\ ?\\I\\@\\I\\=]M\\<]0c4c4c4c4c3a1]U]<]H[C].].].].].].].]-]J_DbM]A]I]B]I]B]I]B]I]" + "B]I] L]J_E]H]C]H]C]H]C]H]C^O^>].]N] .] '`X_ I] FbWa=bWa=bWa=bWa=bWa<" + "\\6^I^ ?Z2[ :a5gAiXh?c *^ H] 7]1]T]-]S]Aj>]R]Q]@]1],],\\1^X\\X^,] T]3]L]6]'].]7]W]" + ";]-]!]<]L]?]M^ +]6^F^F]W]:]K]?]FZC]H^D].]-]DZE]H]C].].]Q_<].]X]M]X]H]X]M]B]G]E]M^>]G]E]" + "M^@]%]6]H]E^I^B]O^X]O]M^R^=]O^-^@]0]']-_S_ '] '] H] 9] B].] ;] )]4](] %]N]:e8" + "_ H] L]M]8]W]7^2]-]G]AmB]H]D]P]P]F]G] Hi >] >i J[3] ;^Q^;]1] 2\\RbT\\Ge R\\VdR\\ T\\" + "Q\\+]4\\2a IfU\\ M\\3\\N\\ ?\\J\\?\\J\\AaM\\ G]W]4]W]4]W]4]W]4]W]4c3^U]=]FZC].].].].].].].]-]H]D]X]" + "M]B]G]D]G]D]G]D]G]D]G]A[H[B]J`E]H]C]H]C]H]C]H]B]O^>g8]N] 1]T_ 3[ 9] " + "G_O^?_O^?_O^?_O^?_O^=\\5]I^ @\\3[ ;c6gAy?d7`8]L]7^7]L]>^ H] 6]1]T]-]S]B_W[U]>]R]R]?]1" + "],],]0d*] T]3]L]6]'].]7\\V];].] ]<]L]@]K] 7Z PZ X]7^D^G]W]:]K]?]/]G]D].]-]/]H]C].].]R_;]" + ".]X^O^X]H]X^N]B]G]E]L]>]G]E]L]@]%]6]H]D]I]A]O]W]O]L^T^<^Q^-^?]0]'].^O^ Sb7]U`2b4`U]8a8])`" + "7]T_ M].]%_O_@_2`0`3`/_3c9] )]4](] N_6]N]3^7a/c0_ <^ D[U^ Ga N]L]9]W]6^3]-]G]B`W" + "]W`C]H]D]P]P]F]G] I_X]X_ ?] ?_X]X_ Nb7]2ZFZ=]Q]:]0] 3[SfU[Ig R[UfS[ T\\Q\\+]5]2a IfU\\ M" + "\\3\\N\\ ?\\K]?\\K]AaN] G]W]4]W]4]W]4]W]4]W]4]W]3]T]=]/].].].].].].].]-]G]E]X^N]B]G]D]G]D]G]D]G" + "]D]G]B]J]C]KbF]H]C]H]C]H]C]H]B^Q^=j;]P_9b3b3b3b3b3b3bN`Bb3a2a2a2a V_2_2`1`1`1`1` ;aU] " + " :]U` S^T]U^A^L^A^L^A^L^A^L^?]5]I] @^5\\ ]R]R\\>]1],],].`(] U^3]L]6]'].]8]V];].]!^<]L]@]K] :] P]#^8^A]I^W^;]K]@].]G^E].].].]H]" + "C].].]S_:].]W]O]W]H]W]N]C]E]F]L]?]E]F]L]@]%]6]H]D]J^A]O]W]O]L^U^:^S^-^>]0^(]/^M^ Wh:]Wd6f" + "8dW]:e>h2dW]?]Vd<].].]O_>].]WdScK]Vd8f;]Wd7dW]?]Wa6h>h6]L]B]I]A]P`P]K^L^B^K^@l4]4](] PdU" + "]A]N]2^8e5g;]Vd?^J^8]6]L] E]V`>pA]S]S]:e6kDo>]L]:^W^6^4].]E]D_U]U_D]H]D]P]P]G]E] K_W]W_ @]" + " @_W]W_ Qf9]3\\H\\>^S^:]0_ 6[ThT[K]Q\\ S[T\\R]S[ U]S]+]6],] ?]L]@fU\\ M\\3\\N\\ ?\\K\\>\\K\\;]O\\ G" + "^W^6^W^6^W^6^W^6^W^5]W]4^T]>].].].].].].].].]-]G^F]W]N]C]E]F]E]F]E]F]E]F]E]D_L_E]K]W]F]H]C" + "]H]C]H]C]H]A^S^^K^ O]S]S]B]I]B]I]B]I]B]I]@]5^K^ @]4[ ;f8gAyAg] F] 6]1]T]" + "-\\R\\B]T[6]R]S]>^2]-]*\\.`(] U]2]L]6]'].]9]U];].]!];]L]@]K] =` P`'^7]?\\I]U];]K]@].]F]E].]" + ".].]H]C].].]T_9].]W]O]W]H]W^O]C]E]F]L]?]E]F]L]@]%]6]H]C]K]@^P]W]P^K^V^9]S]-^=]/](]0^K^ Xi" + ";]Xf9h9fX]h6]L]A]K]@^Q`Q^J^N^@]K]?l4]4](]" + " QfW^A]O^1]6f9h;]Xg@_K]7]6]L]=]G]C^Wc@pA]S]S]]L]:]U]5^5].]E]E^S]S^E]H]D]P]P]G]E]@" + "Z+]V]V^-Z4]5ZKZ:]V]V^ Sh9]4^J^>]S]9]._ 8[U_Q[T[L]P\\ S[T\\Q]T[ T]U]*]7]*] @]L]@fU\\ M\\3\\N" + "\\ ?\\L]>\\L]:]Q]:]1]U]6]U]6]U]6]U]6]U]6^W^5]S]>].].].].].].].].]-]F]F]W^O]C]E]F]E]F]E]F]E]F]" + "E]C_N_D]L^W]F]H]C]H]C]H]C]H]@]S];]P_=]S^8i:i:i:i:i:i:iVgIh9h9h9h9h<].].].]'d<]Xg:h9h9h9h9h" + "0^8k?]L]?]L]?]L]?]L]A]K]>]Xf>]K] O]R]R]D]G]D]VZOZV]D]KZV]D]G]A]4]K] @]3[ j=]L]8" + "`7]N]?] F^ 6]1]T]5uI]T[6]R]S\\<^3]-]*]1d*] U]3]J]7]'].]9\\T];].\\Ua-^;]L]@]K^?].] Uc " + "Pc+_8]>]J]U];]K]@].]F]E].].].]H]C].].]U_8].]W^Q^W]H]V]O]C]E]F]L]?]E]F]L]@^&]6]H]C]K]?]Q^V]" + "Q]I^X^8^U^.^<]/](]1^I^ ]R_h6]L]A]K]?]Q`Q]H^P^?]K]?l4]4](] R^U^W]@]O]0^7g;_S];bT^@`L]8_7]L]>]E]E^W]V]@pA]S]S]" + "=_T_].].].].].].].].]-]F]F]V]O]C]E]F]E]F]E]F]E]F]E]B_P_C]L]V^G]H]C]H]C]H]C]H]@^U^;]N^>" + "]T]6]R_;]R_;]R_;]R_;]R_;]R_;]R_X_T^K_R\\:_S^;_S^;_S^;_S^=].].].]*h=bT^;_T_;_T_;_T_;_T_;_T_1" + "^9_T`>]L]?]L]?]L]?]L]A]K]>aT_?]K] P]Q]R]E]F]E]V\\Q\\W]E]K\\W]E]F]A]4^L] A^@ZN\\ =i8e@yCk?^R^" + "=]L]9b8]O^?] Im B]1]T]5uI]T[6]S^T]<^3]-]*]3^X\\X^,] V^3]J]7](^/]9]T];e7]We/]9]N]?]K" + "^?].] Wd Nd._8]O`U\\T\\K]S]<]L^A]-]F^F].]/]-]H]C].].]V_7].]V]Q]V]H]V^P]D]C]G]L]@]C]G]L]?^']6" + "]H]C^M^?]Q]U]Q]Ic6^W^._<]/^)]2^G^ !ZM^=`Q^=^NZ;^Q`>^P^=].^Q`?`Q^>].].]R_;].`R^X\\R^M`Q^=^P^" + ">`Q^=^Q`?`1]MZ;].]L]A^M^?]Q`Q]G^R^>^M^1^4]4](] D]P^A]R^X]@]P^/]9^Vb=^NZ;`Q^AaN^8_7]L]>]E]" + "F^V]U]>]P]>]S]S]>^P^>`T`7]6]J]<]S]5^6]/]C]G]Q]Q]F]H]D]P]P]H]C]C^&]TZ,^7]7^N^6]TZ H]/^U[TZ9" + "]2n;]U]8]0d <[U]F[M\\P]2[R[ M[S\\P\\S[ Tb(]9]'\\ @]L]@fU\\ M\\3]P]9[R[1\\M\\<\\M\\7\\R\\8]2]S]8]S]8]" + "S]8]S]8]S]7]U]6]R]?]-].].].].].].].]-]F]F]V^P]D]C]H]C]H]C]H]C]H]C]B_R_C]L]T]G]H]C]H]C]H]C]" + "H]?^W^:]M]>]U^6ZM^].].].]+i=`Q^=^P^=^P^=^P^" + "=^P^=^P^2^:^P^>]L]?]L]?]L]?]L]A^M^>`Q^@^M^ P]Q]Q]F]E]F]W^S^W]F]L^W]F]E]B]3]M^ B^B^O[ =k8" + "d?xClA^P^>]L]9]X]8^P]>\\ Hl A] 9uI]T[5]T]T]:^ =]*]5^V\\V^.] V]2]J]7](]/^:]S];h:]Xg0]" + "9^P^?]K^?].]!e Je2_7\\PdW\\S\\L]S]<]M^@]-]E]F].]/]-]H]C].].]X_5].]V]Q]V]H]U^Q]D]C]G]L]@]C]G]M" + "^?`)]6]H]B]M]>]Q]U]Q]Hb5c-^;].])] B]=_O]=].]O_>]N^>].]O_?_O]>].].]S_:]._P`P]M_O]=]N]>_O]" + "=]O_?_1]-].]L]@]M]>]RbR]G^R^=]M]1^3]4](] FaSaD^Qa?]R_.]9]R`>]._O]>^N]8`7]L]>]E]G^U]U^?]P]" + ">]S]S]>]N]>^P^7]6]J]<]S]4^7]/]C]G]Q]Q]F]H]D]P]P]H]C]D_&]&_8]8_N_7] B]/]T[3]1l:^W^8]1]W` >\\" + "U\\E\\N\\P]3\\S\\ N\\S\\P\\S\\ S_']:]&\\ @]L]@fU\\ M\\2\\P\\8\\S\\2\\N]<\\N]7\\S]8]2]S]8]S]8]S]8]S]8]S]8]S]" + "7]R]?]-].].].].].].].]-]E]G]U^Q]D]C]H]C]H]C]H]C]H]C]A_T_B]M]S]G]H]C]H]C]H]C]H]>c9]M^?]U]']" + ".].].].].].`O^N].]N^>]N^>]N^>]N^?].].].],_R^>_O]=]N]=]N]=]N]=]N]=]N]2^:]O_?]L]?]L]?]L]?]L]" + "@]M]=_O]?]M] O\\P]Q]F\\D]F\\U^U^V]F\\L^V]F\\D]B]3]M] RuJ`O[ >m9c>wCmA]N]>]L]9]X]7]P]?] " + "Im A] 2\\R\\A]T[5^V^T\\:` ?](\\6]T\\T]/] V]2]J]7])^1_9]S];i;bS^2^8^S_>]K^?].]$e@u@e6_7]QfX\\S\\" + "M^S^=]N^?]-]E]F].]/]-]H]C].].c4].]U]S]U]H]T]Q]D]C]G]M^@]C]G]M]=c-]6]H]B]M]>^R]U]R^G`4c.^:]" + ".])] B]=^M]?^/]M^?]L]>]/]M^?^N^?].].]T_9].^O_O^N^N^?]M^?^M]?]M^?^0]-].]L]@]M]>^S]X]S^F^T" + "^<^O^2_3]4](] GcUcE]Pa?]Vb-]:]O_?].^N^>]O^8a8]L]?]C]H]T]T]?]P]>]S]S]?]L]@^N^8]6]J]=^S^4^8" + "]/]C]H^Q]Q^G]H]D]P]P]H]C]E_%]%_9]9_L_8] B]0^T[3]0_T_>cWc=]1]U_ ?[U\\C[N]R^4]T] N[R\\Q]R[ 'u" + "G]&] @]L]?eU\\ M\\2]R]8]T]3\\N\\;\\N\\7]S\\7]3^S^:^S^:^S^:^S^:^S^9]S]8^R]?]-].].].].].].].]-]E]G" + "]T]Q]D]C]H]C]H]C]H]C]H]C]@_V_A]N]R]G]H]C]H]C]H]C]H]>c9]L]?]U]'].].].].].]._M]O^/]L]?]L]?]L" + "]?]L]?].].].]-^O]>^N^?]M^?]M^?]M^?]M^?]M^ I]O`?]L]?]L]?]L]?]L]@^O^=^M]@^O^ P]P]P\\G]C\\G]T^" + "W^T\\G]M^T\\G]C\\B]3^O^ RuJ[X]P[ >o=\\XaX]BwDoC]L\\>]L]:^X^8]P]?] E] 5] 3]S]A^U[4dT];b @" + "](]6ZR\\RZ.] V]2]J]7]*^7d8]R];]R_]-]E]Fm>k=]-rC].]" + ".b3].]U]S]U]H]T^R]D]C]G]M]?]C]G]N^^M]?].]M^?]L]>]/]M" + "^?^M]?].].]U_8].^N^N]N^M]?]L]?^M]?]M^?^0]-].]L]@^O^=]S]X]S]D^V^:]O]2_2]4](] H\\U^W]U\\E]Pa?" + "]Vb-];]M^?].^M]>^P]7a8]L]?]C]H]T]T]?]P]>]S]S]?]L]@]L]8]6p=]Q]3^9]/]C]H]P]P]G]H]C]Q]Q]G]ViV" + "]F_$]$_:]:_J_9] B]0]S[3]0]P]>o=]2]S_ @[U\\C[M]T_5^U^;u O[R\\R]Q[ 'uH]/ZQ] ?]L]?eU\\ M\\1]T]7^" + "U^4\\O]O]I\\O]T`MZQ]S]O]E]3]Q]:]Q]:]Q]:]Q]:]Q]:^S^9]QmO]-m>m>m>m>].].].]1hL]G]T^R]D]C]H]C]H]" + "C]H]C]H]C]?_X_@]O]Q]G]H]C]H]C]H]C]H]=a8]L]?]U]&].].].].].].^M]O].]L]?]L]?]L]?]L]?].].].].^" + "M]?^M]?]L]?]L]?]L]?]L]?]L] I]Pa?]L]?]L]?]L]?]L]?]O]<^M]?]O] O]P]P\\G]C\\G]ScS\\G]N^S\\G]P]P\\B" + "]2]O] QuF]Q[ >oAqDuDqD]L]?]L]:^X^8^R^?\\ D] 5] 3]S]@`X[3bS\\R^G]W^N] P](].\\&] W]1]J" + "]7]*^7c8]Q];ZM^=`O^4]4d:]M_?].])d:u:d=_5\\R]O^R\\N]Q]=j<]-]E]Fm>k=]-rC].].a2].]U^U^U]H]S]R]D" + "]C]G]N^?]C]G]P_:g3]6]H]A]O]<]S]S]S]E^1_.^8]-]*] A]>^M]?]/^M^?]K]?]0^M^?]L]?].].]V_7].]M]" + "M]N]L]@^L]?^M]@^M^?]/]-].]L]?]O]<]S]X]S]C^X^9]O]2^1]4](]0_IZ O[R\\X]S\\G^O_>]Vd9_U];]L]?].]L" + "]=]P]8]X^9]L]?]C]I^T]S]@]P]>]S]S]?]L]@]L^9]6p=]Q]3^9]/]C]H]P]P]G]H]C]Q]Q]G]ViV]G_#]#_;];_H" + "_:] B]0]S[3]0\\N\\>o=]2]Q^ A[U\\C[LcX\\6]T]9u O[RfP[ 'uIf7e >]L]>dU\\<] :f5d4]T]:fT\\O^NfT\\UdOeR" + "\\O^F^3]Q]:]Q]:]Q]:]Q]:]Q]:]Q]:^QmO]-m>m>m>m>].].].]1hL]G]S]R]D]C]H]C]H]C]H]C]H]C]>d?]P^Q]G" + "]H]C]H]C]H]C]H]<_7]L]?]U^'].].].].].].^L]P].]K]@]K]@]K]@]K]@].].].].]L]?]L]@^L]@^L]@^L]@^L" + "]@^L] I]Q]X^@]L]?]L]?]L]?]L]?]O]<^M]?]O] O\\WmX]H\\WmX]H\\QaR]H\\N^R]H\\O]P]C]2]O] QuF]R\\ ?qC" + "sDtDrE]L]?]L]:]V]7]R]>x '] 5] 3\\R\\?e3^R\\SbJ^V^O] P](].\\&] W]1]J]7]+^6e:]Q]-^>_M]5^6" + "h<^O` Qe8u8e@^5]R\\M]R\\O^Q^>m?]-]E]Fm>k=]KdFrC].].b3].]T]U]T]H]S^S]D]C]G]P_>]C]Gk6f5]6]H]A" + "^Q^<]S]S]S]F_1_/_8]-]*] A]>]K]A].]K]@]J]?]0]K]?]L]?].].]W_6].]M]M]N]L]@]J]@]K]A]K]?]/^.]" + ".]L]?]O]<]T^W]T]C^X^9^Q^3^1]3]']3dN\\ P\\R`Q[G]N_>]Q`;bW];\\K^?]/]L]=]Q^8]W]9]L]?]C]I]S]S]@]P" + "]>]S]S]@]J]B^L^9]6p>^Q^4^9]/]C]H]P]P]G]H]C]Q]Q]G]ViV]H_\"]\"_<]<_F_;] B]1]R[3]1]N]8a6]2]P^ B" + "[U\\C[K`V\\7]T]8u O[RdN[ 'uIf5a <]L]=cU\\<] :f3`1]T];fU\\N^NfU\\T[S]NaQ\\N^G^3^Q^<^Q^<^Q^<^Q^<^Q" + "^;]Q]:]PmO]-m>m>m>m>].].].]1hL]G]S^S]D]C]H]C]H]C]H]C]H]C]=b>]P]P]G]H]C]H]C]H]C]H]<_7]L]?]U" + "_(].].].].].].]K]Q].]J]A]J]A]J]A]J]@].].].].]L]?]L]@]J]A]J]A]J]A]J]A]J] K]P\\V]@]L]?]L]?]L]" + "?]L]?^Q^<]K]@^Q^ O\\WmX]H\\WmX]H\\P_Q]H\\O^Q]H\\O]P]C]2^Q^ D^<]R[ >qDuEsCqD]L]?]L]:]V]7]R]>x " + " '] 5] 3\\R\\=f+]TdL^T^P] P](].\\2u *]1]J]7],^-_=]P],]>_M]5]7_R^<^Qa Sd .dC^4\\R]M]R\\O]O" + "]>]N_@]-]E]F].]/]KdF]H]C].].]X^4].]T]U]T]H]R]S]D]C]Gk=]C]Gj1c6]6]H]@]Q];^T]S]T^Ga1].^7]-]*" + "] Lh>]K]A].]K]@]J]?]0]K]?]L]?].].]X_5].]M]M]N]L]@]J]@]K]A]K]?]._0].]L]>]Q];^U]V]U^Bb7]Q]" + "3^1^3]'^6iS^ P[P^P[G]N_>]N^=dX]<]J]>^1]L]=^R]8^W]9]L]@]A]J]S]S]@]P]>]S]S]@]J]B]J]9]6]J]>]O" + "]5^8]/]C]H]P]P]G]H]B]R]R]F]C]Iz<]]K]@]O[X\\I`3]O]<]O]<]O]<]O]<]O]<]O];]P]?]-].].].].].].].]-]E]G]R]" + "S]D]C]H]C]H]C]H]C]H]C]<`=]Q]O]G]H]C]H]C]H]C]H];]6]L]?]T_4h9h9h9h9h9h9hK]Q].]J]A]J]A]J]A]J]" + "@].].].]/]J]@]L]@]J]A]J]A]J]A]J]A]J]?tG]Q\\U]@]L]?]L]?]L]?]L]>]Q];]K]?]Q] N\\WmX]H\\WmX]H\\P_" + "Q]H\\P^P]H\\O]P]C]1]Q] C]:]S[ ?sEvEqAoC]L]?]L];^V^8^T^>x '] 5] 4]S]]K]A].]K]@p?]0]K]?]L]?]" + ".].b3].]M]M]N]L]@]J]@]K]A]K]?].c4].]L]>]Q]:]U]V]U]@`6^S^4^5b2]&b^Ua<]J]=" + "c7]L]<]S^8]V^:]L]@]A]J]S]S]@]P]>]S]S]@]J]B]J]9]6]J]?^O^7^7]/]C]H]P]P]G]H]B]R]R]F]C]Iz<]\\I\\@\\O\\X\\J`" + "3^O^>^O^>^O^>^O^>^O^=]O]<^P]?]-].].].].].].].]-]E]G]R^T]D]C]H]C]H]C]H]C]H]C];^<]R]N]G]H]C]" + "H]C]H]C]H];]6]L]?]S`8j;j;j;j;j;j;|Q].pApApAp@].].].]/]J]@]L]@]J]A]J]A]J]A]J]A]J]?tG]R]U]@]" + "L]?]L]?]L]?]L]>^S^;]K]?^S^ N\\WmX]H\\WmX]H\\QaR]H\\Q^O]H\\O]P]C]1^S^ D]9]T\\ ?sFwDo?nC]L]?]L];" + "]T]7]T]=] Hj ?] 4]S]8d/]T]T]N^R_R\\ O](] =u Se =]0]J]7].^(]?]O]+]?^K]7]7]L]]K]A].]K]@p?]0]K]?]L]?].].a2].]M]M]N]L]@]J]@]K]A]K]?]-f8].]L]>^S^" + ":]U]V]U]?^4]S]4^4`0]$`<^Si O[O\\O\\H]N^=]M^@^S`<]J]=c7]L]<]S]8^U]:]L]@]O]O]J]S]S]@]P]>]S]S]@" + "]J]B]J]9]6]J]?]M]7]6]/^E^H]P]P]G]H]A]S]S]E]C]Iz<]]M]>]M]>]M]>]M]>^O^=]O]?]-].].]" + ".].].].].]-]E]G]Q]T]D]C]H]C]H]C]H]C]H]C]<`=]S]M]G]H]C]H]C]H]C]H];]6]M^?]R`;l=l=l=l=l=l=~Q]" + ".pApApAp@].].].]/]J]@]L]@]J]A]J]A]J]A]J]A]J]?tG]S]T]@]L]?]L]?]L]?]L]=]S]:]K]>]S] M]P]P\\G]" + "C\\G]ScS\\G]S^N\\G]P]P\\B]0]S] D]7\\T[ >sFwCn?mB]L]?]L];]T]7]T]=] Hi >] 4]S]7[Xa1]T^T^O]" + "P_T] O](] =u Se =]0]J]7]/^'^A]N]+]?^K]7]8^L^]K]A].]K]@p" + "?]0]K]?]L]?].].b3].]M]M]N]L]@]J]@]K]A]K]?]+e9].]L]=]S]9]V]T]V]@_4]S]5_4b2]&b<\\Nd M[O]P\\H]N" + "^=]L]@]Q_<]J]?e7]L];]T]8]T]:]L]@]O]O]J]S]S]@]P]>]S]S]@]J]B]J]9]6]J]?]M]8^6].]E]G]P]Q^G]H]A" + "^T]T^E]C]Iz<]]M]>]M]>]M]>]M]>]M]>^O]?]-].].].].].].].]-]E]G]Q^U]D]C]H]C]H]C]H]C]" + "H]C]=b>]T]L]G]H]C]H]C]H]C]H];]6]M]>]Qa>`P]>`P]>`P]>`P]>`P]>`P]>`PoQ].pApApAp@].].].]/]J]@]" + "L]@]J]A]J]A]J]A]J]A]J]?tG]T]S]@]L]?]L]?]L]?]L]=]S]:]K]>]S] L\\P]P\\F\\C\\F\\T^W^T\\F\\T^M\\F\\C\\B]" + "0]S] E^7]U[ >sFwBl=kA]L]?]L]<^T^8^V^=] Ij >] ]K]A].]K]@],]0]K]?]L]?].].c4].]M]M]N]" + "L]@]J]@]K]A]K]?](d;].]L]=]S]9^W]T]W^@`5^U^5^/_3]'_8ZJ` K[O]P\\H]N^=]L]@]P];]J]@_0]L];]U^9^T" + "^;]L]@]O]O]J]S]S]@]P]>]S]S]@]J]B]J]9]6]J]@^M^:^5].]E]F]Q]Q]F]H]@^U]U^C]E]G_\"]\"_BZT]TZB_F_;" + "] B]1]R[3]1\\L\\?o I_S] A[U]F[ V]T] W] N[S\\R]R[ S] ]L]6\\U\\ ']T]/\\O\\V\\@\\H\\A\\O\\V\\M_0o@o@o" + "@o@o?m>l>].].].].].].].].]-]F^G]P]U]C]E]F]E]F]E]F]E]F]E]=d?^V]L]F]H]C]H]C]H]C]H];]6]N^>]O`" + "?]M]>]M]>]M]>]M]>]M]>]M]>]M]?].].].].]-].].].]/]J]@]L]@]J]A]J]A]J]A]J]A]J] K]U]R]@]L]?]L]?" + "]L]?]L]=^U^:]K]>^U^ L\\P]Q]F\\D]F\\U^U^V]F\\U^M]F\\D]B\\/^U^ OuD]V[ =sFwBk;i@]L]?]L]<]R]7]V];]" + " F^ Nu=[T^3]S]R]O]N_V\\ N](] 1] ].]L]6]1_%]Aq0]>]K]8]7]J]/] Md:u:d>]3\\R\\K\\S\\Po@]" + "J]A].]F]E].].]E]F]H]C].].]S^9].]RaR]H]P^V]C]E]F].]E]F]M],]8]6]H]>]U^8]W^Q^W]H^U^4]2^3]+],]" + " R^M]>]K]A].]K]@],]0]K]?]L]?].].]X_5].]M]M]N]L]@]J]@]K]A]K]?]$`;].]L]=^U^8]W]T]W]@b5]U]5" + "^,]3]'] J\\Q_Q[G]N^=]L]A]O];]J]@].]L];]U]8]R];]L]@]O]O]J]S]S]@]P]>]S]S]@]J]B]J]9]5]L]?]K];" + "^4].^G^F]Q]Q]F]H]?_W]W_B]E]F_#]#_B\\U]U\\B_H_A\\U]U[ H]1]R[3]1]N]?o H`V] @[T]G[ U]T] X] N[S\\Q" + "]S[ S] ]L]6\\U\\ (]T]/]P\\U\\A]I]B]P\\U\\M^/o@o@o@o@o@o@m>].].].].].].].].]-]F]F]P^V]C]E]F]" + "E]F]E]F]E]F]E]>_X_?]W^L]F]H]C]H]C]H]C]H];]6]P_=]M^@^M]?^M]?^M]?^M]?^M]?^M]?^M]?].].].].]-]" + ".].].]/]J]@]L]@]J]A]J]A]J]A]J]A]J] K]U\\Q]@]L]?]L]?]L]?]L]<]U]9]K]=]U] K]Q]Q]F]E]F]W^S^W]F" + "]W^L]F]E]B\\.]U] NuC\\V[ =eXZXdFgXhAi9h@]L]?]L]<]R]7]V];] E] Nu=[S]3\\R]R]O]M_X\\ M](" + "] 1] ].]L]6]2_$]Aq0]>]K]8]7]J]/] Ke=u=e<]3\\R\\K\\S\\Po@]J]A].]F]E].].]E]F]H]C].].]R^:].]Ra" + "R]H]O^W]C]E]F].]E]F]M^-]8]6]H]>]U]7]W]O]W]I^S^5]3^2]+],] R]L]>]K]A].]K]@],]0]K]?]L]?].]." + "]W_6].]M]M]N]L]@]J]@]K]A]K]?]\"_<].]L]<]U]7]W]T]W]Ac5^W^6^+^4](] H[R\\X]S\\G]N^=]L]A]O];]J]A" + "^.]L]:]W^9^R];]L]@]O]O]J]S]S]@]P]>]S]S]@]J]B]J]9]5]L]?]K];^4]-]G]D]R]R]E]H]>kA]E]E_$]$_B^V" + "]V^B_J_A^V]V] I]1]R[3]0\\N\\>o G`X] ?\\U_Q[T\\ T]T] ] N\\T\\Q]T\\ S] ]L]6\\U\\ )]T].\\P\\T\\A\\I]A" + "\\P\\T\\N^.o@o@o@o@o@o@m>].].].].].].].].]-]F]F]O^W]C]E]F]E]F]E]F]E]F]E]?_V_@]W]K]F]H]C]H]C]H" + "]C]H];]6k<]L^A]L]?]L]?]L]?]L]?]L]?]L]?]L]?].].].].]-].].].]/]J]@]L]@]J]A]J]A]J]A]J]A]J] K]" + "V\\P]@]L]?]L]?]L]?]L]<^W^9]K]=^W^ J]R]R]D]G]D]W\\Q\\W]D]W\\L]D]G]A\\.^V] NuC]W[ ]K]9]6]J]/] H" + "e@u@e H\\R]M]T]Q^J]A]J]@]/]G^E].]-]F]F]H]C].].]Q^;].]Q_Q]H]N]W]B]G]E]-]G^F]L]-]8]6]I^>^W^7]" + "W]O]W]I^R^6]4^1]+],] R]M^>^M^@]/^M^?]-]0^M^?]L]?].].]V_7].]M]M]N]L]@^L]?^M^A^M^?] ]<].]L" + "]<]U]7]X]R]X]B^W^5]W]6^)]4](] H\\T]W]U\\F]O_=]L]A]P^;^L^A]-]L]:]W]8]P]<]L]@]O]O]J^T]T]?]P]>" + "]S]S]@^L]A^L]8]5]L]@^J]=^3]-^I^D^S]S^E]H]]G]C_%]%_A_W]W_A_L_@_W]W_ J]0]S[3]0]P]5]4],b =" + "[ThT[ R]T]!] M[T\\P]U[ R] ]L]6\\U\\ *]T].]P[S\\B]J]A]P[S\\N].^J]B^J]B^J]B^J]B^J]B^K^A]M]=]" + "/].].].].].].].]-]G^F]N]W]B]G]D]G]D]G]D]G]D]G]?_T_AbK]E]I^C]I^C]I^C]I^;]6j;]K]A]M^?]M^?]M^" + "?]M^?]M^?]M^?]M_?].].].].].].].].]/]J]@]L]@^L]@^L]@^L]@^L]@^L] J^X]Q]?]L]?]L]?]L]?]L];]W]8" + "^M^<]W] I]R]S]C]H]C]VZOZW]C]VZL]C]H]@\\-]W] MuC]X[ ;cWZWbDeWZXe>e6e>]L]?]L]=]P]8^X^:] " + " F^ H\\R\\5[S]5]Q]R]O^L` K]*] 0] !^.]L]6]4_\"]2],^>^M]8]6]J]0] DeCuCe E]R\\M]T\\P]I]A]J]@" + "]/]G]D].]-]F]F]H]C].].]P^<].]Q_Q]H]N^X]B]G]E]-]G]E]L^.]8]5]J]<]W]6^X]O]X^J^Q^6]5^0]+^-] " + "R]M^>^M]?].]M^?]-]/]M^?]L]?].].]U_8].]M]M]N]L]?]L]?^M]?]M^?] ]<].]M^<^W^6aRbB^V^6]W]7^(]4]" + "(] GcUcE]P_=]L]A]P]9]L]@]-]L]:^X]9^P]<]M^@]P^O]I]T]T]?]P]>]S]S]@^L]@]L]8]5]M]?]I]>^2],]I]" + "B_U]U_D]H]:c<]G]B_&]&_?_X]X_?_N_>_X]X_ I]0]S[3]0_T_5]4]+` ;[SfU[ P^U^#] L[U\\P]V[ Q] ]M^" + "6\\U\\ ,^U^-\\P\\S\\B\\J]@\\P\\S\\N].]I]B]I]B]I]B]I]B]I]B]I]B^M]=]/].].].].].].].]-]G]E]N^X]B]G]D" + "]G]D]G]D]G]D]G]@_R_A`J]D]J]A]J]A]J]A]J]:]6g8]K]A]M^?]M^?]M^?]M^?]M^?]M^?]M_?].].].].].].]." + "].].]L]?]L]?]L]?]L]?]L]?]L]?]L]3^;aP]?]M^?]M^?]M^?]M^;]W]8^M];]W] H]S]T^B]J^B]J^B]J^B]J^@" + "\\-]W] G^1_ :aW[V`BcW[Wc]N]<]P]7]X]8] F]KZ X]S]5[S]5\\P]R]N]K_ K]*] 0] !]" + ",]N]5]5_\"]1],]<]M]9^6^L^0] Ad Nd A\\R]O^U\\P^I^B]K^?]H[C]H^D].],]G]F]H]C].].]O^=].]P^Q]H]M]" + "X]A]I]D],]I^E]K]AZH^8]5]J]<]W]5bObJ^O^7]6_0]*]-] R]M^>^M]?^/]M^?^.]/]M^?]L]?].].]T_9].]M" + "]M]N]L]?]L]?^M]?]M^?] ]<].]M^;]W]5aRaB^U^6c8_(]4](] FaSaD]P_=]M]@]P]9]L]@]-]L]9b9]O^=^N^?" + "\\P_Q]H]T]T]?]P]=]T]T]?^L]@]L]8]4]N]@^I^?]1],^K^A`W]W`C]H]7]8]I]@^&]&^=i=^N^^P^=^P]7]X]8_ H^M[ F] 6" + "]S]>ZQ[T^6]P]S^N^K^ K]*] 0]:] 8]0],]O^5]6_2ZI]1]-^<^O^9]4]L]0]<].] Uc Pc1]2\\Q^S`W^P]G]B]K]" + ">^J\\C]I^C].],^H]F]H]C].].]N^>].]C]H]MbA^K^D],^K^D]K^B[I]7]5^L^" + "_O]=].]O_>].].]O_?]L]?].].]S_:].]M]M]N]L]>]N]>_O]=]O_?] ]<]-]O_;]X^5aRaC^S^6a8_']4](] D]P" + "^B^Ra>^N]@]Q]7]N]?^.]L]9a8]N]=^N^?]Q_Q]G]U]U]>]P]=]T]T]?_N]>]N]7]4^P^@]G]@^1]+^M^?mB]H]7]8" + "^K^?\\%]%\\;g;\\L\\:g G]/]T[3]2n7]4]'^ <\\F\\ M\\S\\ J\\F\\ L^N^6\\U\\ ,\\S\\-]OhG]K]@]OhQ]LZ=]G]" + "D]G]D]G]D]G]D]G]D]G]D^L]<^J\\C].].].].].].].]-]J_D]MbA^K^B^K^B^K^B^K^B^K^A_N_B^K]B^L^A^L^A^" + "L^A^L^:]6].]K]A^O_?^O_?^O_?^O_?^O_?^O_?^Oa?].].].].]/].].].]-]N]>]L]>]N]=]N]=]N]=]N]=]N]2^" + ";_O]=]O_>]O_>]O_>]O_:a7_O]9a E^P_>^P_>^P_>^P_>^P_>\\,a H^.] /[5]T[S\\8a1`<]L]=^R^<]O^8b7_ " + " H^O\\ F] 6\\R\\=[R[U^5\\N]T]L^M` L]*] 0]:] 8]1^+]P]4]7_1[L_1]ZM];].] R` P" + "`.]2]QfXaN]G]B]L^=^L]C]K_B].]+_J]F]H]C].].]M^?].]C]H]La@^M^C]+^M^C]J]B]L^7]4^N^:a4aMaK^M^8" + "]7^.]*^.] Q]P`>`Q^=^NZ;^Q`>_LZ>].^Q`?]L]?].].]Q^;].]M]M]N]L]>^P^>`Q^=^Q`?]/ZL];]-^Q`:a4`" + "P`D^Q^7a8^&]4](] S]Sb>_P^@]R^7^P^>^MZ<]L]9a9]M]=_P`XZB]Q_Q]G^V]V^>]P]=^U]U^?`P^>^P^6]4]Q" + "^?]G]A^0]*^O^]P`>]P`>]P`>]P`>]P`>]P]X^LZN^NZ;_LZ>_LZ>_" + "LZ>_LZ?].].].]-^P^>]L]>^P^=^P^=^P^=^P^=^P^2^:^P^=^Q`>^Q`>^Q`>^Q`:a7`Q^9a Dk],a " + "H]-] /[,[._0_;]L]=j<]N]7`5a J_S^ F] 6\\R\\=^U[W_5]N^V^K_Rd L],] /]:] 8]1])^T^3]8_0^Q`0" + "]<]Q_8^S^8^3_R_=]R^:].] O] P]+]1\\PdW`N^G^C]N_;`R`C]NaA].]*`O`F]H]C].].]L^@].]C]H]La?`S`B]*" + "`S`B]J]B`Q_6]3_R_9a4aMaL^K^9]8^-])].] Q_Tb>aS^;_R\\:^Sa=`Q]>]-^Sa?]L]?].].]P^<].]M]M]N]L]" + "=_T_=aS^;^Sa?]/^R_:]-^Sa:a3_P_C^P^7_8^%]4](] S_V^X^?aS^>]T^5_T_=`R]<]L]8_8]M^>`SdA]SaS]E" + "^W]W^=]P^=_W]W_>]X]T_<_T_5^4^T^?^G^C^/])^Q^8c=]H]7]6`S` ?] ;c >c E]._W[V\\9]4^J^9]4]%] ;]L]" + " IZQZ H]L] !u ,`Sd9\\U\\ ,ZQZ,]E\\E]L]?]E\\M_S^>^G^F^G^F^G^F^G^F^G^F^G^F^K]:`R`C].].].].]." + "].].]-]ObB]La?`S`>`S`>`S`>`S`>`S`?]J]CcS`?_R_=_R_=_R_=_R_8]6].]V[R^?_Tb>_Tb>_Tb>_Tb>_Tb>_T" + "b>_T^V_Q]M_R\\:`Q]=`Q]=`Q]=`Q]?].].].],_T_=]L]=_T_;_T_;_T_;_T_;_T_1^:`T_;^Sa=^Sa=^Sa=^Sa9_6" + "aS^7_ Bi:i:i:i:i=]+` I],] /[,[-].]:]L]]C]H]K`>kA])kA]J^Cm5" + "]2j7_2`M`K^J]9]8tC])].] PgX]>]Xf9h9fX]],fX]?]L]?].].]O^=].]M]M]N]L]qA^U]W]U^Di<]O`?k=]Xg:h3a7f>uCn?]/eSe;]:" + "]H]7]5k >] :a n?\\H\\8]4]%] 9^R^ *^R^ Xu ,q9\\U\\ /]D\\F]LfH]D\\Li>]E]F]E]F]E]F]E" + "]F]E]F]E]F]JnIkBn?n?n?n?].].].]-n@]K`>ki-]]C]H]K`]Wd" + "6f8dW]:i>]+dW]?]L]?].].]N^>].]M]M]N]L];f;]Wd7dW]?]/i7c3dV]9_2_P_E^M^8_8m4]4](] QdV`B]Xe;" + "d1f8h<]L]8_9]K]>]XdW_@eWeBg;]O`=g;]Vd8f1`6d=uCn?]/eSe;]:]H]7]3g <] 9_ :_ C]+f>n>ZFZ7]4]%] " + "7f &f Vu ,]XdW_9\\U\\ /\\C\\F\\KfH\\C\\Kg=]E]F]E]F]E]F]E]F]E]F]E]F]JnHh@n?n?n?n?].].].]-l>" + "]K`]C]H]J_9a<]$d?]I^?c0].b3_2_K_M^G^;]8tC](]/] M`T]>]U`2b4`U]7c;])`U]?]L]?].].]M^?].]M]" + "M]N]L]8`8]U`3`U]?],c2a0_T]9_2^N^F^K^8]7m4]4](] O`R^B]Va8b-`3d:]L]7]9^J]?]V`T]>cUc?c9]N_:" + "a8]T`3`-_4`X IX *W FW " + " " + " " + " " + " " + " HX W 4Z 3VCT X W 4Z " + " HX W 4Z 'VCT ;X W 3Y 2UCT KX W 3Y 0W " + " " + " " + " " + " " + " @W !W 4\\ 5YET ?XHX 8] >W !W 4\\ 7XGX KW !W 4\\ 7XHX " + " +YET :W !W 3[ 5ZFT ?XGX EW !W 3[ 7XGX 5W " + " " + " " + " " + " " + " >W \"V 3\\ 7]HU ?XHX 9` ?W \"V 3\\ 7XGX JW \"V 3\\ 7XHX -]HU" + " 9W \"V 3] 7]HT ?XGX DW \"V 3] 8XGX 5V " + " " + " " + " " + " " + " W $V 3VNV 8XGX IW $V 3VNV 8XHX -_KV" + " 8W $V 2] 7_KU ?XGX CW $V 2] 8XGX 6V " + " " + " " + " " + " " + " :W &W 4VLV :j >XHX :VJV >W &W 4VLV 9XGX HW &W 4VLV 9XHX .j 6" + "W &W 3VMV 9i >XGX BW &W 3VMV 9XGX 7W MW " + " " + " " + " " + " " + " CV 'W 4VJV ;j >XHX ;UGV >V 'W 4VJV :XGX GV 'W 4VJV :XHX .j" + " 5V 'W 3VKV :i >XGX AV 'W 3VKV :XGX 8W N[ " + " " + " " + " " + " " + " DV )W 4VHU TEY ;XHX V ,V 2UEU TCU :XGX =U -V 2UCU =XGX ;V NV" + "IV \"W " + " " + " " + " " + " JU /V 3VBV ETBT :U /" + "V 3VBV FU /V 3VBV (U /V 2UAU DU /V 2UAU @V NVGV " + " $X " + " " + " *X " + " " + " JX GTBT " + " MX GX 7V :UEU DX GX 7V JX GX 7W 4X GX 6V " + " GX GX 5V (X &X " + " " + " )X 8V " + " " + " ;X FTBT " + " LX IX 7X W E\\ AW ,W ,W ,W ,W HY GV +Y " + " 4Z NX @X " + " %W DUDU " + " =Y 7W KW 6Z 4XDT BTAT BW KW 6Z IW KW 6[ ,Y )XDT AW KW 5Z 4XDT " + " KW KW 4Z ,W BW 8V (S " + " W H_ AW ,W ,W ,W ,W " + " L] GV +] ;a #[ F^ " + " 8XGX +W BTEU " + " *R 9a :W MW 6\\ 6ZET ?XHX W Ja AW ,W ,W ,W ,W N_ GV +_ " + "?e 8] J] Jb 8[ <[ $Y FY 7XGX " + "=Z Di 5W 8Z .Y !W FW *Y 4W)V*W)V-Y(V W $a MY EW 5W >W Kb AW ,W ,W" + " ,W ,W !a GV +a Ch =f ^ Mf 2Z @" + "x Mx a" + " 5a &W 0g #\\ -_ <\\*V.\\*V0a-V\"X )Z /Z /Z /Z /Z 4WJV 1~U+d Kx Mx Mx Mx MX -X -X -X ,j" + " @[3X Dc 8c 8c 8c 8c W \"W 4VNV 8]HU ?XHX BW \"W 3VNV 8XHX 2W ?W &XHX " + " ^ K~\\ >S 3Q +[ @[;[ ;Q ;e HX 2VFV #VBV FS 6`" + "1V#g GV !V 3V !T 7W 0d :` ;j ?k -[ Dq :g Ky Df ;d $f 1Z @o 5j Np Ex Mt " + ":m\"X/X'X -X -X3Z%X -]0]0\\4X Gi Lm 4i Ln ;m#~W$X/X-X(X-X4Y4XCY1Y-Y.Y&~S%a >W $a N[ EV " + "5W >W Lc AW ,W ,W ,W ,W \"b GV +a Dk Aj \"_" + " h 3Z @x Mx ?i 6X C~Q)X?X?X Ni 6V /V /V DX &f #W0W e >XGX %c#" + "e +b\"i 9_ Be 9d 'V 3k %^ /c @^*V0^*V2d.V\"X )Z /Z /Z /Z /Z 3b 1~U.j Nx Mx Mx" + " Mx MX -X -X -X ,p F\\4X Gi >i >i >i >i BiEV.X/X'X/X'X/X'X/X.Y.Y#X 'j ;V \"V 5VLV :_IT >XH" + "X V \"V 5VLV 9XGX IV \"V 4VMV 9XGX ,ZHY A_IT XHX AV \"V 3VLV 9" + "XHX 2V >W &XHX !_ K~[ >T 4R -_ D_?_ >S =t Fh " + " IX 2VFV #VBV FS 7c4V#i HV \"W 3V !T 7V 0f @e >o Co 0\\ Dq W Md AW ,W ,W ,W ,W HW 1b GV +b " + " Fm Dm #` \"j 4Z @x Mx Am 8X C~Q)X?X?X!m 9X 0V 0X EX 'h" + " $W0W \"h ?XGX 'g%g 0h%i :a Cf :f *V 4m %^ 0e A^+V/^+V1f1V!X )Z /Z /Z /Z /" + "Z 2` 1~V0o\"x Mx Mx Mx MX -X -X -X ,t J\\4X Im Bm Bm Bm Bm FmHV-X/X'X/X'X/X'X/X-X.X\"X (l ;" + "V $V 4UJU :ULXLU >XHX XHX @V $V 2UJU 9XHX 3V =W &XHX !` K~Z >T 4S /a FaAa @T " + " @w Hl KX 2VFV $WCV ES 8e5V$j HV \"V 1V \"T 7V 2j Eh ?q Dp 1\\ Dq >" + "l Ly Hn Bj +l %e E\\ At >s$v Kx Mt >u&X/X'X -X -X5Z#X -^2^0]5X Jo q ;o r Br%~W$X/X" + "-X(X,X6[6XAY3Y+Y0Y%~S%W 3V IW !_ FW 7W >W Md AW ,W ,W ,W ,W HW " + " 2[ ?V #[ Hn En #` #l 6\\ Ax Mx Cp 9X C~Q)X?X?X\"o " + " ;Z 1V 1Z FX KS 0i #W2W LV ,i ?XGX *l'h 3l'i ;c Dg ;g ,W 6o %^ 1g B" + "^,V.^,V0g3V X *\\ 1\\ 1\\ 1\\ 1\\ 2^ 0~V2s$x Mx Mx Mx MX -X -X -X ,v L]5X Jo Do Do Do Do HpKW" + "-X/X'X/X'X/X'X/X-Y0Y\"X )n XHX ;UEU XHX @W &W 3VJV :XHX 4W =W &XHX 1\\ 1\\ 1\\ 1\\ 1\\ =XMV K~Y " + " =S 4U 1c IdCc AU Dz In LX 2VFV $VBV ES 9g7V$k HV #W 1W #T " + " 8W 3l Fh ?r Eq 3] Dq ?m Ly Ip Em -n )k H\\ Au Av%x Mx Mt ?x(X/X'X -X -X6Z\"X -" + "^2^0]5X Ls\"s ?s\"s Et%~W$X/X,X*X+X6[6X@Y5Y)Y2Y$~S%W 3W JW \"a FW 8W >W NZ 6W ,W " + ",W ,W ,W HW 2X \\ 2V 2\\ GX KS 1j #W2W LV -j ?XGX +ZEZ)VGY " + "5ZDZ)i T 5V 2e KfEe CW G| " + " Jp MX 2VFV $VBV ES 9XIX8V$l HV #V /V #T 8V 3n Gh ?s Fr 5^ Dq @n Lx Ir" + " Go .o -q L^ Bv Cx&z x Mt A{)X/X'X -X -X7Z!X -^2^0^6X Mu#t Au#t Gu%~W$X/X,X*X+X6[" + "6X?X5X'X2X#~S%W 2V JW #c FW 9W >W NX 4W ,W ,W ,W ,W HW " + " 2W ;V NW IZCY Hp JY &ZDZ 9^ Bx Mx Eu W *W 2UFU ;XHX 6W ;W &XHX 7h =h" + " =h =h =h DWJV K~X >T 5W 4g MgFg EY J~ K]FZ MX 2VFV $VBV " + "ES :XGX9V%\\GX HV $W /W 3PATAP GV 3[H[ Gh ?]F] GZE^ 6^ Dq A]FX Lx I\\F\\ G\\G[ " + " /[H] 0u N^ Bw E_D^&{!x Mt B`C_)X/X'X -X -X8Z X -_4_0_7X N^E^$u C^E^$u H^E\\%~W$X/X,Y,Y*W7" + "]8X>Y7Y'Y4Y#~S%W 2V JW $e FV 9W >W NW 3W ,W ,W ,W ,W HW " + " 2W ;V NW IY@X >X 4[AV IX &X@X 9^ Bx Mx F^E^ =X C~Q)X?X?X" + "&^E^ B` 4V 4` IX KS 3\\GW \"W4W KV .YBT ?XGX .V7V,P=W :W8W /VEV 3V +V /V " + " 7eGU KU 3WCW ;U-V$U-V LV5V NX +^ 3^ 3^ 3^ 3^ 3^ 1~W6_D^&x Mx Mx Mx MX -X -X -X ,{\"" + "_7X N^E^ L^E^ L^E^ L^E^ L^E^ !^Ed*X/X'X/X'X/X'X/X+Y4Y X +Y?X ;V *V 4UDU >TEZ TEZ T 5Y 5g MhHi G[ M~Q L\\AW M" + "X 2VFV $VCV DS :WEW:V%ZAU HV $V -V 3RCTCR HW 4ZDZ H\\LX ?Y?[ HV>\\ 8_ DX )[?T -Y J[B" + "[ I[CZ 0WAZ 2x ^ BX>^ G]=Z&X=b#X -X '];[)X/X'X -X -X:[ NX -_4_0_7X \\?\\%X@^ E\\?\\%X" + "?] J[=X =X W X 3W 4W ,W " + " HW 3X ;V NX KY?X Ca 9Y:R HX (X>X :VNV " + "BZ /X '\\?\\ A^ FX0X)X?X?X'\\?\\ Db 5V 5b JX KS 3ZBT !W6W JV .X?R 4V4U HV ;V" + "4V 1VCV 4V *U 0V 7fGU KU 4WAW TDX ;a 6V ,V 4UBU GV ,V 3UCU 0` 6TDX 4V ,V 2UDU >TDX >V ,V 1UDU " + ":V 9W (o Do Do Do Do GWIU J~V >T 6Z 6i jIj I\\ N~R M[=" + "U MX 2VFV %VBV H] AWCW;V%Y=R HV %W -V 4UETEU IV 4ZBZ IWGX ?V;[ IS9Z 9VNX DX *Z;R" + " -X JZ>Y JZ?Y 1U>Z 5`C_#` CX;[ H[7W&X9_$X -X (\\6X)X/X'X -X -X;[ MX -_4_0`8X![;[&X" + "=[ F[;[&X<[ LZ8U =X W W 2W 4" + "W ,W HW 3W :V MW KX=W Cc ;X7P HX (" + "WR !X8X JV /X

W W " + " 2W 4W ,W HW 3W :V MW KWU.U 4VAV &V 5U *U 2V 6gGU KU 5W?W =U/V\"U/V IU7V LX ,WNW 5WNW 5WNW 5" + "WNW 5WNW 5WNW 4XHX H[4U&X -X -X -X -X -X -X -X ,X6]&`8X\"Z7Z#Z7Z#Z7Z#Z7Z#Z7Z 'Z8['X/X'X/X'" + "X/X'X/X)Y8Y MX ,W:W 9V 0V 3U@U ?[ 1V 0V 3U@V GV 0V 3U?U 8h 1V 0V 2U@U " + " CV 0V 1U@U >V 7W *`L` I`L` I`L` I`L` I`L` JV =X,X >T 6] 9k\"lKl K_ " + " #\\ 'Y8S MX 2VFV %VBV Nk IVAV=V$X 1V %V +V 6YHTHY -V EW 5Y>Y :X ?R5" + "Z .Y ;VMX DX +Y DX IYW W 2W 4W ,W HW 3W :V MW KW;W De =W " + " -X *W:W V$X 1V &W +W 5XITIX +V EV 4X[ JX -XNW8WNX0a9X#Y" + "3Y(X9Y JY3Y(X9Y NX LX W W 2W " + " 4W ,W HW 3W :V MW LX;W Df >W ,W " + " +W8W >WLW @Y 2X +Z3Z!t\"X0X)X?X?X*Y3Y Kj 9V 9j AS 5X 8W:W HV /W #T)T KV " + " @T(T 6U?U &V 5T +V AhGU KU 5V=V =U0V!U0V JV7V WLW 7WLW 7WLW 7WLW 7WLW 7XNX " + "6XGX IY.R&X -X -X -X -X -X -X -X ,X2Z'a9X#Y3Y%Y3Y%Y3Y%Y3Y%Y3Y )Y3Z)X/X'X/X'X/X'X/X'X:X Ki" + " >W8V *XHZ FW ,ZW W 2W 4W ,W HW" + " 3W :V MW LW:W Dg ?W ,X ,W8W >WLW ?Y 3X +Y1Y\"v#X" + "0X)X?X?X+Y1Y MYNVNY :V :YNVNY BS 5X 8XU1V U1V KW7V NWLW 7WLW 7WLW 7WLW 7WLW 7WLW 6XGX JY,Q&X -X " + "-X -X -X -X -X -X ,X1Z(XNX:X$Y1Y'Y1Y'Y1Y'Y1Y'Y1Y P)P$Y3[)X/X'X/X'X/X'X/X'YVKX DX -X BX IX8X NX7W KP 1P =X Y *Z W 0W MW +ZAZ 0W >W W 2W 4W ,W HW " + " 3W :V MW LW:W DSF[ @X -X -X8W ?WJW ?Y 4X ,Y/Y%z%X0X)" + "X?X?X,Y/Y YMVMY ;V ;YMVMY CS 5X 5P*Q JWU2V NU2V$_7V NXLX 9XLX 9XLX 9XLX 9XLX 8WLW 6XGX KY*P&X -X" + " -X -X -X -X -X -X ,X0Z)XNX:X%Y/Y)Y/Y)Y/Y)Y/Y)Y/Y\"R+R&Y3]*X/X'X/X'X/X'X/X&Y>Y Jp EW:Y " + " +R@Y 7Q 2W .XEVFY\"X5Y\"X5Y\"X5Y\"X5Y N" + "V ;X/X 0V 5T 8c ^ AW4W ?Z >W6W KY \"Y 0X 2VFV &VCW#[LSKZ K" + "V?V@V\"W 0V 'W )W 1XNTNX &V FW 6Y:Y X *Z NW 0W MW ,Z?Z 1W >W W 2W 4W ,W H" + "W 3W :V MW LW:W DPAY ?Y .W -W6W @WJW >Y 5X ,X-X&" + "_MXM_&X0X)X?X?X,Y/Y !YLVLY W FV /X 'TCfFT2i CUGfB" + "T 9U?U &V 7U 5] >iGU KU 6V;V >U2V NU2V$]5V NWJW 9WJW 9WJW 9WJW 9WJW 9WJW 8XFX" + " KY /X -X -X -X -X -X -X -X ,X/Y)XMX;X%Y/Y)Y/Y)Y/Y)Y/Y)Y/Y#T-T'Y3]*X/X'X/X'X/X'X/X%X>X Ir " + "GW=\\ GY 9S 3W /XDVDX$X2X$X2X$X" + "2X$X2X V ;X0X 0X 7T 8d X$X-WJW EX6X Y .X.Y)X -X -Y .X/X'X -X -XBZ EX -XLV:VLX0XMX;X&Y-Y+X7X NY-Y+X7X!X KX Z W FV " + ".X (TDgFT3j CTFhDT 9U?U &V 8U 4\\ =iGU KU 6V;V >U3V MU3V#\\5V MWJW 9WJW" + " 9WJW 9WJW 9WJW 9WJW 8XFX LY .X -X -X -X -X -X -X -X ,X.Y*XMX;X&Y-Y+Y-Y+Y-Y+Y-Y+Y-Y%V/V)Y3" + "_+X/X'X/X'X/X'X/X%Y@Y Is HW?^ ?Z /Z /Z /Z /Z /Z /Z6Y NZ 0Z /Z /Z /Z 8Y 1Y 3Z /Z /Z" + " /Z /Z 3ZCV 5WDX DXCVCW%X0W%X0W%X0W%X0W V :X1X 0X 7T 9f =k#~`\"h Cf " + "EW4W @\\ ?X8X LX !Y /X 2VFV 'VBV#XHSET KV?VAV!W 0V (W 'W .` \"V GW 5X" + "8X W\"W.XJX FX6X X -X.Y)X -X -X -X/X'X -X" + " -XCZ DX -XLV:VLX0XLX^4WG_ 9` @WG^ 9^GW MWG\\ ;f Gm ^BV\"W:W 3X ?^ 0e AWG_ KV.X ?X Z 7X -X+X)\\HXH\\(X0X)X?X?X-X+X $YJVJY >V >YJVJY Ma =X 7V0V JW@W E" + "V .Y *TEiET5k DTEiDT :VAV &V 9U 3_ ;W6W NiGU KU 6V;V >U3V MU3V#_8V NXJX" + " ;XJX ;XJX ;XJX ;XJX ;XJX :XEX LX -X -X -X -X -X -X -X -X ,X.Y*XLXa'b 7` 5` 5` 5` AW ,W ,W ,W DY EW" + "G_ 9` 5` 5` 5` 5` (Z <`GV W6W MW6W MW6W MW6W#W1X NWG^ HW1X NWBVBW&W.W&WJP:PJW&W4PJW&W." + "W!V :X2X 0X 6S 8g >k#~`#j Fj GW4W @\\ >W8W LX X .X 2VFV 'VBV$XGSCR " + "KV?VBV X 1V (W 'W ,\\ V GW 5X8X f CWIb =bIW MWI^ =j Im U4V LU4V\"`:V GX /WHW ;WHW ;WHW ;WHW ;WHW ;WHW :XEX MY -X -X -X -X -X " + "-X -X -X ,X-Y+XKWf ;f ;f ;f ;f +Z >eJU NW6W MW6W MW6W MW6W\"W" + "2W MWIb IW2W NWAVAW(W,W(WJRU5V KU5V GXTKW)W4TKW" + ")W+W\"V 9X3X 2X 5T :k ?i\"~`$m Jn IW4W A^ ?X:X MW NY .X 2VFV 7~X2XFS" + " VIV>X2YIY DYFY +Z JW .V NW 1Y3Y 1n DWLh Bm ChLW Gk Ll 6hLW MWKg HW ,W ,W;Y JW " + ",WKfGg8WKg Cl FWLh ChLW MWK` @m Im Y =W6W JW-W&YJb }!WCWCW Hk Dx&{ W4W CWFW P JSCVAVDS :WEV " + "$V W6W NiGU KU 6V;V BP>P /U5V KU5V EW=V FX 0XHX =XHX =XHX =XHX =XHX =XHX W:X MW NX -X 2VFV 7~X2WES WKX0XJX>X(Y)X,X7X!Y)X,X7X!Y LX VIV>X1YKY BXFX +Z IW .W " + " W 2Y1Y 2o EWMj Dn DjMW Hn Nl 7jMW MWLi IW ,W ,WW6W NiGU KU 6V;V BQ" + "?Q 0U6V JU6V BU>V EX 0WFW =WFW =WFW =WFW =WFW =WFW X(Y)X.Y)X.Y)X.Y)X.Y)X%Z9Z*Y6WJX,X/X'X/X'X/X'X/X!XFX EX;Z LWDX ?o Do Do Do Do Do DoKn4n C" + "n Cn Cn Cn HW ,W ,W ,W %l HWLi En Cn Cn Cn Cn /Z Cs LW6W MW6W MW6W MW6W!W4W LWMj LW4W " + "W?V?V+W(V+WKXBXKV+W5XKV+W(V$W 8W4X 2X 5T ;n ?g!~_%p LZDZ JW4W A^ >W:W MW " + " MX -X 2VFV 7~X2WES VJX0XIW>X(X" + "'X-X7X!X'X-X7X!Y LX VIV>X1YKY AXHX +Z HW -V W 3Y/Y 3p FWMk Fo EkMW Io Nl 8" + "kMW MWMk JW ,W ,W=Y HW ,WMjJj:WMk Gp HWMk GkMW MWMb Bo Im \\>W0X=X LW5X u 6W :V " + " MW EkJV Wj Fn CWMk\"\\6X =Z >W6W KW+W)[Ke\"}!WCWCW Jo Hz&{ W4W DWDW ;Y ;X /X'X." + "YBXBY+X0X)X?X?X/X'X#T HV IT :V ;T3T :V CV +o BX 6ZM`MZ GXFX CV *\\ 3SFW,S:V>V 0R@R " + " KSBV@VDS 9e #V ?W \"V ?W6W NiGU KU 6V;V BR@R 1U6V JU6V BV?V EX 1XFX ?XFX ?XFX ?XFX" + " ?XFX ?XFW =XCX NX +X -X -X -X -X -X -X -X ,X+X,XIW>X(X'X/X'X/X'X/X'X/X'X%Z;Z)X5VHX-X/X'X/" + "X'X/X'X/X XHX DX:Y LWEX >p Ep Ep Ep Ep Ep EpMp6o Do Do Do Do HW ,W ,W ,W 'o IWMk Gp Ep Ep " + "Ep Ep 0Z Ds KW6W MW6W MW6W MW6W!W5X LWMk MW5X V>V?W,V'W,VKZDYKW,V5YKW,V'W%W 8X5W 2" + "X 4T ;o @g ~^%q NY@Y KW4W B` ?XX -XJW@WJX0XIX?X(X'X-X7X!X'X-X8Y Y MX " + "W/YMY @YJY +Y GW -V W 4X+X 4YE\\ FWNXG\\ H]EX F\\GXNW J\\F[ GW ,\\GXNW MWNXG[ JW ,W ,W?Z GW" + " ,WNXH[KXH[:WNXG[ H]H] IWNXG\\ I\\GXNW MWNXFQ C\\CW CW ,W6W!X6X NW?\\?W.X?X JW6W 1X 6W :V MW " + " 9X=X\"[IZKW W=Y /W @m H]DV CWNXG[\"\\6W =[ >W6W LW)W*ZJWKY\"}!WCWCW K\\H] J{&{ V3W DWDW :Y " + "XCX NX +X -X -X -X -X -X -X -X ,X+X,XIX?X(X'X/X'X/X'X/X'X/X'X$Z=Z(X6WH" + "X-X/X'X/X'X/X'X/X YJY DX9Y MWEW =YE\\ EYE\\ EYE\\ EYE\\ EYE\\ EYE\\ EYE]N\\G[7]EX E\\F[ F\\F[ F\\F[ " + "F\\F[ IW ,W ,W ,W (p IWNXG[ H]H] G]H] G]H] G]H] G]H] 1Z E]H^ JW6W MW6W MW6W MW6W W6W KWNXG\\" + " MW6W NV>V>V,V&V,VJZFYIV,V6YIV,V&V%W 7W6X 3X LR:T ;q @e N~^&s!Y>Y LW4W B` >WXJX +Z GW -W !W 5X)X 5U>" + "Z G_CZ I[>T FZC_ KZAZ HW -ZB_ M^BZ KW ,W ,W@Z FW ,^CZMVCZ;^BZ IZBZ I_CZ IZC_ M^ 5YY .W AXJa IZW2W EWDW 9Y =X /X'X/YAXAY,X0X)X?X?X/X'X%X JV KX Z FU>Z " + "FU>Z FU>Z FU>Z FU>Z FU>eBZ9[>T FZAZ HZAZ HZAZ HZAZ JW ,W ,W ,W )r J^BZ IZBZ GZBZ GZBZ GZBZ" + " GZBZ 1Z EZB[ JW6W MW6W MW6W MW6W W6W K_CZ MW6W V=V>V-V%V-VHZHYHV-V6YHV-V%V%W 7X7X " + " 4X NU:T WX !Y 0Y BVDX Dk CXJc -X BX>X LX5Y MX -X Ee Le 3Z ?U=bKUC" + "U6XDX IX9Y X +X+X+X -X /X +X/X'X -X -XL[ Y J]?Y KY?] M] 4X8P CW ,W6W X8X MW?\\?W-XAX IW7X 3Y 5W :V MW =_C_(YBXLV NW" + "?Z -W CXC\\ KY ,]@Y LW8X >] ?W6W LW)W,YHWHY MW=W JWCWCW MY>Y L[B[ ;W >W2W FWBW 9Y >X 0X%X0X" + "@X@X,X0X)X?X?X/X'X&Y JV KY =V >Y7Y =V CV .[HSFR BX 3t BWHW AV .WN\\ 9SFV)S;V?W 3UCU " + " LSAV@VCS 7_ V BV LU ?W6W MhGU KU 5W?W AUCU 4U8V HU8V ?UAV CX 2XDX AXDX AXDX AX" + "DX AXDX AXDX @XBX NX +X -X -X -X -X -X -X -X ,X+X,XHX@X(X'X/X'X/X'X/X'X/X'X\"ZAZ&X8WFX-X/X'" + "X/X'X/X'X/X MXLX BX8X MWFW Y;Z:R GY=Y JY=Y JY=Y JY=Y KW" + " ,W ,W ,W *]E[ J]@Y JY>Y IY>Y IY>Y IY>Y IY>Y 2Z FY>Y JW6W MW6W MW6W MW6W W7X K]?Y NW7X " + " V=V=U-V$U-VGZJYFU-V7YFU-V$U%W 7X8X &~X/X:T =t @c L~\\'v\"W:W LW4W CXNX ?X>X MV " + " $x EX 2~X2WES :VDWEV FZ :W #W 7XKTKX )V IV 4X4X >X !X 0Y BWDX Dm FXKf " + "/Y AYBY KX5Y MX -X Gd ~X d 5Y ?V>dLUCU6WBW IX;Z Y +X+Y,X -X 0Y +X/X'X -X -XM[ ;X -XIWBWIX" + "0XGW@X)Y'Y.X8X!Y'Y.X9Y M] #X aEa)X@XNW NWA[ ,W DW?[ LX +[=X KW:X =] ?W6W MW'W-XGWGX MW=W JWCWC" + "W MXZ W2W FWBW 9Z ?X 0X%X0X@X@X,X0X(X@X@X/Y'Y(Y IV JY >V ?Y5Y >V CV .YFSDP B" + "X 2q @XJX AV /WK[ :SFV)S;V@X 4VDV LSAV@VCS 6\\ MV CV KU ?W6W MhGU KU 4V?V @V" + "DV 5U9V GU9V >UBV BX 2WBW AWBW AWBW AWBW AWBW AXDX @XBX Y +X -X -X -X -X -X -X -X ,X+Y-XGW" + "@X)Y'Y1Y'Y1Y'Y1Y'Y1Y'Y\"ZCZ&Y9WEY.X/X'X/X'X/X'X/X MYNY BX8Y NWFW X NW $w DX $VBV#XFS :WFXEV H] ;W #W 9XITIX" + " +V JW 4X4X >X \"Y 3[ BWCX Dn GXLi 1X ?ZFZ JY7Z MX -X Je M~X Me 9Y >U?gMUCV7WBW IX>\\" + " NX *X*X,X -X 0X *X/X'X -X -XNZ 9X -XHVBVHX0XGXAX)X%X.X9Y!X%X.X:Y La 'X _ @W6W MW'W.YGWFX NW=W JWCWCW NX:X NYW2W FWBW 8Z @X 0X%X0X@X@X,X0X(X@X@X" + "/X%X)Y HV IY ?V @Y3Y ?V CV /YES 6X 1\\H[ JcJc LV 0WI\\ =TFV)S;WAX 5WEW MTAVAWCS 3" + "W 4~W.W KV ?W6W LgGU KU 4WAW @WEW 6U9V GU9V ?VBV BX 2WBW AWBW AWBW AWBW AWBW AWBW A" + "XAX X *X -X -X -X -X -X -X -X ,X*X-XGXAX)X%X1X%X1X%X1X%X1X%X!ZEZ%X9WCX.X/X'X/X'X/X'X/X LXN" + "X AX7X NWFW !W ,W ,W ,W ,W ,W ,]:X=Y .X9X LX9X LX9X LX9X LW ,W ,W ,W +Z=X K[x A` J~\\(y%W8W MW4W CXMW >W>W MV $x DX $VCV\"XFS 9X" + "IXEV H_ X #Y ?g AVBX Do HXMk 3Y >l HX7Z MX -X Me J~X Je " + "=Y >V?hNUBU8XBX Ju MX *X*X,w Lq IX *~R'X -X -c 8X -XHVBVHX0XFWAX)X%X.X9Y!X%X.X;Z Ke ,X WNV MW" + "Ib +W EW;Y MW *Z;X KV:W =_ @W6W NW%W/XFWFX NW=W JWCWCW NW8X!Y:Y =W >| GW@W 8Y @X 0X%X1Y@X@" + "Y-X0X(X@X@X/XImIX*Y GV HY @V AY1Y @V CV /XDS 6X 0YDY JdLd LV 1WF[ >SFV'SW6W LgGU KU 3WCW ?XFX 7U:V FU:V >UBV AX 3XBX CXBX CXBX CXBX" + " CXBX CXBX BXAw?X *w Lw Lw Lw LX -X -X -X ,X*X-XFWAX)X%X1X%X1X%X1X%X1X%X ZGZ$X:WBX.X/X'X/X" + "'X/X'X/X K` @X7X NWFW W ,W ,W ,W ,W ,W ,[8W=X -W7W LW7W LW7W LW7W LW ,W ,W ,W ,Y:X LZ;X M" + "Y:Y MY:Y MY:Y MY:Y MY:Y \"Y=\\ LW6W MW6W MW6W MW6W MW:W IZ9X NW:W NVV&V 4W:X %~X2TNVW \"W ;WFTFW -V JV 3X4X >X #Y ?f AWBX Dp IXNm 4X ` @W6W NW%W/WEWEW NW=W JWCWCW X8X!X8X =W >| GW@W 7Y AX " + "0X%X1X?X?X-X0X(X@X@X/XImIX+Y FV GY AV BY/Y AV DX 1XCS 6X 0W@X KdLd LV 1VCZ ?SFV'S;WE" + "[ 7XFX G~X .S@VBWAS @~W0W .P>W >W6W KfGU KU 3XEX >XFX 8U;V:W3U;VCZ9P>WCV:W/Y 3W@" + "W CW@W CW@W CW@W CW@W CXBX CX@w?X *w Lw Lw Lw LX -X -X -X 5p9X-XFXBX)X%X1X%X1X%X1X%X1X%X N" + "ZIZ#X:VAX.X/X'X/X'X/X'X/X K` @X7X NWFW W ,W ,W ,W ,W ,W ,[8X?X -X7X NX7X NX7X NX7X MW ,W " + ",W ,W ,X9X LY9W MX8X MX8X MX8X MX8X MX8X \"X=] LW6W MW6W MW6W MW6W MW:W IZ9X NW:W NVLu" + "KU/VLuKU/VBaAU/V:YAU/V=X=U&V 4X;X %~X2RLW>T >{!z'~Z)}(W6W NW4W DXLX ?X@X MV " + " KX ,X %VBV!YHS 8eEV Ic ?W !W ;UETEU ,V KW 3X4X >X $Y >c ?WAX DWD^ JbG] " + "5X 9d DY9[ MX -X #d D~X Dd DY a AW6W NW%W0XEWEX W=W JWCWCW W6W!X8X " + "=W >| HX@X 7Y BX 0X%X1X?X?X-X0X(X@X@X/XImIX,Y EV FY BV CY-Y BV DX 1XCS 6X 1W>W KeNe LV" + " 1VB[ ASFV'S;YI] 9YGY F~X .S@VDX@S @~W1V ,TEZ >W6W JeGU IX +U 2YIY T ?|\"}(~X)~(W6W NW4W DXKW >" + "W@X MV KX ,X %VBV!ZIS 7cEV IYNZ8W 0W !W :RCTCR +V KW 3X4X >X %Y" + " =b >V@X DS=\\ K`C[ 6Y 8b BX9[ Nd A~X Ad HY W ,X8X8W=X8X X6X MY7X\"X7Y MX 0W )W ,W6W MXXMW AW6W NW%W0XEWDW W" + "=W JWCWCW!X6X#X6X >W >| HW>W 6Y CX 0X%X1X?X?X-X0X'XAXAX.XImIX-Y DV EY CV DY+Y CV DX 2X" + "BS 6X 1Vh =W6W JeGU IX 4g :g :" + "YFX DgEV:XhCV:X/X 3X?W EX?W EX?W EX?W EX?W EX@X EX?w?X *w Lw Lw Lw LX -X -X -X 5p9X" + "-XEXCX)X%X1X%X1X%X1X%X1X%X LZMZ!XX7X NWFY !V +V +V +V +V +V +Y6W@" + "X ,W5W NW5W NW5W NW5W MW ,W ,W ,W -X7X MX8X X6X X6X X6X X6X X6X $X=_ MW6W MW6W MW6W MW6W " + "LWS >}%~R)~V(~P)W6W NW4W" + " DWJX ?XAW L~^ $X ,X %VCV N\\LS 6aDVAW0XLZ9W 0W !W :PATAP +V KV 2X" + "4X >X &Z =e BW@X DP8[ L^?Z 7X :h EY;\\ \"d >~X ?e LY ;U@W>YAU:W>W Ks KX *X*X,w Lq IX6f+~R" + "'X -X -b 7X -XGWFWGX0XDWCX)X%X.X@^ NX%X.s Bl 8X X IXDVCVDX)[ 4\\ -Z @W *V #W $" + "W JX5W\"X -W5X W4W KW 0W5X MX7W MW ,W ,WIZ =W ,X8X8W=X7W W4W MX5W\"W5X MX 0X *W ,W6W LWX >XMX BW6W W#W1WD" + "WDW W=W JWCWCW!W4W#X6X >W >| HW>W 7Y BX 0X%X1X?X?X-X0X'XAXAX.XImIX.Y CV DY DV EY)Y DV " + "DX 2XBS 6X 2WY BSFV'S9bMV ;XFY D~X .S@h>S @~W2i >g W EW>W EW>W EW>W EW>W EW>W EX?w?X *w Lw Lw Lw LX -X -X -X 5" + "p9X-XDWCX)X%X1X%X1X%X1X%X1X%X Ke X=W?X.X/X'X/X'X/X'X/X I\\ >X7X NWEY \"W ,W ,W ,W ,W ,W ,X5W" + "@X -W4W W4W W4W W4W MW ,W ,W ,W -W6X MX7W W4W W4W W4W W4W W4W $W=VMW MW6W MW6W MW6W MW6W " + "LW=X HX5W NW=X MVLuKU/VLuKU/V?[>U/V=Y>U/V=X=U&V 3X=W 7X FW@T ?~&~T*~V)~R*W5V NW4" + "W EXJX ?XBX L~^ $X ,X &VBV Mb 4]CVC]4XJZ:W 0W !W +T KV KV 2X4X >" + "X 'Z X Lu MX *X*X,w Lq IX6f+~R'X -X -c " + "8X -XFVFVFX0XDXDX)X%X.u MX%X.r ?l :X X IXDVCVDX)\\ 4Z ,Y ?W *V #W $W JX5W\"W ,W" + "5X W3W LW 0W5X MX7W MW ,W ,WJY ;W ,X8X8W=X7W W4W MX5W\"W5X MX 0X *W ,W6W LWW 6Y 0X 9V LX 5`3R 0T?[?T/W:[ KWId DbKW HW5X NW +X7W JV>W =WLX BW6W W#W1WDWDW W=W JWC" + "WCW!W4W#W4W >W >| IX>X 9Y AX 0X%X1X?X?X-X0X'XAXAX.XImIX/Y BV CY EV FY'Y EV DX 2WAS ?r " + "CV:V =^ =V 2V=Y CSFV'S8`LV e :W6W GbGU IX 4g 8c 5XFX FgFV" + ":YX GX>X GX>X GX>X GX>X GX>X FX?w?X *w Lw Lw Lw LX -X -X -X 5p9X-XDXDX)X" + "%X1X%X1X%X1X%X1X%X Jc NX>W>X.X/X'X/X'X/X'X/X HZ =X7X NWEZ #W ,W ,W ,W ,W ,W ,X4WAW ,W3W!W3" + "W!W3W!W3W NW ,W ,W ,W .X5W MX7W W4W W4W W4W W4W W4W $W>VLW MW6W MW6W MW6W MW6W KW>W GX5W " + "MW>W LVLuKU/VLuKU/V>Z>U/V>Y=U/V=X=U&V 2W>X 8Y FW@T ?~P(~V*~T(~Q)V4V NW4W EXJX >W" + "BX L~^ $X ,X &VBV Ld 4WAVD`6XHZ;W 0W !W +T KV LW 2X4X >X 'Y ;i G" + "V>X *Z M\\;Y 9X =p HZ?^ 'd Id$Y 9UAWX GWEVJVEW#a >W>W 7Y 1Y " + "8V KY 9e8T 0T?Z>T0X:[ KWIf GdLW HW4W MW ,W6W JV?X >XKW BW6W W#W2XDWDX!W=W JWCWCW!W4W#W4W" + " >W >| IWX GX>w?X *w Lw Lw Lw LX -X -X -X 5p9X-XCWDX)X%X1X%X1X%", + + // Second string: + "X1X%X1X%X Ia MX?W=X.X/X'X/X'X/X'X/X GX W GX5W MW>W " + "LVLuKU/VLuKU/V?\\?U/V?YX 8X DWBT ?~Q)~W)~R&~(V4V NW4W EWHW >WBW K~^ " + " $X ,X &VBV Kg \"VEc8WFZ=W /W !W +T 4~W 5V 1X4X >X (Y -] IW>X )Y M[9X 9" + "X >\\F\\ H[C` 'a Ca$Y 9UAV:WAU;WW )V $W 6i JX5X$X -X5X V2W LW 1W3W " + "MW6W MW ,W ,WLY 9W ,W7W7W=W6W!X4X NX5X$X5X MW .[ .W ,W6W KW>W FWEVJVEW#a >W?X 8Z 4\\ 8V K[" + " =iW" + "2W IWX X *X -X -X -X -X -X -X -X ,X*X-XCXEX)X%X1X%X1X%X1X" + "%X1X%X H_ LX@Wi >i >i >i >i >i3WBX ,V2W!V2W!V2W!V2W NW" + " ,W ,W ,W .W4W MW6W!X4X\"X4X\"X4X\"X4X\"X4X M~Y2X@VIW NW6W MW6W MW6W MW6W KW?X GX5X NW?X L" + "VLuKU/VLuKU/V@^@U/V@Y;U/V=X=U&V 2X?W 8X CWBT ?~R*~X)~Q%}(V4W W4W FXHX ?XDX K~^ " + " $X ,X 'WCV Ii &VEe:XEZ>W /W !W +T 4~W 5V 1X4X >X )Y )[ KW=X (Y N[9Y ;Y " + "?Z@Z I]Gb '^ =^$X 9U@V:WAUXIW CW6W!W!W3WCWCW!W=W JWCWCW\"W2W%W3X ?W >W" + "2W JW;X ~R+~Z*~P#{'V4W W4W FXHX ?XDX K~^ $X " + " ,X 'VBV Gi (VFg;WCZ?W /W !W +T 4~W 6W 1X4X >X *Y &Z LW=X (Y NZ7X ;X ?Z>Z ImNX " + "'[ 8\\%Y 9UAW:WAUX XIW CW6W!W!W3WCWCW!W=W JWCWCW\"W2W%W2W ?W >W2W JW:W =Y >X 0Y'" + "X0X?X?X-X0X%XCXCX,X%X2~a GV H~a HV I~b HV DX 3W@S ?r DV8V V&V 1XAW 9" + "X @WDT ?~S+~Z)}!y'W4W W4W FWFW >WDW J~^ *r ?V &VBV Eh *VEXIXX +Y $Z NWXHX DW6W!WW2W KX:X ?Y =X /X'X0Y@X@Y-X0X%YDXDY,X%X2~a " + "GV H~a HV I~b HV DX 3W@S ?r DV8V ;X DW;V DSFV'S >XFX ;V .S@VFW=S (V \"W6W " + ":UGU IX 0XFX -V;TLU MV0U!V;TLU6Y 0X:X KX:X KX:X KX:X KX:X KX:X JWV&V 1XBX :X ?WDT ?~S,~[({ x&W4W W" + "4W FWFX ?XFX JV \"q >V &VBV Af -VEXGX=W@ZBW .W !W +T 4~W 5f 8V 0X4X " + ">X ,Y \"Y W;X 'X NZ7X X -XDVJVDX0XAXGX)X%X.i AX%X.X>Z ,\\ ?X XGW DW6W!WW2W KW9X ?Y =X /X'X/X@X@X,X0X$YEXEY+X%X2~a GV H~a HV I~b HV DX " + "3W@S 6X 3V8V ;X DXWEW :V .TAVEW?T (V \"W6W :UGU IX /WEW .V;" + "TKU NV/U\"V;TKU7Y /X:X KX:X KX:X KX:X KX:X KX:X KXWDS >~T-~\\(y Mw&W4W W4W GXFX ?XFX JV " + " #r >V 'WCV X -Y Y!W;X 'Y Y5X =X" + " @Y8Y HgKX 'a Ca%X 8UAV8VAU=W8W NX4X%X *X+Y,X -X 0X(X+X/X'X -X -XI[ ?X -XDWLWDX0X@WG" + "X)X&Y.X 0X&Y.X=Y *[ @X XFX EW6W!WW2W KW8W @Y ] Jt It It It It It I~iBW ,|\"|\"|\"| NW ,W ,W ,W /W2W NW6W!W" + "2W\"W2W\"W2W\"W2W\"W2W M~Y2WCVEW NW6W MW6W MW6W MW6W IWCX EW3W LWCX IV=V=V.V$V.VFYKZFV.VFY" + "7V.V$V&V 0XCW ;Y =WFT >~T-~\\'w Ku%W4W W4W GXEW >WFW IV #q =V 6~X " + "JSN^ /VEWCW?W=ZDW .W !W :~W 5f 9V /X4X >X .Y MX\"W:X &X Y5X >Y @X6X FcJX &d Id" + "%X 8UAV8VAU>X8X X4X$X +X+X+X -X /X)X+X/X'X -X -XH[ @X -XCVLVCX0X@XHX(X'X-X /X'X-XXFX EW6W!WV-V%V-VGYIZHV-VGY7V-V%V%V " + "/WDX ;X ~T-~\\'v Is$W4W W4W GWDX ?XGW HV %r =V 6~X JSJ[ 0VEV" + "AV?WX ?X6X D`IX $d Ne#X 8UAV8" + "VBU=x X4X$X +X+X+X -X /X)X+X/X'X -X -XG[ AX -XCVLVCX0X?WHX(X'X-X /X'X-X;Y *Y @X WDW EW6W!WV>V,V&V,VIYGZIV,VIY6V,V&V&W /XEW N~X'VGT =~T-~\\" + "&u Ir#W4W NV4W HXDX ?XHX HV KX ,V 6~X JSHZ 2VDVAV?W;ZGW -W !W \"V " + "Lf :W .X6X =X 0Z LY#~ /X NX5X >X @X5Y AYFX !d >~X >d X 8UAV8VBU>z!X3X%X +X+X+X -X /X" + ")X+X/X'X -X -XF[ BX -XCWNWCX0X?XIX(X'X-X /X'X-X:X )Y AX XDX FW" + "6W!WV?W,V'W,VJYEZKW,VJY6W,V'W&W /XFX N~X'WHT =~T-~\\%s Gp\"W4W NV4V GXCW >WH" + "X HW LX ,V 6~X JSGY 3VDWAW@W:ZIW ,W !W \"V Lf :W .X6X =X 1Z JX#" + "~ /X NX5X ?Y @X4X .X Md A~X Ad LX 8UAV8VBU>z!X3X%X +X+X+X -X /X)X+X/X'X -X -XE[ CX -XB" + "VNVBX0X>WIX(X'X-X /X'X-X9X *Y AX Q.X $T>Z?T0W8W HW5W\"WWCX FW6W!WXFX >V ,SBVBWCS &V \"W6W :UGU *m 8XFX .VWIX(X'X/X'X/X'X/X'X/X'X KZMZ XHW6X-X" + "/X'X/X'X/X'X/X GX XIW GW LX " + " ;~X JSFX 3VDV?V@W9ZJW +V \"W !V V -X6X =X 2Z IX#~ /X NX5X ?X ?X4X .X Jd D~" + "X Dd IX 8UAV8VCV>z!X3X%Y ,X,Y+X -X /Y*X+X/X'X -X -XD[ DX -XBVNVBX0X>XJX(Y)X,X /Y)X,X9Y *X " + "AX XBW FW6W!WXJX(Y)X.Y)X.Y)X.Y)X.Y)X KZKZ!YJW6X,X/X'X/X'X/X'X/X GX |\"X3X$X ," + "X,X*X -X .X*X+X/X'X -X -XC[ EX -XA\\AX0X=WJX'X)X,X .X)X,X8X *X AX XBX GW6W!WW 9X =\\KW >SEWWJX FW LX <~X JSEX 6WCV?V@W7ZMW *W #W !V !W -X6" + "X =X 4Z GX#~ /X NX5X @X >X4X /X De J~X Je DX 8U@V:WDV>|\"X3X$X ,X-Y*X -X .X*X+X/X'X -X" + " -XB[ FX -XA\\AX0X=XKX'X*Y,X .X*Y,X8Y +X AX W WJW DW" + " MX .VCV :SDW 6VBV?V@W6b )W #W !V !V +X8X X4X /X Ad L~X Ld AX 8VAV:WDU=|\"X3X$Y -X-Y*X -X .Y+X+X/X'X -X -XA[ GX -XA\\AX0XWKVDVKW\"XLX 9WJW =Z #X" + " :V MX AUEVKVDU/X:Y IW5W#WX@W GW6W!W=Y=W2WDWDW W=W JWCWCW\"X4W#W4" + "W >W X4X 0X =d ~X" + " d LUAWX2X#X3X#X -X.Y)X -X -X+X+X/X'X -X -X@[ HX -X@Z@X0XW " + ",W7W7W=W6W W4W MX5W\"W5X MW BX FW ,W7X FWHW >WLVBVLW#YKX :WJW =Y !W :V MW @VHXJWHV-W:" + "Y IW5W#WY>W1WDWDW W=W JWCWCW\"X4W#W4W >W W MW7X MW7X MW7X MW7X EWJW AX5W GWJW AXCVCW%X0W%X0W%X0W%X0W\"V +WJX " + " ?X 2WLT 9bKQKb)gLQMh Mi =g MW4W MV6W IX@X ?XLX CW MX 0VBV :SDW " + "7VAV?V@X5_ (W #W !V \"W +X8X XL" + "V;VLX1Y?Y >X 9Z 2W %W )W EW7X JX5W\"X -W5X X )W 0X7Y MW6W MW ,W ,WFY ?W ,W7W7W=W6W W4" + "W MX5W\"W5X MW AW FW ,W7X FXJX =WMVBVMW#YJY ;WKX >Y W :V MW ?dId,W;Z IW5W#W=W DW4W!W" + " )W6W DVKW >X>W HW6W W>Y>W1WDWDW W=W JWCWDX\"X4W#W4W >W ;V7W LX2X LY 4X *X1X%]JXJ]'X0X Hj L" + "Y-Y%Y IV JY LYKVKY MY5Y MYJVJY $X 2XBS 6X 2q 9X :V #\\ 7TDgFT /XFX EV )TFV>VJT #" + "V \"W6W :UGU +XFX *V=TCU%V1V!V=TCU=X ,X1W$X1W$X1W$X1W$X1W$X2X%X7X LY .X -X -X -" + "X -X -X -X -X ,X.Y*X;XMX&Y-Y+Y-Y+Y-Y+Y-Y+Y-Y ZAZ$_3Y*X1X%X1X%X1X%X1X FX W3W$W7X MW7X M" + "W7X MW7X MW7X MW7X MW7Z NX -X -X -X -X +W ,W ,W ,W .W4W MW6W W4W W4W W4W W4W W4W 5Z IWMV=W" + " MW7X MW7X MW7X MW7X EWKX AX5W GWKX @XDVDX$X2X$X2X$X2X$X2X\"V +XKW ?X 1WMT 7`JQKa" + "'fLQLf Kg W >WLW BX NY 1VBV :SDW 8V@V?V?W4] &V $W " + " V \"V *Y:Y YGW>X0X$X4Y\"Y /X/Y(X -X" + " ,Y-X+X/X'X -X -X>[ JX -X@Z@X0X;XMX%Y/Y*X ,Y/Y*X6Y -X AX ;Y3Y IXLX =WLV;VLW0X=Y ?X :Z 1W $" + "V )W EW8Y JY7X\"X -X7Y X )W 0X7Y MW6W MW ,W ,WEY @W ,W7W7W=W6W X6X MY7X\"X7Y MW AW FW" + " ,X8X EWJW Y NW :V MW >bGc,W;[ JW6X#W=W DX6X!W )W6W DVLX >W=X IW7" + "X W>Y>W1XEWEX W=W IWDWDW!Y6X#X6X >W ;W8W MX0X MY 4X *Y3Y$^LXL^&X0X Ff IY/Y#Y JV KY JYLVL" + "Y KY7Y KYKVKY #X 2XBS 6X 3t ;X :V ![ 8TCfFT .XFX FV )UGV>WKT MW7X :UGU " + " ,XFX *V=TBU&V2W!V=TBU=X -X0X&X0X&X0X&X0X&X0X&X0W%X7X KY /X -X -X -X -X -X -X -X ,X/Y)" + "X;XMX%Y/Y)Y/Y)Y/Y)Y/Y)Y/Y Z?Z$^4Y)Y3Y%Y3Y%Y3Y%Y3Y FX XEVFY\"X5Y\"X5Y\"X5Y\"X5Y!V *WLX @X /WNT 7`JQJ_&eKQKe Je :d KW4W MW8" + "W HW>X ?XNX AX Y 1VCV 9SDW 9V?V?V?X4\\ &W %W V \"V )X:X ;X 9Z" + " CX 4X (Y KW7X AX W BW6W W )W6W DWMX ?X=X IX8X W?[?W0WEWEW NW=W " + "IWDWDW!Y6W!W6W =W ;W8W MX0X NY 3X )Y5Y\"z%X0X C` FY/Y\"X JV KX HYMVMY IX7X IYLVLY \"X 1XCS" + " 6X 4v X ?XNX AY " + " Y4P VBV 9SDW 9V?V?V?Y4Z %W %W V #W )X:X ;X :Z CY 4X (Y KX9Y AX ;X6X 1" + "Y 1e /e @U@XB[JXW BX8X W )W6W CVNX >W;W IX8X X@[@X0XFWEW NW=W IWDWEX!Z8X!X8X =W :W:W LX" + "0X Y 2X (Y7Y Nv#X0X ?X AY1Y V IV JV FYNVNY GV5V GYMVMY !X 1XCS 6X 5x =X :V MZ 8T?ZBT" + " *VDV FV 'T&T KX8X :UGU ,VDV )VWNX @Y !Z6Q VBV K" + "P>SEW 9V>WAW>X3Z &W %W V #V 'XU?" + "ZH^MZ\\ JX8X\"W?W AX" + "9Y X *W6W CVNX ?X;X JX9Y NW@[@W/XFWFX NW=W IXEWEX!Z8X!X8W ;W ;W;X MX.X\"Y 1X 'Y9Y Lt\"X0X ?X" + " @Y3Y MT HV IT Dj ET3T EYNVNY X 0XDS 6X 6ZM`LY >X :V LY 7T)T (UCU ET(T " + " JX9Y :UGU ,UCU )V;m.V3V NV;mCY7P HX.X(X.X(X.X(X.X(X.X(X.X(X6X IY.R&X -X -X -X -" + "X -X -X -X ,X2Z'X9a$Z3Y&Z3Y&Z3Y&Z3Y&Z3Y!Z9Z&Z3Y&Y5Y#Y5Y#Y5Y#Y5Y EX ` >Y !Y8S MX +VBV KQ?SFX 9V=VAV=Y6] &V &W" + " NV BX 1X 1V 'Y>Y :X X:W JY;Z NXB]BX.XGWGX MW=W HXFWFX [:X NX:X ;W :WX HXX 9X =Z 1P2Z 3X GQ5Z GX=Y @X 9Y:Y KP8Z GX -X 4^ 1^ +X 5U?gM_9W,W%X7Z L[4U&X6]%X -X )" + "[2X+X/X'X -X -X9[ X -X&X0X8`\"Z7Z'X )Z7Z'X3X%T2Y ?X 9Z9Z E` :_9_3Y7Y BX >Z -W #W +W D" + "X=\\ J\\=Y LY7P HY=\\ LY5R JW -Y?] MW6W MW ,W ,W@Y EW ,W7W7W=W6W MYX LX.X#Y 0X %Y=Z Gl MX0X ?X ?Z7Z JP FV GP @f AP/P Ah MX " + "/YFSDP BX 8ZFVEY @X :V JX 7V.U %SAS CU.U HZ" + "\\=Y B^ 7r Gr Gr Gr Gr KV (_ BX )Y S 8RBSCR <] 2\\ GW4W KZBZ HX;W >_ <[ " + " $[=U MX ,VBV JUCSHY :V;WCW<[Z 0R5Z 2X GT9[ G" + "Y?Z AY 9[>[ KR;Z FX -X 1[ 1[ (X 5V>dL^9X,X&X9[ J[7W&X9_$X -X (\\6Z+X/X'X -X -X8[!X -X&X0X" + "8`![;[&X ([;[&X3Y&W7[ ?X 8Z;Z D` :^7^3X5Y CX ?Z ,W #W +W DY?] J]?Y KZ:R GY?] LZ8T JW" + " -ZA^ MW6W MW ,W ,W?Y FW ,W7W7W=W6W LY>Y J]?Y KY?] MW /T9X DX ,Y@] CWNW 9]>]'Y@Y =^ AY IW" + " :V MW HYCXNW L\\>Y VAX >Y>Y LY ,W6W B] >X9X K[>[ MXDVMVDX,YIWIY LW=W GYHWHY N]>Y LY" + ">Y :X :X@X LX,X%Y /X $ZAZ Ch KX0X ?X >[;[ ?V 6d >f LX /[HSFR BX 9Z3Y AX :V IX 7" + "V1V #R@R BU0U G[>[ :UGU ,R@R 'V(U)V6W LV(UU IX,X*X,X*X,X*X,X*X,X" + "*X,X*W4X G[7W&X -X -X -X -X -X -X -X ,X9_%X8`![;[![;[![;[![;[![;[\"Z3Z(];[\"Z;Z NZ;Z NZ;Z NZ" + ";Z CX Y JW6W LY>Y IY>Y IY>Y IY>Y IY>Y 2Z FY>Y HY@] KY@] KY@] KY@] B^ >]?Y A^ 6o Do Do Do " + "Do IV (_ CX (Y S (S ,[ 0[ GW4W J\\H\\ GW:W >^ :\\ %[@W MX ,VBV JXFS" + "IZ :V:WEW:\\@e (V 'V MV BX 1X 2V $ZDZ 8X ?Z /U;] 2X GV=\\ EZC[ @X 7[@[ JT?[ EX -X /Y " + " 1Y &X 5V=bK\\7X,X&X<^ I]=Z&X=b#X -X ']:\\+X/X'X -X -X7[\"X -X&X0X7_ \\?\\%X '\\?\\%X2X&Z<\\ >X 7[" + "?[ B^ 9^7^4Y5Y CX ?Y +W \"V +W DZB_ J_CZ I[>T G[C_ K[=W JW ,\\GXNW MW6W MW ,W ,W>Y GW " + ",W7W7W=W6W KZBZ I_CZ J[C_ MW /W>Z DZ .ZB^ C` 8\\>\\&X>Y =\\ AY HW :V MW GZFYNY N]AZ N" + "WCX _ FX0X ?X =\\?\\ >V 5b W;[>T F[=W J[=W J[=W J[=W LW ,W ,W ,W *ZBZ IW6W KZBZ GZBZ " + "GZBZ GZBZ GZBZ 1Z F[BZ GZB^ KZB^ KZB^ KZB^ A\\ =_CZ ?\\ 3l Al Al Al Al HV (^ BX (X " + " NS (S ,Z .Y FW4W In GX:X ?^ 9_ (]FZ MX ,VBV J[ISL\\ :V9XGX9^Fi )W )W " + " MV BX 1X 3W #[H[ Et Mx MZC_ 1X GZD^ C[G\\ @Y 7^F] IXF] DX -X ,V 1V #X 4V<^IY5X*X'y G" + "_D^&{!y NX &`B`+X/X'X -X -X6[#w LX&X0X7_ N^E^$X &^E^$X2Y'^C^ =X 7^E^ B^ 8]7]4Y3Y DX @~U&W " + "\"W ,W C\\HYNW JWNXG\\ H]EX F\\GXNW J]D[ JW +kMW MW6W MW ,W ,W=Y HW ,W7W7W=W6W K]H] IWNX" + "G\\ I\\GXNW MW /[E\\ Be 9[GXNW B^ 7\\>\\'XP @W8W 3~W :_GaKP" + " @UGU ,P>P 'V&U+V6V KV&U;]GZ JX*X,X*X,X*X,X*X,X*X,Y,Y,X4y7_D^&y Ny Ny Ny NX -X -X -" + "X ,{\"X7_ N^E^ L^E^ L^E^ L^E^ L^E^ MV/V(dE^ N^E^ L^E^ L^E^ L^E^ BX \\ Av 6W :V MW FkL]$u LXGX 9p Hp EW6W A[ ?X6X LpN\\#hKh)s JW<] Lu LWNm Hp 6` Bl K~" + "W'x MX 1iEi HX CX0X ?X ;u X :V HW 3X=X )X\\ " + " /c 8c 8c 8c 8c CV '\\ ?T %W U *T *W ,V DW4W Gj EW8W >\\ 5~P In LX " + " -VBV Is 9V7g6qJZ *V )V LV BX 1X 3V !l Dt Mx Mt /X Gr ?m ?X 4r Hm BX -X &P 1P LX" + " 3V 3X*X'w Cv%x My NX #x(X/X'X -X -X4[%w LX&X0X5] Ls\"X $s\"X1Y(w ;X 5s ?\\ 7\\5\\5Y1Y EX @~U&W" + " !V ,W BjLW JWMj Dn DjMW Hr JW )hLW MW6W MW ,W ,W;Y JW ,W7W7W=W6W In GWMj EjMW MW /p" + " ?d 8iLW B^ 6Z<[)Y:Y >Z @v 6W :V MW EiK]$t JYLZ 7n Fo EW6W A[ ?X5W LWNfM\\\"gKg'q IW<" + "] Ks KWMk Fn 5` Aj J~W'x MX 1iEi HX CX0X ?X :s ;V 2\\ 6^ HX +n Lz MR,R =X :V HW " + "1ZEZ %ZDZ 0~W :WNfM\\ @UGU !V%U,V6i/V%U9n JX*X,X*X,X*X,X*X,X*X,X*X-" + "X3y5v%y Ny Ny Ny NX -X -X -X ,x NX5] Ls Hs Hs Hs Hs IR+R(WMs Js Hs Hs Hs @X R $V NU *U *U *U DW4W Fh DW8X ?\\ " + "4~ Hl KX -VBV Hp 8V5e4nGZ +W +W LV BX 1X 3V j Ct Mx Mr -X Gq =j " + ">Y 3p Gl AX -X 2X 3W 5X(X(u ?s$v Ky NX \"v'X/X'X -X -X3[&w LX&X0X5] Kq!X #p X0X(v :X " + "4p =\\ 7\\5\\6Y/Y FX @~U&W !V ,W AhKW JWLh Bm ChLW Gq JW (eJW MW6W MW ,W ,W:Y KW ,W7W7W" + "=W6W Hl FWLh ChLW MW /o >d 7gKW A\\ 5ZZ @v 6W :V MW DgI\\$s He 5l Dn EW6W @Y " + ">W4X MWMeM\\!eIe%o HW<] Jq JWLi Dk 2_ @h J~Y(x MX 1iEi HX CX0X ?X 9q :V 1Z 4\\ GX *m" + " Lz LP*P X X ?v 6W :V MW CeG[$r Fc " + "2h Am EW6W @Y ?X3W MWMdL\\ cGc#m GW;\\ Hm HWKg Ah /] ?f I~Y(x MX 1iEi HX CX0X ?X 7m 8V 0" + "X 2Z FX (j Kz AX :V HW -g Lh ,~W :WMdL\\ @UGU \"V$U-V5i0V$" + "U7i HX(X.X(X.X(X.X(X.X(X.X(X/X2y1o\"y Ny Ny Ny NX -X -X -X ,t JX4\\ Im Bm Bm Bm Bm %VHm Dm " + "Bm Bm Bm =X eJW GeJW GeJW GeJW ?X ;WJe 9X MW &Z =U W ,W *" + "R &Q BW4W B` AW6W >[ /y Dd GX -VCV Af 5V2a.gBZ ,W -W KV CX 0X 4V " + " Kd @t Mx Km *X Ek 6d ;X .h Bh >X .X 1X 1W 7X(X(q 7j Np Ey NX Mm\"X/X'X -X -X1[(w LX" + "&X0X4\\ Gi LX Ni LX/X$n 7X 0i 9Z 5[5[6Y-Y GX @~U&W V -W >cIW JWIb k EW6W @Y ?W2W MWK`I[ NaEa i EW;\\ Fi FWIc >e ,\\ =b G~Y(x MX 1iEi HX CX0" + "X ?X 5i 6V /V 0X EX &f Iz AX :V /P;W *c Gb )~W :WK`I[ @UGU " + " #V#U.V4i1V#U6f FX(X.X(X.X(X.X(X.X(X.X(X/X2y/j Ny Ny Ny Ny NX -X -X -X ,p FX4\\ Gi >i " + ">i >i >i $VEi @i >i >i >i ;X i0g ;i >i >i >i HW " + ",W ,W ,W #d BW6W Ef ;f ;f ;f ;f JUJe ;cIW FcIW FcIW FcIW ?X ;WIb 7X MW %Y " + " =T X -X )P %P AW4W ?Z >W6X ?Z ,w B` EX .VBV <] 1V0]*b?[ -W -W" + " KV CW /X 4V I` >t Mx Hg 'X Bf 2` :X +d =b ;X .W 0X 1X 9X&X)m 0d Kj ?y NX Jg " + "NX/X'X -X -X0[)w LX&X0X3[ Dc IX Kf LX/Y!g 4X .e 7Z 5Z3Z7Y+Y HX @~U&W V -W =`GW JWG" + "^ 7b 9^GW Ad CW \"YDW MW6W MW ,W ,W7Y NW ,W7W7W=W6W B` @WG^ 9^GW MW (c 2] 3_GW @Z 3X:X*Y4Y " + "@X ?v 6W :V MW ?_AW$WKb @^ +` 9g CW6W ?W ?X2X NWJ^GY K]B^ Ke CW:[ Dd CWG_ 9` 'Y ;^ " + "F~[)x MX 1iEi HX CX0X ?X 2c 3V .T .V DX $b Gz AX :V /R>X &[ ?Z %~W " + " :WJ^GY ?UGU #V +V +V 1b EX&X0X&X0X&X0X&X0X&X0Y'X1X1y,d Ky Ny Ny Ny NX -X -X " + "-X ,j @X3[ Dc 8c 8c 8c 8c !VBc ;e :e :e :e 9X Y BS .V,W#Z ;V -V " + " 7W ;W EX ;\\ 6] +Z 5\\ 5Z WGXBU FX=X E` \"W >] @WDY 3Z " + "2X C[ >T :[ KV /TAY EWGXBU =UGU" + " BT 6V +V +V ,Y ?\\ +[ 0[ 0[ 0[ 0[ KT=[ 2[ 0[ 0[" + " 0[ 7Z ;Y .Y .Y .Y .Y .Y -Y2\\\"Z /\\ 1\\ 1\\ 1\\ CZ 3Z /Z /Z /Z /Z FVCZ 1Y .Y ." + "Y .Y ,W :WDX 2W LW 7R #S" + " >W /W 8W :V \"W 5X )X " + " &Z CW NV .W :W %W @W :W " + " -X -W :V MW LW FW ?W >W NW 0W =W " + " 3S GV /XGZ DW HUGU AT %" + "T 'R JT " + " #T (X :W NX LW " + " 7S =V /V 7W :V \"W 4X'Q " + "&Y %Z DW NV .W :W %W @W :W " + " -W ,W :V MW LW FW ?W >W NW 0W =W " + " 3S GV /j CW HUGU @T " + " %T 'P HT " + " \"Q 'W 9W NW KW " + " 7S =W 1W 7V :W \"V 2X)R " + " &X #Z EW NW /W :W %W " + " @W :W -W ,X ;V NX LW FW ?W >W NW 0W =W " + " 3S GV /j CW HUGU @U " + " &U U " + " \"P 'W 9W NW KV " + " 6S W NW 0W =W " + " 3S GV /h AW HUGU ?T " + " %T NT " + " )X 9W X KV " + " 6S W NW 0W =W" + " 3S GV .f @W HUGU ?" + "U &U " + " U *W 8W W JV " + " 6S ;V 3V 6V :W \"V " + " .[5[ *Y Z Ha (W :a W NW 0W" + " =W 3S GV +a >W HUGU " + " >T %T " + " NT +X 8W !X (VIV " + " 6S :V 5V 5U 9W \"" + "U +\\;] )X MZ Ia (W :a " + " =Y %W ?W :W /W )[ ?V #[ KW FW ?W >W N" + "W 0W =W 3S GV 'Z ;W " + " HUGU >U &U " + " U ,W 7W !W 'VIV " + " 6S :V 6W 6V " + " 4V *_C` )Y LZ Ja :a " + " (P7Y $W ?W :W 0X (b GV +b JW FW ?W >W " + " NW 0W =W 3S GV " + "7W HUGU >U &U " + " U -X 7W \"X 'VJW " + " 6S 9V 7V 5U " + " 3U 'x (Z KZ Ka :a " + " (R:Z $W ?W :W 0X (b GV +b JW FW ?W >W" + " NW 0W =W 3S GV " + " 7W #U &U " + " U -X 7W \"X &UJW " + " 6S 9W 9W " + " Bu ([ IZ La :a " + " (T>[ $X ?W :W 1X &a GV +a IW FW ?W >W N" + "W 0W =W 3S GV 7W " + " $V 'V " + " !V .X 6W #X %VLW " + " 5S " + " 2p -a 8XE] %Y" + " >W :W 3Z $_ GV +_ GW FW ?W >W NW 0W =W " + " 3S GV 7W /QGW " + " 2QGW ,QG" + "W 0Z 6W %Z %a " + " 5S 0l " + " +a 8p +_ " + " >W :W ;a !] GV +] EW FW ?W >W NW 0W =W " + " 3S GV 7W /` " + " 1` +` " + " 7a 5W -a #` " + " >e '`" + " 7o *^ =W :W " + " ;` KY GV +Y AW FW ?W >W NW 0W =W " + " 3S GV 7W /` 1` " + " +` " + " 7` 4W -` \"_ " + " 8\\ #_ " + " \"} 3n )^ =W :W ;` 9V " + " BW FW ?W >W NW 0W =W 'V " + " 7W /_ 0_ " + " *_ 6` 4W -` " + " !] " + " -] " + " } 3l '] W NW 0W =W 'V " + " 7W /^ /^ " + " )^ 5_ 3W -_ N[ " + " " + " ,[ M} 2j " + " &\\ ;W :W ;^ 7V BW FW ?W >W NW 0W =W" + " 7W -Y " + " *Y $Y " + " 2^ 2W -^ LX " + " " + " *X J} /d #Z 9W :" + "W ;\\ 5V BW FW ?W >W NW 0W =W " + " 7W " + " " + " /\\ 0W HT " + " " + " I} *[ NW 6W :W ;Z 3V " + " BW FW ?W >W NW 0W =W " + " 7W " + " /Z .W " + " " + " =} " + " " + " " + " " + " D" }; + + // Define a 40x38 'danger' color logo (used by cimg::dialog()). + static const unsigned char logo40x38[4576] = { + 177,200,200,200,3,123,123,0,36,200,200,200,1,123,123,0,2,255,255,0,1,189,189,189,1,0,0,0,34,200,200,200, + 1,123,123,0,4,255,255,0,1,189,189,189,1,0,0,0,1,123,123,123,32,200,200,200,1,123,123,0,5,255,255,0,1,0,0, + 0,2,123,123,123,30,200,200,200,1,123,123,0,6,255,255,0,1,189,189,189,1,0,0,0,2,123,123,123,29,200,200,200, + 1,123,123,0,7,255,255,0,1,0,0,0,2,123,123,123,28,200,200,200,1,123,123,0,8,255,255,0,1,189,189,189,1,0,0,0, + 2,123,123,123,27,200,200,200,1,123,123,0,9,255,255,0,1,0,0,0,2,123,123,123,26,200,200,200,1,123,123,0,10,255, + 255,0,1,189,189,189,1,0,0,0,2,123,123,123,25,200,200,200,1,123,123,0,3,255,255,0,1,189,189,189,3,0,0,0,1,189, + 189,189,3,255,255,0,1,0,0,0,2,123,123,123,24,200,200,200,1,123,123,0,4,255,255,0,5,0,0,0,3,255,255,0,1,189, + 189,189,1,0,0,0,2,123,123,123,23,200,200,200,1,123,123,0,4,255,255,0,5,0,0,0,4,255,255,0,1,0,0,0,2,123,123,123, + 22,200,200,200,1,123,123,0,5,255,255,0,5,0,0,0,4,255,255,0,1,189,189,189,1,0,0,0,2,123,123,123,21,200,200,200, + 1,123,123,0,5,255,255,0,5,0,0,0,5,255,255,0,1,0,0,0,2,123,123,123,20,200,200,200,1,123,123,0,6,255,255,0,5,0,0, + 0,5,255,255,0,1,189,189,189,1,0,0,0,2,123,123,123,19,200,200,200,1,123,123,0,6,255,255,0,1,123,123,0,3,0,0,0,1, + 123,123,0,6,255,255,0,1,0,0,0,2,123,123,123,18,200,200,200,1,123,123,0,7,255,255,0,1,189,189,189,3,0,0,0,1,189, + 189,189,6,255,255,0,1,189,189,189,1,0,0,0,2,123,123,123,17,200,200,200,1,123,123,0,8,255,255,0,3,0,0,0,8,255,255, + 0,1,0,0,0,2,123,123,123,16,200,200,200,1,123,123,0,9,255,255,0,1,123,123,0,1,0,0,0,1,123,123,0,8,255,255,0,1,189, + 189,189,1,0,0,0,2,123,123,123,15,200,200,200,1,123,123,0,9,255,255,0,1,189,189,189,1,0,0,0,1,189,189,189,9,255, + 255,0,1,0,0,0,2,123,123,123,14,200,200,200,1,123,123,0,11,255,255,0,1,0,0,0,10,255,255,0,1,189,189,189,1,0,0,0,2, + 123,123,123,13,200,200,200,1,123,123,0,23,255,255,0,1,0,0,0,2,123,123,123,12,200,200,200,1,123,123,0,11,255,255,0, + 1,189,189,189,2,0,0,0,1,189,189,189,9,255,255,0,1,189,189,189,1,0,0,0,2,123,123,123,11,200,200,200,1,123,123,0,11, + 255,255,0,4,0,0,0,10,255,255,0,1,0,0,0,2,123,123,123,10,200,200,200,1,123,123,0,12,255,255,0,4,0,0,0,10,255,255,0, + 1,189,189,189,1,0,0,0,2,123,123,123,9,200,200,200,1,123,123,0,12,255,255,0,1,189,189,189,2,0,0,0,1,189,189,189,11, + 255,255,0,1,0,0,0,2,123,123,123,9,200,200,200,1,123,123,0,27,255,255,0,1,0,0,0,3,123,123,123,8,200,200,200,1,123, + 123,0,26,255,255,0,1,189,189,189,1,0,0,0,3,123,123,123,9,200,200,200,1,123,123,0,24,255,255,0,1,189,189,189,1,0,0, + 0,4,123,123,123,10,200,200,200,1,123,123,0,24,0,0,0,5,123,123,123,12,200,200,200,27,123,123,123,14,200,200,200,25, + 123,123,123,86,200,200,200,91,49,124,118,124,71,32,124,95,49,56,114,52,82,121,0 }; + + //! Get/set default output stream for the \CImg library messages. + /** + \param file Desired output stream. Set to \c 0 to get the currently used output stream only. + \return Currently used output stream. + **/ + inline std::FILE* output(std::FILE *file) { + cimg::mutex(1); + static std::FILE *res = cimg::_stderr(); + if (file) res = file; + cimg::mutex(1,0); + return res; + } + + // Return number of available CPU cores. + inline unsigned int nb_cpus() { + unsigned int res = 1; +#if cimg_OS==2 + SYSTEM_INFO sysinfo; + GetSystemInfo(&sysinfo); + res = (unsigned int)sysinfo.dwNumberOfProcessors; +#elif cimg_OS == 1 + res = (unsigned int)sysconf(_SC_NPROCESSORS_ONLN); +#endif + return res?res:1U; + } + + // Lock/unlock mutex for CImg multi-thread programming. + inline int mutex(const unsigned int n, const int lock_mode) { + switch (lock_mode) { + case 0 : cimg::Mutex_attr().unlock(n); return 0; + case 1 : cimg::Mutex_attr().lock(n); return 0; + default : return cimg::Mutex_attr().trylock(n); + } + } + + //! Display a warning message on the default output stream. + /** + \param format C-string containing the format of the message, as with std::printf(). + \note If configuration macro \c cimg_strict_warnings is set, this function throws a + \c CImgWarningException instead. + \warning As the first argument is a format string, it is highly recommended to write + \code + cimg::warn("%s",warning_message); + \endcode + instead of + \code + cimg::warn(warning_message); + \endcode + if \c warning_message can be arbitrary, to prevent nasty memory access. + **/ + inline void warn(const char *const format, ...) { + if (cimg::exception_mode()>=1) { + char *const message = new char[16384]; + std::va_list ap; + va_start(ap,format); + cimg_vsnprintf(message,16384,format,ap); + va_end(ap); +#ifdef cimg_strict_warnings + throw CImgWarningException(message); +#else + std::fprintf(cimg::output(),"\n%s[CImg] *** Warning ***%s%s\n",cimg::t_red,cimg::t_normal,message); +#endif + delete[] message; + } + } + + // Execute an external system command. + /** + \param command C-string containing the command line to execute. + \param module_name Module name. + \return Status value of the executed command, whose meaning is OS-dependent. + \note This function is similar to std::system() + but it does not open an extra console windows + on Windows-based systems. + **/ + inline int system(const char *const command, const char *const module_name=0) { + cimg::unused(module_name); +#ifdef cimg_no_system_calls + return -1; +#else +#if cimg_OS==1 + const unsigned int l = (unsigned int)std::strlen(command); + if (l) { + char *const ncommand = new char[l + 16]; + std::strncpy(ncommand,command,l); + std::strcpy(ncommand + l," 2> /dev/null"); // Make command silent. + const int out_val = std::system(ncommand); + delete[] ncommand; + return out_val; + } else return -1; +#elif cimg_OS==2 + PROCESS_INFORMATION pi; + STARTUPINFO si; + std::memset(&pi,0,sizeof(PROCESS_INFORMATION)); + std::memset(&si,0,sizeof(STARTUPINFO)); + GetStartupInfo(&si); + si.cb = sizeof(si); + si.wShowWindow = SW_HIDE; + si.dwFlags |= SW_HIDE | STARTF_USESHOWWINDOW; + const BOOL res = CreateProcess((LPCTSTR)module_name,(LPTSTR)command,0,0,FALSE,0,0,0,&si,&pi); + if (res) { + WaitForSingleObject(pi.hProcess,INFINITE); + CloseHandle(pi.hThread); + CloseHandle(pi.hProcess); + return 0; + } else return std::system(command); +#else + return std::system(command); +#endif +#endif + } + + //! Return a reference to a temporary variable of type T. + template + inline T& temporary(const T&) { + static T temp; + return temp; + } + + //! Exchange values of variables \c a and \c b. + template + inline void swap(T& a, T& b) { T t = a; a = b; b = t; } + + //! Exchange values of variables (\c a1,\c a2) and (\c b1,\c b2). + template + inline void swap(T1& a1, T1& b1, T2& a2, T2& b2) { + cimg::swap(a1,b1); cimg::swap(a2,b2); + } + + //! Exchange values of variables (\c a1,\c a2,\c a3) and (\c b1,\c b2,\c b3). + template + inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3) { + cimg::swap(a1,b1,a2,b2); cimg::swap(a3,b3); + } + + //! Exchange values of variables (\c a1,\c a2,...,\c a4) and (\c b1,\c b2,...,\c b4). + template + inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4) { + cimg::swap(a1,b1,a2,b2,a3,b3); cimg::swap(a4,b4); + } + + //! Exchange values of variables (\c a1,\c a2,...,\c a5) and (\c b1,\c b2,...,\c b5). + template + inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4, T5& a5, T5& b5) { + cimg::swap(a1,b1,a2,b2,a3,b3,a4,b4); cimg::swap(a5,b5); + } + + //! Exchange values of variables (\c a1,\c a2,...,\c a6) and (\c b1,\c b2,...,\c b6). + template + inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4, T5& a5, T5& b5, T6& a6, T6& b6) { + cimg::swap(a1,b1,a2,b2,a3,b3,a4,b4,a5,b5); cimg::swap(a6,b6); + } + + //! Exchange values of variables (\c a1,\c a2,...,\c a7) and (\c b1,\c b2,...,\c b7). + template + inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4, T5& a5, T5& b5, T6& a6, T6& b6, + T7& a7, T7& b7) { + cimg::swap(a1,b1,a2,b2,a3,b3,a4,b4,a5,b5,a6,b6); cimg::swap(a7,b7); + } + + //! Exchange values of variables (\c a1,\c a2,...,\c a8) and (\c b1,\c b2,...,\c b8). + template + inline void swap(T1& a1, T1& b1, T2& a2, T2& b2, T3& a3, T3& b3, T4& a4, T4& b4, T5& a5, T5& b5, T6& a6, T6& b6, + T7& a7, T7& b7, T8& a8, T8& b8) { + cimg::swap(a1,b1,a2,b2,a3,b3,a4,b4,a5,b5,a6,b6,a7,b7); cimg::swap(a8,b8); + } + + //! Return the endianness of the current architecture. + /** + \return \c false for Little Endian or \c true for Big Endian. + **/ + inline bool endianness() { + const int x = 1; + return ((unsigned char*)&x)[0]?false:true; + } + + //! Reverse endianness of all elements in a memory buffer. + /** + \param[in,out] buffer Memory buffer whose endianness must be reversed. + \param size Number of buffer elements to reverse. + **/ + template + inline void invert_endianness(T* const buffer, const cimg_ulong size) { + if (size) switch (sizeof(T)) { + case 1 : break; + case 2 : { for (unsigned short *ptr = (unsigned short*)buffer + size; ptr>(unsigned short*)buffer; ) { + const unsigned short val = *(--ptr); + *ptr = (unsigned short)((val>>8)|((val<<8))); + } + } break; + case 4 : { for (unsigned int *ptr = (unsigned int*)buffer + size; ptr>(unsigned int*)buffer; ) { + const unsigned int val = *(--ptr); + *ptr = (val>>24)|((val>>8)&0xff00)|((val<<8)&0xff0000)|(val<<24); + } + } break; + default : { for (T* ptr = buffer + size; ptr>buffer; ) { + unsigned char *pb = (unsigned char*)(--ptr), *pe = pb + sizeof(T); + for (int i = 0; i<(int)sizeof(T)/2; ++i) swap(*(pb++),*(--pe)); + } + } + } + } + + //! Reverse endianness of a single variable. + /** + \param[in,out] a Variable to reverse. + \return Reference to reversed variable. + **/ + template + inline T& invert_endianness(T& a) { + invert_endianness(&a,1); + return a; + } + + // Conversion functions to get more precision when trying to store unsigned ints values as floats. + inline unsigned int float2uint(const float f) { + int tmp = 0; + std::memcpy(&tmp,&f,sizeof(float)); + if (tmp>=0) return (unsigned int)f; + unsigned int u; + // use memcpy instead of assignment to avoid undesired optimizations by C++-compiler. + std::memcpy(&u,&f,sizeof(float)); + return ((u)<<1)>>1; // set sign bit to 0. + } + + inline float uint2float(const unsigned int u) { + if (u<(1U<<19)) return (float)u; // Consider safe storage of unsigned int as floats until 19bits (i.e 524287). + float f; + const unsigned int v = u|(1U<<(8*sizeof(unsigned int)-1)); // set sign bit to 1. + // use memcpy instead of simple assignment to avoid undesired optimizations by C++-compiler. + std::memcpy(&f,&v,sizeof(float)); + return f; + } + + //! Return the value of a system timer, with a millisecond precision. + /** + \note The timer does not necessarily starts from \c 0. + **/ + inline cimg_ulong time() { +#if cimg_OS==1 + struct timeval st_time; + gettimeofday(&st_time,0); + return (cimg_ulong)(st_time.tv_usec/1000 + st_time.tv_sec*1000); +#elif cimg_OS==2 + SYSTEMTIME st_time; + GetLocalTime(&st_time); + return (cimg_ulong)(st_time.wMilliseconds + 1000*(st_time.wSecond + 60*(st_time.wMinute + 60*st_time.wHour))); +#else + return 0; +#endif + } + + // Implement a tic/toc mechanism to display elapsed time of algorithms. + inline cimg_ulong tictoc(const bool is_tic); + + //! Start tic/toc timer for time measurement between code instructions. + /** + \return Current value of the timer (same value as time()). + **/ + inline cimg_ulong tic() { + return cimg::tictoc(true); + } + + //! End tic/toc timer and displays elapsed time from last call to tic(). + /** + \return Time elapsed (in ms) since last call to tic(). + **/ + inline cimg_ulong toc() { + return cimg::tictoc(false); + } + + //! Sleep for a given numbers of milliseconds. + /** + \param milliseconds Number of milliseconds to wait for. + \note This function frees the CPU ressources during the sleeping time. + It can be used to temporize your program properly, without wasting CPU time. + **/ + inline void sleep(const unsigned int milliseconds) { +#if cimg_OS==1 + struct timespec tv; + tv.tv_sec = milliseconds/1000; + tv.tv_nsec = (milliseconds%1000)*1000000; + nanosleep(&tv,0); +#elif cimg_OS==2 + Sleep(milliseconds); +#else + cimg::unused(milliseconds); +#endif + } + + inline unsigned int _wait(const unsigned int milliseconds, cimg_ulong& timer) { + if (!timer) timer = cimg::time(); + const cimg_ulong current_time = cimg::time(); + if (current_time>=timer + milliseconds) { timer = current_time; return 0; } + const unsigned int time_diff = (unsigned int)(timer + milliseconds - current_time); + timer = current_time + time_diff; + cimg::sleep(time_diff); + return time_diff; + } + + //! Wait for a given number of milliseconds since the last call to wait(). + /** + \param milliseconds Number of milliseconds to wait for. + \return Number of milliseconds elapsed since the last call to wait(). + \note Same as sleep() with a waiting time computed with regard to the last call + of wait(). It may be used to temporize your program properly, without wasting CPU time. + **/ + inline cimg_long wait(const unsigned int milliseconds) { + cimg::mutex(3); + static cimg_ulong timer = 0; + if (!timer) timer = cimg::time(); + cimg::mutex(3,0); + return _wait(milliseconds,timer); + } + + // Random number generators. + // CImg may use its own Random Number Generator (RNG) if configuration macro 'cimg_use_rng' is set. + // Use it for instance when you have to deal with concurrent threads trying to call std::srand() + // at the same time! +#ifdef cimg_use_rng + +#include + + // Use a custom RNG. + inline unsigned int _rand(const unsigned int seed=0, const bool set_seed=false) { + static cimg_ulong next = 0xB16B00B5; + cimg::mutex(4); + if (set_seed) next = (cimg_ulong)seed; + next = next*1103515245 + 12345U; + cimg::mutex(4,0); + return (unsigned int)(next&0xFFFFFFU); + } + + inline void srand() { + const unsigned int t = (unsigned int)cimg::time(); +#if cimg_OS==1 + cimg::_rand(t + (unsigned int)getpid(),true); +#elif cimg_OS==2 + cimg::_rand(t + (unsigned int)_getpid(),true); +#else + cimg::_rand(t,true); +#endif + } + + inline void srand(const unsigned int seed) { + _rand(seed,true); + } + + inline double rand(const double val_min, const double val_max) { + const double val = cimg::_rand()/16777215.; + return val_min + (val_max - val_min)*val; + } + +#else + + // Use the system RNG. + inline void srand() { + const unsigned int t = (unsigned int)cimg::time(); +#if cimg_OS==1 || defined(__BORLANDC__) + std::srand(t + (unsigned int)getpid()); +#elif cimg_OS==2 + std::srand(t + (unsigned int)_getpid()); +#else + std::srand(t); +#endif + } + + inline void srand(const unsigned int seed) { + std::srand(seed); + } + + //! Return a random variable uniformely distributed between [val_min,val_max]. + /** + **/ + inline double rand(const double val_min, const double val_max) { + const double val = (double)std::rand()/RAND_MAX; + return val_min + (val_max - val_min)*val; + } +#endif + + //! Return a random variable uniformely distributed between [0,val_max]. + /** + **/ + inline double rand(const double val_max=1) { + return cimg::rand(0,val_max); + } + + //! Return a random variable following a gaussian distribution and a standard deviation of 1. + /** + **/ + inline double grand() { + double x1, w; + do { + const double x2 = cimg::rand(-1,1); + x1 = cimg::rand(-1,1); + w = x1*x1 + x2*x2; + } while (w<=0 || w>=1.0); + return x1*std::sqrt((-2*std::log(w))/w); + } + + //! Return a random variable following a Poisson distribution of parameter z. + /** + **/ + inline unsigned int prand(const double z) { + if (z<=1.0e-10) return 0; + if (z>100) return (unsigned int)((std::sqrt(z) * cimg::grand()) + z); + unsigned int k = 0; + const double y = std::exp(-z); + for (double s = 1.0; s>=y; ++k) s*=cimg::rand(); + return k - 1; + } + + //! Cut (i.e. clamp) value in specified interval. + template + inline T cut(const T& val, const t& val_min, const t& val_max) { + return valval_max?(T)val_max:val; + } + + //! Bitwise-rotate value on the left. + template + inline T rol(const T& a, const unsigned int n=1) { + return n?(T)((a<>((sizeof(T)<<3) - n))):a; + } + + inline float rol(const float a, const unsigned int n=1) { + return (float)rol((int)a,n); + } + + inline double rol(const double a, const unsigned int n=1) { + return (double)rol((cimg_long)a,n); + } + + inline double rol(const long double a, const unsigned int n=1) { + return (double)rol((cimg_long)a,n); + } + +#ifdef cimg_use_half + inline half rol(const half a, const unsigned int n=1) { + return (half)rol((int)a,n); + } +#endif + + //! Bitwise-rotate value on the right. + template + inline T ror(const T& a, const unsigned int n=1) { + return n?(T)((a>>n)|(a<<((sizeof(T)<<3) - n))):a; + } + + inline float ror(const float a, const unsigned int n=1) { + return (float)ror((int)a,n); + } + + inline double ror(const double a, const unsigned int n=1) { + return (double)ror((cimg_long)a,n); + } + + inline double ror(const long double a, const unsigned int n=1) { + return (double)ror((cimg_long)a,n); + } + +#ifdef cimg_use_half + inline half ror(const half a, const unsigned int n=1) { + return (half)ror((int)a,n); + } +#endif + + //! Return absolute value of a value. + template + inline T abs(const T& a) { + return a>=0?a:-a; + } + inline bool abs(const bool a) { + return a; + } + inline int abs(const unsigned char a) { + return (int)a; + } + inline int abs(const unsigned short a) { + return (int)a; + } + inline int abs(const unsigned int a) { + return (int)a; + } + inline int abs(const int a) { + return std::abs(a); + } + inline cimg_int64 abs(const cimg_uint64 a) { + return (cimg_int64)a; + } + inline double abs(const double a) { + return std::fabs(a); + } + inline float abs(const float a) { + return (float)std::fabs((double)a); + } + + //! Return square of a value. + template + inline T sqr(const T& val) { + return val*val; + } + + //! Return 1 + log_10(x) of a value \c x. + inline int xln(const int x) { + return x>0?(int)(1 + std::log10((double)x)):1; + } + + //! Return the minimum between three values. + template + inline t min(const t& a, const t& b, const t& c) { + return std::min(std::min(a,b),c); + } + + //! Return the minimum between four values. + template + inline t min(const t& a, const t& b, const t& c, const t& d) { + return std::min(std::min(a,b),std::min(c,d)); + } + + //! Return the maximum between three values. + template + inline t max(const t& a, const t& b, const t& c) { + return std::max(std::max(a,b),c); + } + + //! Return the maximum between four values. + template + inline t max(const t& a, const t& b, const t& c, const t& d) { + return std::max(std::max(a,b),std::max(c,d)); + } + + //! Return the sign of a value. + template + inline T sign(const T& x) { + return (T)(x<0?-1:x>0); + } + + //! Return the nearest power of 2 higher than given value. + template + inline cimg_ulong nearest_pow2(const T& x) { + cimg_ulong i = 1; + while (x>i) i<<=1; + return i; + } + + //! Return the sinc of a given value. + inline double sinc(const double x) { + return x?std::sin(x)/x:1; + } + + //! Return the modulo of a value. + /** + \param x Input value. + \param m Modulo value. + \note This modulo function accepts negative and floating-points modulo numbers, as well as variables of any type. + **/ + template + inline T mod(const T& x, const T& m) { + const double dx = (double)x, dm = (double)m; + return (T)(dx - dm * std::floor(dx / dm)); + } + inline int mod(const bool x, const bool m) { + return m?(x?1:0):0; + } + inline int mod(const unsigned char x, const unsigned char m) { + return x%m; + } + inline int mod(const char x, const char m) { +#if defined(CHAR_MAX) && CHAR_MAX==255 + return x%m; +#else + return x>=0?x%m:(x%m?m + x%m:0); +#endif + } + inline int mod(const unsigned short x, const unsigned short m) { + return x%m; + } + inline int mod(const short x, const short m) { + return x>=0?x%m:(x%m?m + x%m:0); + } + inline int mod(const unsigned int x, const unsigned int m) { + return (int)(x%m); + } + inline int mod(const int x, const int m) { + return x>=0?x%m:(x%m?m + x%m:0); + } + inline cimg_int64 mod(const cimg_uint64 x, const cimg_uint64 m) { + return x%m; + } + inline cimg_int64 mod(const cimg_int64 x, const cimg_int64 m) { + return x>=0?x%m:(x%m?m + x%m:0); + } + + //! Return the min-mod of two values. + /** + \note minmod(\p a,\p b) is defined to be: + - minmod(\p a,\p b) = min(\p a,\p b), if \p a and \p b have the same sign. + - minmod(\p a,\p b) = 0, if \p a and \p b have different signs. + **/ + template + inline T minmod(const T& a, const T& b) { + return a*b<=0?0:(a>0?(a + inline T round(const T& x) { + return (T)std::floor((_cimg_Tfloat)x + 0.5f); + } + + //! Return rounded value. + /** + \param x Value to be rounded. + \param y Rounding precision. + \param rounding_type Type of rounding operation (\c 0 = nearest, \c -1 = backward, \c 1 = forward). + \return Rounded value, having the same type as input value \c x. + **/ + template + inline T round(const T& x, const double y, const int rounding_type=0) { + if (y<=0) return x; + if (y==1) switch (rounding_type) { + case 0 : return round(x); + case 1 : return (T)std::ceil((_cimg_Tfloat)x); + default : return (T)std::floor((_cimg_Tfloat)x); + } + const double sx = (double)x/y, floor = std::floor(sx), delta = sx - floor; + return (T)(y*(rounding_type<0?floor:rounding_type>0?std::ceil(sx):delta<0.5?floor:std::ceil(sx))); + } + + //! Return x^(1/3). + template + inline double cbrt(const T& x) { +#if cimg_use_cpp11==1 + return std::cbrt(x); +#else + return x>=0?std::pow((double)x,1.0/3):-std::pow(-(double)x,1.0/3); +#endif + } + + // Code to compute fast median from 2,3,5,7,9,13,25 and 49 values. + // (contribution by RawTherapee: http://rawtherapee.com/). + template + inline T median(T val0, T val1) { + return (val0 + val1)/2; + } + + template + inline T median(T val0, T val1, T val2) { + return std::max(std::min(val0,val1),std::min(val2,std::max(val0,val1))); + } + + template + inline T median(T val0, T val1, T val2, T val3, T val4) { + T tmp = std::min(val0,val1); + val1 = std::max(val0,val1); val0 = tmp; tmp = std::min(val3,val4); val4 = std::max(val3,val4); + val3 = std::max(val0,tmp); val1 = std::min(val1,val4); tmp = std::min(val1,val2); val2 = std::max(val1,val2); + val1 = tmp; tmp = std::min(val2,val3); + return std::max(val1,tmp); + } + + template + inline T median(T val0, T val1, T val2, T val3, T val4, T val5, T val6) { + T tmp = std::min(val0,val5); + val5 = std::max(val0,val5); val0 = tmp; tmp = std::min(val0,val3); val3 = std::max(val0,val3); val0 = tmp; + tmp = std::min(val1,val6); val6 = std::max(val1,val6); val1 = tmp; tmp = std::min(val2,val4); + val4 = std::max(val2,val4); val2 = tmp; val1 = std::max(val0,val1); tmp = std::min(val3,val5); + val5 = std::max(val3,val5); val3 = tmp; tmp = std::min(val2,val6); val6 = std::max(val2,val6); + val3 = std::max(tmp,val3); val3 = std::min(val3,val6); tmp = std::min(val4,val5); val4 = std::max(val1,tmp); + tmp = std::min(val1,tmp); val3 = std::max(tmp,val3); + return std::min(val3,val4); + } + + template + inline T median(T val0, T val1, T val2, T val3, T val4, T val5, T val6, T val7, T val8) { + T tmp = std::min(val1,val2); + val2 = std::max(val1,val2); val1 = tmp; tmp = std::min(val4,val5); + val5 = std::max(val4,val5); val4 = tmp; tmp = std::min(val7,val8); + val8 = std::max(val7,val8); val7 = tmp; tmp = std::min(val0,val1); + val1 = std::max(val0,val1); val0 = tmp; tmp = std::min(val3,val4); + val4 = std::max(val3,val4); val3 = tmp; tmp = std::min(val6,val7); + val7 = std::max(val6,val7); val6 = tmp; tmp = std::min(val1,val2); + val2 = std::max(val1,val2); val1 = tmp; tmp = std::min(val4,val5); + val5 = std::max(val4,val5); val4 = tmp; tmp = std::min(val7,val8); + val8 = std::max(val7,val8); val3 = std::max(val0,val3); val5 = std::min(val5,val8); + val7 = std::max(val4,tmp); tmp = std::min(val4,tmp); val6 = std::max(val3,val6); + val4 = std::max(val1,tmp); val2 = std::min(val2,val5); val4 = std::min(val4,val7); + tmp = std::min(val4,val2); val2 = std::max(val4,val2); val4 = std::max(val6,tmp); + return std::min(val4,val2); + } + + template + inline T median(T val0, T val1, T val2, T val3, T val4, T val5, T val6, T val7, T val8, T val9, T val10, T val11, + T val12) { + T tmp = std::min(val1,val7); + val7 = std::max(val1,val7); val1 = tmp; tmp = std::min(val9,val11); val11 = std::max(val9,val11); val9 = tmp; + tmp = std::min(val3,val4); val4 = std::max(val3,val4); val3 = tmp; tmp = std::min(val5,val8); + val8 = std::max(val5,val8); val5 = tmp; tmp = std::min(val0,val12); val12 = std::max(val0,val12); + val0 = tmp; tmp = std::min(val2,val6); val6 = std::max(val2,val6); val2 = tmp; tmp = std::min(val0,val1); + val1 = std::max(val0,val1); val0 = tmp; tmp = std::min(val2,val3); val3 = std::max(val2,val3); val2 = tmp; + tmp = std::min(val4,val6); val6 = std::max(val4,val6); val4 = tmp; tmp = std::min(val8,val11); + val11 = std::max(val8,val11); val8 = tmp; tmp = std::min(val7,val12); val12 = std::max(val7,val12); val7 = tmp; + tmp = std::min(val5,val9); val9 = std::max(val5,val9); val5 = tmp; tmp = std::min(val0,val2); + val2 = std::max(val0,val2); val0 = tmp; tmp = std::min(val3,val7); val7 = std::max(val3,val7); val3 = tmp; + tmp = std::min(val10,val11); val11 = std::max(val10,val11); val10 = tmp; tmp = std::min(val1,val4); + val4 = std::max(val1,val4); val1 = tmp; tmp = std::min(val6,val12); val12 = std::max(val6,val12); val6 = tmp; + tmp = std::min(val7,val8); val8 = std::max(val7,val8); val7 = tmp; val11 = std::min(val11,val12); + tmp = std::min(val4,val9); val9 = std::max(val4,val9); val4 = tmp; tmp = std::min(val6,val10); + val10 = std::max(val6,val10); val6 = tmp; tmp = std::min(val3,val4); val4 = std::max(val3,val4); val3 = tmp; + tmp = std::min(val5,val6); val6 = std::max(val5,val6); val5 = tmp; val8 = std::min(val8,val9); + val10 = std::min(val10,val11); tmp = std::min(val1,val7); val7 = std::max(val1,val7); val1 = tmp; + tmp = std::min(val2,val6); val6 = std::max(val2,val6); val2 = tmp; val3 = std::max(val1,val3); + tmp = std::min(val4,val7); val7 = std::max(val4,val7); val4 = tmp; val8 = std::min(val8,val10); + val5 = std::max(val0,val5); val5 = std::max(val2,val5); tmp = std::min(val6,val8); val8 = std::max(val6,val8); + val5 = std::max(val3,val5); val7 = std::min(val7,val8); val6 = std::max(val4,tmp); tmp = std::min(val4,tmp); + val5 = std::max(tmp,val5); val6 = std::min(val6,val7); + return std::max(val5,val6); + } + + template + inline T median(T val0, T val1, T val2, T val3, T val4, + T val5, T val6, T val7, T val8, T val9, + T val10, T val11, T val12, T val13, T val14, + T val15, T val16, T val17, T val18, T val19, + T val20, T val21, T val22, T val23, T val24) { + T tmp = std::min(val0,val1); + val1 = std::max(val0,val1); val0 = tmp; tmp = std::min(val3,val4); val4 = std::max(val3,val4); + val3 = tmp; tmp = std::min(val2,val4); val4 = std::max(val2,val4); val2 = std::min(tmp,val3); + val3 = std::max(tmp,val3); tmp = std::min(val6,val7); val7 = std::max(val6,val7); val6 = tmp; + tmp = std::min(val5,val7); val7 = std::max(val5,val7); val5 = std::min(tmp,val6); val6 = std::max(tmp,val6); + tmp = std::min(val9,val10); val10 = std::max(val9,val10); val9 = tmp; tmp = std::min(val8,val10); + val10 = std::max(val8,val10); val8 = std::min(tmp,val9); val9 = std::max(tmp,val9); + tmp = std::min(val12,val13); val13 = std::max(val12,val13); val12 = tmp; tmp = std::min(val11,val13); + val13 = std::max(val11,val13); val11 = std::min(tmp,val12); val12 = std::max(tmp,val12); + tmp = std::min(val15,val16); val16 = std::max(val15,val16); val15 = tmp; tmp = std::min(val14,val16); + val16 = std::max(val14,val16); val14 = std::min(tmp,val15); val15 = std::max(tmp,val15); + tmp = std::min(val18,val19); val19 = std::max(val18,val19); val18 = tmp; tmp = std::min(val17,val19); + val19 = std::max(val17,val19); val17 = std::min(tmp,val18); val18 = std::max(tmp,val18); + tmp = std::min(val21,val22); val22 = std::max(val21,val22); val21 = tmp; tmp = std::min(val20,val22); + val22 = std::max(val20,val22); val20 = std::min(tmp,val21); val21 = std::max(tmp,val21); + tmp = std::min(val23,val24); val24 = std::max(val23,val24); val23 = tmp; tmp = std::min(val2,val5); + val5 = std::max(val2,val5); val2 = tmp; tmp = std::min(val3,val6); val6 = std::max(val3,val6); val3 = tmp; + tmp = std::min(val0,val6); val6 = std::max(val0,val6); val0 = std::min(tmp,val3); val3 = std::max(tmp,val3); + tmp = std::min(val4,val7); val7 = std::max(val4,val7); val4 = tmp; tmp = std::min(val1,val7); + val7 = std::max(val1,val7); val1 = std::min(tmp,val4); val4 = std::max(tmp,val4); tmp = std::min(val11,val14); + val14 = std::max(val11,val14); val11 = tmp; tmp = std::min(val8,val14); val14 = std::max(val8,val14); + val8 = std::min(tmp,val11); val11 = std::max(tmp,val11); tmp = std::min(val12,val15); + val15 = std::max(val12,val15); val12 = tmp; tmp = std::min(val9,val15); val15 = std::max(val9,val15); + val9 = std::min(tmp,val12); val12 = std::max(tmp,val12); tmp = std::min(val13,val16); + val16 = std::max(val13,val16); val13 = tmp; tmp = std::min(val10,val16); val16 = std::max(val10,val16); + val10 = std::min(tmp,val13); val13 = std::max(tmp,val13); tmp = std::min(val20,val23); + val23 = std::max(val20,val23); val20 = tmp; tmp = std::min(val17,val23); val23 = std::max(val17,val23); + val17 = std::min(tmp,val20); val20 = std::max(tmp,val20); tmp = std::min(val21,val24); + val24 = std::max(val21,val24); val21 = tmp; tmp = std::min(val18,val24); val24 = std::max(val18,val24); + val18 = std::min(tmp,val21); val21 = std::max(tmp,val21); tmp = std::min(val19,val22); + val22 = std::max(val19,val22); val19 = tmp; val17 = std::max(val8,val17); tmp = std::min(val9,val18); + val18 = std::max(val9,val18); val9 = tmp; tmp = std::min(val0,val18); val18 = std::max(val0,val18); + val9 = std::max(tmp,val9); tmp = std::min(val10,val19); val19 = std::max(val10,val19); val10 = tmp; + tmp = std::min(val1,val19); val19 = std::max(val1,val19); val1 = std::min(tmp,val10); + val10 = std::max(tmp,val10); tmp = std::min(val11,val20); val20 = std::max(val11,val20); val11 = tmp; + tmp = std::min(val2,val20); val20 = std::max(val2,val20); val11 = std::max(tmp,val11); + tmp = std::min(val12,val21); val21 = std::max(val12,val21); val12 = tmp; tmp = std::min(val3,val21); + val21 = std::max(val3,val21); val3 = std::min(tmp,val12); val12 = std::max(tmp,val12); + tmp = std::min(val13,val22); val22 = std::max(val13,val22); val4 = std::min(val4,val22); + val13 = std::max(val4,tmp); tmp = std::min(val4,tmp); val4 = tmp; tmp = std::min(val14,val23); + val23 = std::max(val14,val23); val14 = tmp; tmp = std::min(val5,val23); val23 = std::max(val5,val23); + val5 = std::min(tmp,val14); val14 = std::max(tmp,val14); tmp = std::min(val15,val24); + val24 = std::max(val15,val24); val15 = tmp; val6 = std::min(val6,val24); tmp = std::min(val6,val15); + val15 = std::max(val6,val15); val6 = tmp; tmp = std::min(val7,val16); val7 = std::min(tmp,val19); + tmp = std::min(val13,val21); val15 = std::min(val15,val23); tmp = std::min(val7,tmp); + val7 = std::min(tmp,val15); val9 = std::max(val1,val9); val11 = std::max(val3,val11); + val17 = std::max(val5,val17); val17 = std::max(val11,val17); val17 = std::max(val9,val17); + tmp = std::min(val4,val10); val10 = std::max(val4,val10); val4 = tmp; tmp = std::min(val6,val12); + val12 = std::max(val6,val12); val6 = tmp; tmp = std::min(val7,val14); val14 = std::max(val7,val14); + val7 = tmp; tmp = std::min(val4,val6); val6 = std::max(val4,val6); val7 = std::max(tmp,val7); + tmp = std::min(val12,val14); val14 = std::max(val12,val14); val12 = tmp; val10 = std::min(val10,val14); + tmp = std::min(val6,val7); val7 = std::max(val6,val7); val6 = tmp; tmp = std::min(val10,val12); + val12 = std::max(val10,val12); val10 = std::max(val6,tmp); tmp = std::min(val6,tmp); + val17 = std::max(tmp,val17); tmp = std::min(val12,val17); val17 = std::max(val12,val17); val12 = tmp; + val7 = std::min(val7,val17); tmp = std::min(val7,val10); val10 = std::max(val7,val10); val7 = tmp; + tmp = std::min(val12,val18); val18 = std::max(val12,val18); val12 = std::max(val7,tmp); + val10 = std::min(val10,val18); tmp = std::min(val12,val20); val20 = std::max(val12,val20); val12 = tmp; + tmp = std::min(val10,val20); + return std::max(tmp,val12); + } + + template + inline T median(T val0, T val1, T val2, T val3, T val4, T val5, T val6, + T val7, T val8, T val9, T val10, T val11, T val12, T val13, + T val14, T val15, T val16, T val17, T val18, T val19, T val20, + T val21, T val22, T val23, T val24, T val25, T val26, T val27, + T val28, T val29, T val30, T val31, T val32, T val33, T val34, + T val35, T val36, T val37, T val38, T val39, T val40, T val41, + T val42, T val43, T val44, T val45, T val46, T val47, T val48) { + T tmp = std::min(val0,val32); + val32 = std::max(val0,val32); val0 = tmp; tmp = std::min(val1,val33); val33 = std::max(val1,val33); val1 = tmp; + tmp = std::min(val2,val34); val34 = std::max(val2,val34); val2 = tmp; tmp = std::min(val3,val35); + val35 = std::max(val3,val35); val3 = tmp; tmp = std::min(val4,val36); val36 = std::max(val4,val36); val4 = tmp; + tmp = std::min(val5,val37); val37 = std::max(val5,val37); val5 = tmp; tmp = std::min(val6,val38); + val38 = std::max(val6,val38); val6 = tmp; tmp = std::min(val7,val39); val39 = std::max(val7,val39); val7 = tmp; + tmp = std::min(val8,val40); val40 = std::max(val8,val40); val8 = tmp; tmp = std::min(val9,val41); + val41 = std::max(val9,val41); val9 = tmp; tmp = std::min(val10,val42); val42 = std::max(val10,val42); + val10 = tmp; tmp = std::min(val11,val43); val43 = std::max(val11,val43); val11 = tmp; + tmp = std::min(val12,val44); val44 = std::max(val12,val44); val12 = tmp; tmp = std::min(val13,val45); + val45 = std::max(val13,val45); val13 = tmp; tmp = std::min(val14,val46); val46 = std::max(val14,val46); + val14 = tmp; tmp = std::min(val15,val47); val47 = std::max(val15,val47); val15 = tmp; + tmp = std::min(val16,val48); val48 = std::max(val16,val48); val16 = tmp; tmp = std::min(val0,val16); + val16 = std::max(val0,val16); val0 = tmp; tmp = std::min(val1,val17); val17 = std::max(val1,val17); + val1 = tmp; tmp = std::min(val2,val18); val18 = std::max(val2,val18); val2 = tmp; tmp = std::min(val3,val19); + val19 = std::max(val3,val19); val3 = tmp; tmp = std::min(val4,val20); val20 = std::max(val4,val20); val4 = tmp; + tmp = std::min(val5,val21); val21 = std::max(val5,val21); val5 = tmp; tmp = std::min(val6,val22); + val22 = std::max(val6,val22); val6 = tmp; tmp = std::min(val7,val23); val23 = std::max(val7,val23); val7 = tmp; + tmp = std::min(val8,val24); val24 = std::max(val8,val24); val8 = tmp; tmp = std::min(val9,val25); + val25 = std::max(val9,val25); val9 = tmp; tmp = std::min(val10,val26); val26 = std::max(val10,val26); + val10 = tmp; tmp = std::min(val11,val27); val27 = std::max(val11,val27); val11 = tmp; + tmp = std::min(val12,val28); val28 = std::max(val12,val28); val12 = tmp; tmp = std::min(val13,val29); + val29 = std::max(val13,val29); val13 = tmp; tmp = std::min(val14,val30); val30 = std::max(val14,val30); + val14 = tmp; tmp = std::min(val15,val31); val31 = std::max(val15,val31); val15 = tmp; + tmp = std::min(val32,val48); val48 = std::max(val32,val48); val32 = tmp; tmp = std::min(val16,val32); + val32 = std::max(val16,val32); val16 = tmp; tmp = std::min(val17,val33); val33 = std::max(val17,val33); + val17 = tmp; tmp = std::min(val18,val34); val34 = std::max(val18,val34); val18 = tmp; + tmp = std::min(val19,val35); val35 = std::max(val19,val35); val19 = tmp; tmp = std::min(val20,val36); + val36 = std::max(val20,val36); val20 = tmp; tmp = std::min(val21,val37); val37 = std::max(val21,val37); + val21 = tmp; tmp = std::min(val22,val38); val38 = std::max(val22,val38); val22 = tmp; + tmp = std::min(val23,val39); val39 = std::max(val23,val39); val23 = tmp; tmp = std::min(val24,val40); + val40 = std::max(val24,val40); val24 = tmp; tmp = std::min(val25,val41); val41 = std::max(val25,val41); + val25 = tmp; tmp = std::min(val26,val42); val42 = std::max(val26,val42); val26 = tmp; + tmp = std::min(val27,val43); val43 = std::max(val27,val43); val27 = tmp; tmp = std::min(val28,val44); + val44 = std::max(val28,val44); val28 = tmp; tmp = std::min(val29,val45); val45 = std::max(val29,val45); + val29 = tmp; tmp = std::min(val30,val46); val46 = std::max(val30,val46); val30 = tmp; + tmp = std::min(val31,val47); val47 = std::max(val31,val47); val31 = tmp; tmp = std::min(val0,val8); + val8 = std::max(val0,val8); val0 = tmp; tmp = std::min(val1,val9); val9 = std::max(val1,val9); val1 = tmp; + tmp = std::min(val2,val10); val10 = std::max(val2,val10); val2 = tmp; tmp = std::min(val3,val11); + val11 = std::max(val3,val11); val3 = tmp; tmp = std::min(val4,val12); val12 = std::max(val4,val12); val4 = tmp; + tmp = std::min(val5,val13); val13 = std::max(val5,val13); val5 = tmp; tmp = std::min(val6,val14); + val14 = std::max(val6,val14); val6 = tmp; tmp = std::min(val7,val15); val15 = std::max(val7,val15); val7 = tmp; + tmp = std::min(val16,val24); val24 = std::max(val16,val24); val16 = tmp; tmp = std::min(val17,val25); + val25 = std::max(val17,val25); val17 = tmp; tmp = std::min(val18,val26); val26 = std::max(val18,val26); + val18 = tmp; tmp = std::min(val19,val27); val27 = std::max(val19,val27); val19 = tmp; + tmp = std::min(val20,val28); val28 = std::max(val20,val28); val20 = tmp; tmp = std::min(val21,val29); + val29 = std::max(val21,val29); val21 = tmp; tmp = std::min(val22,val30); val30 = std::max(val22,val30); + val22 = tmp; tmp = std::min(val23,val31); val31 = std::max(val23,val31); val23 = tmp; + tmp = std::min(val32,val40); val40 = std::max(val32,val40); val32 = tmp; tmp = std::min(val33,val41); + val41 = std::max(val33,val41); val33 = tmp; tmp = std::min(val34,val42); val42 = std::max(val34,val42); + val34 = tmp; tmp = std::min(val35,val43); val43 = std::max(val35,val43); val35 = tmp; + tmp = std::min(val36,val44); val44 = std::max(val36,val44); val36 = tmp; tmp = std::min(val37,val45); + val45 = std::max(val37,val45); val37 = tmp; tmp = std::min(val38,val46); val46 = std::max(val38,val46); + val38 = tmp; tmp = std::min(val39,val47); val47 = std::max(val39,val47); val39 = tmp; + tmp = std::min(val8,val32); val32 = std::max(val8,val32); val8 = tmp; tmp = std::min(val9,val33); + val33 = std::max(val9,val33); val9 = tmp; tmp = std::min(val10,val34); val34 = std::max(val10,val34); + val10 = tmp; tmp = std::min(val11,val35); val35 = std::max(val11,val35); val11 = tmp; + tmp = std::min(val12,val36); val36 = std::max(val12,val36); val12 = tmp; tmp = std::min(val13,val37); + val37 = std::max(val13,val37); val13 = tmp; tmp = std::min(val14,val38); val38 = std::max(val14,val38); + val14 = tmp; tmp = std::min(val15,val39); val39 = std::max(val15,val39); val15 = tmp; + tmp = std::min(val24,val48); val48 = std::max(val24,val48); val24 = tmp; tmp = std::min(val8,val16); + val16 = std::max(val8,val16); val8 = tmp; tmp = std::min(val9,val17); val17 = std::max(val9,val17); + val9 = tmp; tmp = std::min(val10,val18); val18 = std::max(val10,val18); val10 = tmp; + tmp = std::min(val11,val19); val19 = std::max(val11,val19); val11 = tmp; tmp = std::min(val12,val20); + val20 = std::max(val12,val20); val12 = tmp; tmp = std::min(val13,val21); val21 = std::max(val13,val21); + val13 = tmp; tmp = std::min(val14,val22); val22 = std::max(val14,val22); val14 = tmp; + tmp = std::min(val15,val23); val23 = std::max(val15,val23); val15 = tmp; tmp = std::min(val24,val32); + val32 = std::max(val24,val32); val24 = tmp; tmp = std::min(val25,val33); val33 = std::max(val25,val33); + val25 = tmp; tmp = std::min(val26,val34); val34 = std::max(val26,val34); val26 = tmp; + tmp = std::min(val27,val35); val35 = std::max(val27,val35); val27 = tmp; tmp = std::min(val28,val36); + val36 = std::max(val28,val36); val28 = tmp; tmp = std::min(val29,val37); val37 = std::max(val29,val37); + val29 = tmp; tmp = std::min(val30,val38); val38 = std::max(val30,val38); val30 = tmp; + tmp = std::min(val31,val39); val39 = std::max(val31,val39); val31 = tmp; tmp = std::min(val40,val48); + val48 = std::max(val40,val48); val40 = tmp; tmp = std::min(val0,val4); val4 = std::max(val0,val4); + val0 = tmp; tmp = std::min(val1,val5); val5 = std::max(val1,val5); val1 = tmp; tmp = std::min(val2,val6); + val6 = std::max(val2,val6); val2 = tmp; tmp = std::min(val3,val7); val7 = std::max(val3,val7); val3 = tmp; + tmp = std::min(val8,val12); val12 = std::max(val8,val12); val8 = tmp; tmp = std::min(val9,val13); + val13 = std::max(val9,val13); val9 = tmp; tmp = std::min(val10,val14); val14 = std::max(val10,val14); + val10 = tmp; tmp = std::min(val11,val15); val15 = std::max(val11,val15); val11 = tmp; + tmp = std::min(val16,val20); val20 = std::max(val16,val20); val16 = tmp; tmp = std::min(val17,val21); + val21 = std::max(val17,val21); val17 = tmp; tmp = std::min(val18,val22); val22 = std::max(val18,val22); + val18 = tmp; tmp = std::min(val19,val23); val23 = std::max(val19,val23); val19 = tmp; + tmp = std::min(val24,val28); val28 = std::max(val24,val28); val24 = tmp; tmp = std::min(val25,val29); + val29 = std::max(val25,val29); val25 = tmp; tmp = std::min(val26,val30); val30 = std::max(val26,val30); + val26 = tmp; tmp = std::min(val27,val31); val31 = std::max(val27,val31); val27 = tmp; + tmp = std::min(val32,val36); val36 = std::max(val32,val36); val32 = tmp; tmp = std::min(val33,val37); + val37 = std::max(val33,val37); val33 = tmp; tmp = std::min(val34,val38); val38 = std::max(val34,val38); + val34 = tmp; tmp = std::min(val35,val39); val39 = std::max(val35,val39); val35 = tmp; + tmp = std::min(val40,val44); val44 = std::max(val40,val44); val40 = tmp; tmp = std::min(val41,val45); + val45 = std::max(val41,val45); val41 = tmp; tmp = std::min(val42,val46); val46 = std::max(val42,val46); + val42 = tmp; tmp = std::min(val43,val47); val47 = std::max(val43,val47); val43 = tmp; + tmp = std::min(val4,val32); val32 = std::max(val4,val32); val4 = tmp; tmp = std::min(val5,val33); + val33 = std::max(val5,val33); val5 = tmp; tmp = std::min(val6,val34); val34 = std::max(val6,val34); + val6 = tmp; tmp = std::min(val7,val35); val35 = std::max(val7,val35); val7 = tmp; + tmp = std::min(val12,val40); val40 = std::max(val12,val40); val12 = tmp; tmp = std::min(val13,val41); + val41 = std::max(val13,val41); val13 = tmp; tmp = std::min(val14,val42); val42 = std::max(val14,val42); + val14 = tmp; tmp = std::min(val15,val43); val43 = std::max(val15,val43); val15 = tmp; + tmp = std::min(val20,val48); val48 = std::max(val20,val48); val20 = tmp; tmp = std::min(val4,val16); + val16 = std::max(val4,val16); val4 = tmp; tmp = std::min(val5,val17); val17 = std::max(val5,val17); + val5 = tmp; tmp = std::min(val6,val18); val18 = std::max(val6,val18); val6 = tmp; + tmp = std::min(val7,val19); val19 = std::max(val7,val19); val7 = tmp; tmp = std::min(val12,val24); + val24 = std::max(val12,val24); val12 = tmp; tmp = std::min(val13,val25); val25 = std::max(val13,val25); + val13 = tmp; tmp = std::min(val14,val26); val26 = std::max(val14,val26); val14 = tmp; + tmp = std::min(val15,val27); val27 = std::max(val15,val27); val15 = tmp; tmp = std::min(val20,val32); + val32 = std::max(val20,val32); val20 = tmp; tmp = std::min(val21,val33); val33 = std::max(val21,val33); + val21 = tmp; tmp = std::min(val22,val34); val34 = std::max(val22,val34); val22 = tmp; + tmp = std::min(val23,val35); val35 = std::max(val23,val35); val23 = tmp; tmp = std::min(val28,val40); + val40 = std::max(val28,val40); val28 = tmp; tmp = std::min(val29,val41); val41 = std::max(val29,val41); + val29 = tmp; tmp = std::min(val30,val42); val42 = std::max(val30,val42); val30 = tmp; + tmp = std::min(val31,val43); val43 = std::max(val31,val43); val31 = tmp; tmp = std::min(val36,val48); + val48 = std::max(val36,val48); val36 = tmp; tmp = std::min(val4,val8); val8 = std::max(val4,val8); + val4 = tmp; tmp = std::min(val5,val9); val9 = std::max(val5,val9); val5 = tmp; tmp = std::min(val6,val10); + val10 = std::max(val6,val10); val6 = tmp; tmp = std::min(val7,val11); val11 = std::max(val7,val11); val7 = tmp; + tmp = std::min(val12,val16); val16 = std::max(val12,val16); val12 = tmp; tmp = std::min(val13,val17); + val17 = std::max(val13,val17); val13 = tmp; tmp = std::min(val14,val18); val18 = std::max(val14,val18); + val14 = tmp; tmp = std::min(val15,val19); val19 = std::max(val15,val19); val15 = tmp; + tmp = std::min(val20,val24); val24 = std::max(val20,val24); val20 = tmp; tmp = std::min(val21,val25); + val25 = std::max(val21,val25); val21 = tmp; tmp = std::min(val22,val26); val26 = std::max(val22,val26); + val22 = tmp; tmp = std::min(val23,val27); val27 = std::max(val23,val27); val23 = tmp; + tmp = std::min(val28,val32); val32 = std::max(val28,val32); val28 = tmp; tmp = std::min(val29,val33); + val33 = std::max(val29,val33); val29 = tmp; tmp = std::min(val30,val34); val34 = std::max(val30,val34); + val30 = tmp; tmp = std::min(val31,val35); val35 = std::max(val31,val35); val31 = tmp; + tmp = std::min(val36,val40); val40 = std::max(val36,val40); val36 = tmp; tmp = std::min(val37,val41); + val41 = std::max(val37,val41); val37 = tmp; tmp = std::min(val38,val42); val42 = std::max(val38,val42); + val38 = tmp; tmp = std::min(val39,val43); val43 = std::max(val39,val43); val39 = tmp; + tmp = std::min(val44,val48); val48 = std::max(val44,val48); val44 = tmp; tmp = std::min(val0,val2); + val2 = std::max(val0,val2); val0 = tmp; tmp = std::min(val1,val3); val3 = std::max(val1,val3); val1 = tmp; + tmp = std::min(val4,val6); val6 = std::max(val4,val6); val4 = tmp; tmp = std::min(val5,val7); + val7 = std::max(val5,val7); val5 = tmp; tmp = std::min(val8,val10); val10 = std::max(val8,val10); val8 = tmp; + tmp = std::min(val9,val11); val11 = std::max(val9,val11); val9 = tmp; tmp = std::min(val12,val14); + val14 = std::max(val12,val14); val12 = tmp; tmp = std::min(val13,val15); val15 = std::max(val13,val15); + val13 = tmp; tmp = std::min(val16,val18); val18 = std::max(val16,val18); val16 = tmp; + tmp = std::min(val17,val19); val19 = std::max(val17,val19); val17 = tmp; tmp = std::min(val20,val22); + val22 = std::max(val20,val22); val20 = tmp; tmp = std::min(val21,val23); val23 = std::max(val21,val23); + val21 = tmp; tmp = std::min(val24,val26); val26 = std::max(val24,val26); val24 = tmp; + tmp = std::min(val25,val27); val27 = std::max(val25,val27); val25 = tmp; tmp = std::min(val28,val30); + val30 = std::max(val28,val30); val28 = tmp; tmp = std::min(val29,val31); val31 = std::max(val29,val31); + val29 = tmp; tmp = std::min(val32,val34); val34 = std::max(val32,val34); val32 = tmp; + tmp = std::min(val33,val35); val35 = std::max(val33,val35); val33 = tmp; tmp = std::min(val36,val38); + val38 = std::max(val36,val38); val36 = tmp; tmp = std::min(val37,val39); val39 = std::max(val37,val39); + val37 = tmp; tmp = std::min(val40,val42); val42 = std::max(val40,val42); val40 = tmp; + tmp = std::min(val41,val43); val43 = std::max(val41,val43); val41 = tmp; tmp = std::min(val44,val46); + val46 = std::max(val44,val46); val44 = tmp; tmp = std::min(val45,val47); val47 = std::max(val45,val47); + val45 = tmp; tmp = std::min(val2,val32); val32 = std::max(val2,val32); val2 = tmp; tmp = std::min(val3,val33); + val33 = std::max(val3,val33); val3 = tmp; tmp = std::min(val6,val36); val36 = std::max(val6,val36); val6 = tmp; + tmp = std::min(val7,val37); val37 = std::max(val7,val37); val7 = tmp; tmp = std::min(val10,val40); + val40 = std::max(val10,val40); val10 = tmp; tmp = std::min(val11,val41); val41 = std::max(val11,val41); + val11 = tmp; tmp = std::min(val14,val44); val44 = std::max(val14,val44); val14 = tmp; + tmp = std::min(val15,val45); val45 = std::max(val15,val45); val15 = tmp; tmp = std::min(val18,val48); + val48 = std::max(val18,val48); val18 = tmp; tmp = std::min(val2,val16); val16 = std::max(val2,val16); + val2 = tmp; tmp = std::min(val3,val17); val17 = std::max(val3,val17); val3 = tmp; + tmp = std::min(val6,val20); val20 = std::max(val6,val20); val6 = tmp; tmp = std::min(val7,val21); + val21 = std::max(val7,val21); val7 = tmp; tmp = std::min(val10,val24); val24 = std::max(val10,val24); + val10 = tmp; tmp = std::min(val11,val25); val25 = std::max(val11,val25); val11 = tmp; + tmp = std::min(val14,val28); val28 = std::max(val14,val28); val14 = tmp; tmp = std::min(val15,val29); + val29 = std::max(val15,val29); val15 = tmp; tmp = std::min(val18,val32); val32 = std::max(val18,val32); + val18 = tmp; tmp = std::min(val19,val33); val33 = std::max(val19,val33); val19 = tmp; + tmp = std::min(val22,val36); val36 = std::max(val22,val36); val22 = tmp; tmp = std::min(val23,val37); + val37 = std::max(val23,val37); val23 = tmp; tmp = std::min(val26,val40); val40 = std::max(val26,val40); + val26 = tmp; tmp = std::min(val27,val41); val41 = std::max(val27,val41); val27 = tmp; + tmp = std::min(val30,val44); val44 = std::max(val30,val44); val30 = tmp; tmp = std::min(val31,val45); + val45 = std::max(val31,val45); val31 = tmp; tmp = std::min(val34,val48); val48 = std::max(val34,val48); + val34 = tmp; tmp = std::min(val2,val8); val8 = std::max(val2,val8); val2 = tmp; tmp = std::min(val3,val9); + val9 = std::max(val3,val9); val3 = tmp; tmp = std::min(val6,val12); val12 = std::max(val6,val12); val6 = tmp; + tmp = std::min(val7,val13); val13 = std::max(val7,val13); val7 = tmp; tmp = std::min(val10,val16); + val16 = std::max(val10,val16); val10 = tmp; tmp = std::min(val11,val17); val17 = std::max(val11,val17); + val11 = tmp; tmp = std::min(val14,val20); val20 = std::max(val14,val20); val14 = tmp; + tmp = std::min(val15,val21); val21 = std::max(val15,val21); val15 = tmp; tmp = std::min(val18,val24); + val24 = std::max(val18,val24); val18 = tmp; tmp = std::min(val19,val25); val25 = std::max(val19,val25); + val19 = tmp; tmp = std::min(val22,val28); val28 = std::max(val22,val28); val22 = tmp; + tmp = std::min(val23,val29); val29 = std::max(val23,val29); val23 = tmp; tmp = std::min(val26,val32); + val32 = std::max(val26,val32); val26 = tmp; tmp = std::min(val27,val33); val33 = std::max(val27,val33); + val27 = tmp; tmp = std::min(val30,val36); val36 = std::max(val30,val36); val30 = tmp; + tmp = std::min(val31,val37); val37 = std::max(val31,val37); val31 = tmp; tmp = std::min(val34,val40); + val40 = std::max(val34,val40); val34 = tmp; tmp = std::min(val35,val41); val41 = std::max(val35,val41); + val35 = tmp; tmp = std::min(val38,val44); val44 = std::max(val38,val44); val38 = tmp; + tmp = std::min(val39,val45); val45 = std::max(val39,val45); val39 = tmp; tmp = std::min(val42,val48); + val48 = std::max(val42,val48); val42 = tmp; tmp = std::min(val2,val4); val4 = std::max(val2,val4); + val2 = tmp; tmp = std::min(val3,val5); val5 = std::max(val3,val5); val3 = tmp; tmp = std::min(val6,val8); + val8 = std::max(val6,val8); val6 = tmp; tmp = std::min(val7,val9); val9 = std::max(val7,val9); val7 = tmp; + tmp = std::min(val10,val12); val12 = std::max(val10,val12); val10 = tmp; tmp = std::min(val11,val13); + val13 = std::max(val11,val13); val11 = tmp; tmp = std::min(val14,val16); val16 = std::max(val14,val16); + val14 = tmp; tmp = std::min(val15,val17); val17 = std::max(val15,val17); val15 = tmp; + tmp = std::min(val18,val20); val20 = std::max(val18,val20); val18 = tmp; tmp = std::min(val19,val21); + val21 = std::max(val19,val21); val19 = tmp; tmp = std::min(val22,val24); val24 = std::max(val22,val24); + val22 = tmp; tmp = std::min(val23,val25); val25 = std::max(val23,val25); val23 = tmp; + tmp = std::min(val26,val28); val28 = std::max(val26,val28); val26 = tmp; tmp = std::min(val27,val29); + val29 = std::max(val27,val29); val27 = tmp; tmp = std::min(val30,val32); val32 = std::max(val30,val32); + val30 = tmp; tmp = std::min(val31,val33); val33 = std::max(val31,val33); val31 = tmp; + tmp = std::min(val34,val36); val36 = std::max(val34,val36); val34 = tmp; tmp = std::min(val35,val37); + val37 = std::max(val35,val37); val35 = tmp; tmp = std::min(val38,val40); val40 = std::max(val38,val40); + val38 = tmp; tmp = std::min(val39,val41); val41 = std::max(val39,val41); val39 = tmp; + tmp = std::min(val42,val44); val44 = std::max(val42,val44); val42 = tmp; tmp = std::min(val43,val45); + val45 = std::max(val43,val45); val43 = tmp; tmp = std::min(val46,val48); val48 = std::max(val46,val48); + val46 = tmp; val1 = std::max(val0,val1); val3 = std::max(val2,val3); val5 = std::max(val4,val5); + val7 = std::max(val6,val7); val9 = std::max(val8,val9); val11 = std::max(val10,val11); + val13 = std::max(val12,val13); val15 = std::max(val14,val15); val17 = std::max(val16,val17); + val19 = std::max(val18,val19); val21 = std::max(val20,val21); val23 = std::max(val22,val23); + val24 = std::min(val24,val25); val26 = std::min(val26,val27); val28 = std::min(val28,val29); + val30 = std::min(val30,val31); val32 = std::min(val32,val33); val34 = std::min(val34,val35); + val36 = std::min(val36,val37); val38 = std::min(val38,val39); val40 = std::min(val40,val41); + val42 = std::min(val42,val43); val44 = std::min(val44,val45); val46 = std::min(val46,val47); + val32 = std::max(val1,val32); val34 = std::max(val3,val34); val36 = std::max(val5,val36); + val38 = std::max(val7,val38); val9 = std::min(val9,val40); val11 = std::min(val11,val42); + val13 = std::min(val13,val44); val15 = std::min(val15,val46); val17 = std::min(val17,val48); + val24 = std::max(val9,val24); val26 = std::max(val11,val26); val28 = std::max(val13,val28); + val30 = std::max(val15,val30); val17 = std::min(val17,val32); val19 = std::min(val19,val34); + val21 = std::min(val21,val36); val23 = std::min(val23,val38); val24 = std::max(val17,val24); + val26 = std::max(val19,val26); val21 = std::min(val21,val28); val23 = std::min(val23,val30); + val24 = std::max(val21,val24); val23 = std::min(val23,val26); + return std::max(val23,val24); + } + + //! Return sqrt(x^2 + y^2). + template + inline T hypot(const T x, const T y) { + return std::sqrt(x*x + y*y); + } + + template + inline T hypot(const T x, const T y, const T z) { + return std::sqrt(x*x + y*y + z*z); + } + + template + inline T _hypot(const T x, const T y) { // Slower but more precise version + T nx = cimg::abs(x), ny = cimg::abs(y), t; + if (nx0) { t/=nx; return nx*std::sqrt(1 + t*t); } + return 0; + } + + //! Return the factorial of n + inline double factorial(const int n) { + if (n<0) return cimg::type::nan(); + if (n<2) return 1; + double res = 2; + for (int i = 3; i<=n; ++i) res*=i; + return res; + } + + //! Return the number of permutations of k objects in a set of n objects. + inline double permutations(const int k, const int n, const bool with_order) { + if (n<0 || k<0) return cimg::type::nan(); + if (k>n) return 0; + double res = 1; + for (int i = n; i>=n - k + 1; --i) res*=i; + return with_order?res:res/cimg::factorial(k); + } + + inline double _fibonacci(int exp) { + double + base = (1 + std::sqrt(5.0))/2, + result = 1/std::sqrt(5.0); + while (exp) { + if (exp&1) result*=base; + exp>>=1; + base*=base; + } + return result; + } + + //! Calculate fibonacci number. + // (Precise up to n = 78, less precise for n>78). + inline double fibonacci(const int n) { + if (n<0) return cimg::type::nan(); + if (n<3) return 1; + if (n<11) { + cimg_uint64 fn1 = 1, fn2 = 1, fn = 0; + for (int i = 3; i<=n; ++i) { fn = fn1 + fn2; fn2 = fn1; fn1 = fn; } + return (double)fn; + } + if (n<75) // precise up to n = 74, faster than the integer calculation above for n>10 + return (double)((cimg_uint64)(_fibonacci(n) + 0.5)); + + if (n<94) { // precise up to n = 78, less precise for n>78 up to n = 93, overflows for n>93 + cimg_uint64 + fn1 = (cimg_uint64)1304969544928657U, + fn2 = (cimg_uint64)806515533049393U, + fn = 0; + for (int i = 75; i<=n; ++i) { fn = fn1 + fn2; fn2 = fn1; fn1 = fn; } + return (double)fn; + } + return _fibonacci(n); // Not precise, but better than the wrong overflowing calculation + } + + //! Convert ascii character to lower case. + inline char lowercase(const char x) { + return (char)((x<'A'||x>'Z')?x:x - 'A' + 'a'); + } + inline double lowercase(const double x) { + return (double)((x<'A'||x>'Z')?x:x - 'A' + 'a'); + } + + //! Convert C-string to lower case. + inline void lowercase(char *const str) { + if (str) for (char *ptr = str; *ptr; ++ptr) *ptr = lowercase(*ptr); + } + + //! Convert ascii character to upper case. + inline char uppercase(const char x) { + return (char)((x<'a'||x>'z')?x:x - 'a' + 'A'); + } + + inline double uppercase(const double x) { + return (double)((x<'a'||x>'z')?x:x - 'a' + 'A'); + } + + //! Convert C-string to upper case. + inline void uppercase(char *const str) { + if (str) for (char *ptr = str; *ptr; ++ptr) *ptr = uppercase(*ptr); + } + + //! Read value in a C-string. + /** + \param str C-string containing the float value to read. + \return Read value. + \note Same as std::atof() extended to manage the retrieval of fractions from C-strings, + as in "1/2". + **/ + inline double atof(const char *const str) { + double x = 0, y = 1; + return str && cimg_sscanf(str,"%lf/%lf",&x,&y)>0?x/y:0; + } + + //! Compare the first \p l characters of two C-strings, ignoring the case. + /** + \param str1 C-string. + \param str2 C-string. + \param l Number of characters to compare. + \return \c 0 if the two strings are equal, something else otherwise. + \note This function has to be defined since it is not provided by all C++-compilers (not ANSI). + **/ + inline int strncasecmp(const char *const str1, const char *const str2, const int l) { + if (!l) return 0; + if (!str1) return str2?-1:0; + const char *nstr1 = str1, *nstr2 = str2; + int k, diff = 0; for (k = 0; kp && str[q]==delimiter; ) { --q; if (!is_iterative) break; } + } + const int n = q - p + 1; + if (n!=l) { std::memmove(str,str + p,(unsigned int)n); str[n] = 0; return true; } + return false; + } + + //! Remove white spaces on the start and/or end of a C-string. + inline bool strpare(char *const str, const bool is_symmetric, const bool is_iterative) { + if (!str) return false; + const int l = (int)std::strlen(str); + int p, q; + if (is_symmetric) for (p = 0, q = l - 1; pp && (signed char)str[q]<=' '; ) { --q; if (!is_iterative) break; } + } + const int n = q - p + 1; + if (n!=l) { std::memmove(str,str + p,(unsigned int)n); str[n] = 0; return true; } + return false; + } + + //! Replace reserved characters (for Windows filename) by another character. + /** + \param[in,out] str C-string to work with (modified at output). + \param[in] c Replacement character. + **/ + inline void strwindows_reserved(char *const str, const char c='_') { + for (char *s = str; *s; ++s) { + const char i = *s; + if (i=='<' || i=='>' || i==':' || i=='\"' || i=='/' || i=='\\' || i=='|' || i=='?' || i=='*') *s = c; + } + } + + //! Replace escape sequences in C-strings by their binary ascii values. + /** + \param[in,out] str C-string to work with (modified at output). + **/ + inline void strunescape(char *const str) { +#define cimg_strunescape(ci,co) case ci : *nd = co; ++ns; break; + unsigned int val = 0; + for (char *ns = str, *nd = str; *ns || (bool)(*nd=0); ++nd) if (*ns=='\\') switch (*(++ns)) { + cimg_strunescape('a','\a'); + cimg_strunescape('b','\b'); + cimg_strunescape('e',0x1B); + cimg_strunescape('f','\f'); + cimg_strunescape('n','\n'); + cimg_strunescape('r','\r'); + cimg_strunescape('t','\t'); + cimg_strunescape('v','\v'); + cimg_strunescape('\\','\\'); + cimg_strunescape('\'','\''); + cimg_strunescape('\"','\"'); + cimg_strunescape('\?','\?'); + case 0 : *nd = 0; break; + case '0' : case '1' : case '2' : case '3' : case '4' : case '5' : case '6' : case '7' : + cimg_sscanf(ns,"%o",&val); while (*ns>='0' && *ns<='7') ++ns; + *nd = (char)val; break; + case 'x' : + cimg_sscanf(++ns,"%x",&val); + while ((*ns>='0' && *ns<='9') || (*ns>='a' && *ns<='f') || (*ns>='A' && *ns<='F')) ++ns; + *nd = (char)val; break; + default : *nd = *(ns++); + } else *nd = *(ns++); + } + + // Return a temporary string describing the size of a memory buffer. + inline const char *strbuffersize(const cimg_ulong size); + + // Return string that identifies the running OS. + inline const char *stros() { +#if defined(linux) || defined(__linux) || defined(__linux__) + static const char *const str = "Linux"; +#elif defined(sun) || defined(__sun) + static const char *const str = "Sun OS"; +#elif defined(BSD) || defined(__OpenBSD__) || defined(__NetBSD__) || defined(__FreeBSD__) || defined (__DragonFly__) + static const char *const str = "BSD"; +#elif defined(sgi) || defined(__sgi) + static const char *const str = "Irix"; +#elif defined(__MACOSX__) || defined(__APPLE__) + static const char *const str = "Mac OS"; +#elif defined(unix) || defined(__unix) || defined(__unix__) + static const char *const str = "Generic Unix"; +#elif defined(_MSC_VER) || defined(WIN32) || defined(_WIN32) || defined(__WIN32__) || \ + defined(WIN64) || defined(_WIN64) || defined(__WIN64__) + static const char *const str = "Windows"; +#else + const char + *const _str1 = std::getenv("OSTYPE"), + *const _str2 = _str1?_str1:std::getenv("OS"), + *const str = _str2?_str2:"Unknown OS"; +#endif + return str; + } + + //! Return the basename of a filename. + inline const char* basename(const char *const s, const char separator=cimg_file_separator) { + const char *p = 0, *np = s; + while (np>=s && (p=np)) np = std::strchr(np,separator) + 1; + return p; + } + + // Return a random filename. + inline const char* filenamerand() { + cimg::mutex(6); + static char randomid[9]; + cimg::srand(); + for (unsigned int k = 0; k<8; ++k) { + const int v = (int)cimg::rand(65535)%3; + randomid[k] = (char)(v==0?('0' + ((int)cimg::rand(65535)%10)): + (v==1?('a' + ((int)cimg::rand(65535)%26)): + ('A' + ((int)cimg::rand(65535)%26)))); + } + cimg::mutex(6,0); + return randomid; + } + + // Convert filename as a Windows-style filename (short path name). + inline void winformat_string(char *const str) { + if (str && *str) { +#if cimg_OS==2 + char *const nstr = new char[MAX_PATH]; + if (GetShortPathNameA(str,nstr,MAX_PATH)) std::strcpy(str,nstr); + delete[] nstr; +#endif + } + } + + // Open a file (with wide character support on Windows). + inline std::FILE *win_fopen(const char *const path, const char *const mode); + + //! Open a file. + /** + \param path Path of the filename to open. + \param mode C-string describing the opening mode. + \return Opened file. + \note Same as std::fopen() but throw a \c CImgIOException when + the specified file cannot be opened, instead of returning \c 0. + **/ + inline std::FILE *fopen(const char *const path, const char *const mode) { + if (!path) + throw CImgArgumentException("cimg::fopen(): Specified file path is (null)."); + if (!mode) + throw CImgArgumentException("cimg::fopen(): File '%s', specified mode is (null).", + path); + std::FILE *res = 0; + if (*path=='-' && (!path[1] || path[1]=='.')) { + res = (*mode=='r')?cimg::_stdin():cimg::_stdout(); +#if cimg_OS==2 + if (*mode && mode[1]=='b') { // Force stdin/stdout to be in binary mode. +#ifdef __BORLANDC__ + if (setmode(_fileno(res),0x8000)==-1) res = 0; +#else + if (_setmode(_fileno(res),0x8000)==-1) res = 0; +#endif + } +#endif + } else res = std_fopen(path,mode); + if (!res) throw CImgIOException("cimg::fopen(): Failed to open file '%s' with mode '%s'.", + path,mode); + return res; + } + + //! Close a file. + /** + \param file File to close. + \return \c 0 if file has been closed properly, something else otherwise. + \note Same as std::fclose() but display a warning message if + the file has not been closed properly. + **/ + inline int fclose(std::FILE *file) { + if (!file) { warn("cimg::fclose(): Specified file is (null)."); return 0; } + if (file==cimg::_stdin(false) || file==cimg::_stdout(false)) return 0; + const int errn = std::fclose(file); + if (errn!=0) warn("cimg::fclose(): Error code %d returned during file closing.", + errn); + return errn; + } + + //! Version of 'fseek()' that supports >=64bits offsets everywhere (for Windows). + inline int fseek(FILE *stream, cimg_long offset, int origin) { +#if cimg_OS==2 + return _fseeki64(stream,(__int64)offset,origin); +#else + return std::fseek(stream,offset,origin); +#endif + } + + //! Version of 'ftell()' that supports >=64bits offsets everywhere (for Windows). + inline cimg_long ftell(FILE *stream) { +#if cimg_OS==2 + return (cimg_long)_ftelli64(stream); +#else + return (cimg_long)std::ftell(stream); +#endif + } + + //! Check if a path is a directory. + /** + \param path Specified path to test. + **/ + inline bool is_directory(const char *const path) { + if (!path || !*path) return false; +#if cimg_OS==1 + struct stat st_buf; + return (!stat(path,&st_buf) && S_ISDIR(st_buf.st_mode)); +#elif cimg_OS==2 + const unsigned int res = (unsigned int)GetFileAttributesA(path); + return res==INVALID_FILE_ATTRIBUTES?false:(res&16); +#else + return false; +#endif + } + + //! Check if a path is a file. + /** + \param path Specified path to test. + **/ + inline bool is_file(const char *const path) { + if (!path || !*path) return false; + std::FILE *const file = std_fopen(path,"rb"); + if (!file) return false; + std::fclose(file); + return !is_directory(path); + } + + //! Get last write time of a given file or directory. + /** + \param path Specified path to get attributes from. + \param attr Type of requested time attribute. + Can be { 0=year | 1=month | 2=day | 3=day of week | 4=hour | 5=minute | 6=second } + \return -1 if requested attribute could not be read. + **/ + inline int fdate(const char *const path, const unsigned int attr) { + int res = -1; + if (!path || !*path || attr>6) return -1; + cimg::mutex(6); +#if cimg_OS==2 + HANDLE file = CreateFileA(path,GENERIC_READ,0,0,OPEN_EXISTING,FILE_ATTRIBUTE_NORMAL,0); + if (file!=INVALID_HANDLE_VALUE) { + FILETIME _ft; + SYSTEMTIME ft; + if (GetFileTime(file,0,0,&_ft) && FileTimeToSystemTime(&_ft,&ft)) + res = (int)(attr==0?ft.wYear:attr==1?ft.wMonth:attr==2?ft.wDay:attr==3?ft.wDayOfWeek: + attr==4?ft.wHour:attr==5?ft.wMinute:ft.wSecond); + CloseHandle(file); + } +#elif cimg_OS==1 + struct stat st_buf; + if (!stat(path,&st_buf)) { + const time_t _ft = st_buf.st_mtime; + const struct tm& ft = *std::localtime(&_ft); + res = (int)(attr==0?ft.tm_year + 1900:attr==1?ft.tm_mon + 1:attr==2?ft.tm_mday:attr==3?ft.tm_wday: + attr==4?ft.tm_hour:attr==5?ft.tm_min:ft.tm_sec); + } +#endif + cimg::mutex(6,0); + return res; + } + + //! Get current local time. + /** + \param attr Type of requested time attribute. + Can be { 0=year | 1=month | 2=day | 3=day of week | 4=hour | 5=minute | 6=second } + **/ + inline int date(const unsigned int attr) { + int res; + cimg::mutex(6); +#if cimg_OS==2 + SYSTEMTIME st; + GetLocalTime(&st); + res = (int)(attr==0?st.wYear:attr==1?st.wMonth:attr==2?st.wDay:attr==3?st.wDayOfWeek: + attr==4?st.wHour:attr==5?st.wMinute:st.wSecond); +#else + time_t _st; + std::time(&_st); + struct tm *st = std::localtime(&_st); + res = (int)(attr==0?st->tm_year + 1900:attr==1?st->tm_mon + 1:attr==2?st->tm_mday:attr==3?st->tm_wday: + attr==4?st->tm_hour:attr==5?st->tm_min:st->tm_sec); +#endif + cimg::mutex(6,0); + return res; + } + + // Get/set path to store temporary files. + inline const char* temporary_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to the Program Files/ directory (Windows only). +#if cimg_OS==2 + inline const char* programfiles_path(const char *const user_path=0, const bool reinit_path=false); +#endif + + // Get/set path to the ImageMagick's \c convert binary. + inline const char* imagemagick_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to the GraphicsMagick's \c gm binary. + inline const char* graphicsmagick_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to the XMedcon's \c medcon binary. + inline const char* medcon_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to the FFMPEG's \c ffmpeg binary. + inline const char *ffmpeg_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to the \c gzip binary. + inline const char *gzip_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to the \c gunzip binary. + inline const char *gunzip_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to the \c dcraw binary. + inline const char *dcraw_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to the \c wget binary. + inline const char *wget_path(const char *const user_path=0, const bool reinit_path=false); + + // Get/set path to the \c curl binary. + inline const char *curl_path(const char *const user_path=0, const bool reinit_path=false); + + //! Split filename into two C-strings \c body and \c extension. + /** + filename and body must not overlap! + **/ + inline const char *split_filename(const char *const filename, char *const body=0) { + if (!filename) { if (body) *body = 0; return 0; } + const char *p = 0; for (const char *np = filename; np>=filename && (p=np); np = std::strchr(np,'.') + 1) {} + if (p==filename) { + if (body) std::strcpy(body,filename); + return filename + std::strlen(filename); + } + const unsigned int l = (unsigned int)(p - filename - 1); + if (body) { if (l) std::memcpy(body,filename,l); body[l] = 0; } + return p; + } + + //! Generate a numbered version of a filename. + inline char* number_filename(const char *const filename, const int number, + const unsigned int digits, char *const str) { + if (!filename) { if (str) *str = 0; return 0; } + char *const format = new char[1024], *const body = new char[1024]; + const char *const ext = cimg::split_filename(filename,body); + if (*ext) cimg_snprintf(format,1024,"%%s_%%.%ud.%%s",digits); + else cimg_snprintf(format,1024,"%%s_%%.%ud",digits); + cimg_sprintf(str,format,body,number,ext); + delete[] format; delete[] body; + return str; + } + + //! Read data from file. + /** + \param[out] ptr Pointer to memory buffer that will contain the binary data read from file. + \param nmemb Number of elements to read. + \param stream File to read data from. + \return Number of read elements. + \note Same as std::fread() but may display warning message if all elements could not be read. + **/ + template + inline size_t fread(T *const ptr, const size_t nmemb, std::FILE *stream) { + if (!ptr || !stream) + throw CImgArgumentException("cimg::fread(): Invalid reading request of %u %s%s from file %p to buffer %p.", + nmemb,cimg::type::string(),nmemb>1?"s":"",stream,ptr); + if (!nmemb) return 0; + const size_t wlimitT = 63*1024*1024, wlimit = wlimitT/sizeof(T); + size_t to_read = nmemb, al_read = 0, l_to_read = 0, l_al_read = 0; + do { + l_to_read = (to_read*sizeof(T))0); + if (to_read>0) + warn("cimg::fread(): Only %lu/%lu elements could be read from file.", + (unsigned long)al_read,(unsigned long)nmemb); + return al_read; + } + + //! Write data to file. + /** + \param ptr Pointer to memory buffer containing the binary data to write on file. + \param nmemb Number of elements to write. + \param[out] stream File to write data on. + \return Number of written elements. + \note Similar to std::fwrite but may display warning messages if all elements could not be written. + **/ + template + inline size_t fwrite(const T *ptr, const size_t nmemb, std::FILE *stream) { + if (!ptr || !stream) + throw CImgArgumentException("cimg::fwrite(): Invalid writing request of %u %s%s from buffer %p to file %p.", + nmemb,cimg::type::string(),nmemb>1?"s":"",ptr,stream); + if (!nmemb) return 0; + const size_t wlimitT = 63*1024*1024, wlimit = wlimitT/sizeof(T); + size_t to_write = nmemb, al_write = 0, l_to_write = 0, l_al_write = 0; + do { + l_to_write = (to_write*sizeof(T))0); + if (to_write>0) + warn("cimg::fwrite(): Only %lu/%lu elements could be written in file.", + (unsigned long)al_write,(unsigned long)nmemb); + return al_write; + } + + //! Create an empty file. + /** + \param file Input file (can be \c 0 if \c filename is set). + \param filename Filename, as a C-string (can be \c 0 if \c file is set). + **/ + inline void fempty(std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException("cimg::fempty(): Specified filename is (null)."); + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + if (!file) cimg::fclose(nfile); + } + + // Try to guess format from an image file. + inline const char *ftype(std::FILE *const file, const char *const filename); + + // Load file from network as a local temporary file. + inline char *load_network(const char *const url, char *const filename_local, + const unsigned int timeout=0, const bool try_fallback=false, + const char *const referer=0); + + //! Return options specified on the command line. + inline const char* option(const char *const name, const int argc, const char *const *const argv, + const char *const defaut, const char *const usage, const bool reset_static) { + static bool first = true, visu = false; + if (reset_static) { first = true; return 0; } + const char *res = 0; + if (first) { + first = false; + visu = cimg::option("-h",argc,argv,(char*)0,(char*)0,false)!=0; + visu |= cimg::option("-help",argc,argv,(char*)0,(char*)0,false)!=0; + visu |= cimg::option("--help",argc,argv,(char*)0,(char*)0,false)!=0; + } + if (!name && visu) { + if (usage) { + std::fprintf(cimg::output(),"\n %s%s%s",cimg::t_red,cimg::basename(argv[0]),cimg::t_normal); + std::fprintf(cimg::output(),": %s",usage); + std::fprintf(cimg::output()," (%s, %s)\n\n",cimg_date,cimg_time); + } + if (defaut) std::fprintf(cimg::output(),"%s\n",defaut); + } + if (name) { + if (argc>0) { + int k = 0; + while (k Operating System: %s%-13s%s %s('cimg_OS'=%d)%s\n", + cimg::t_bold, + cimg_OS==1?"Unix":(cimg_OS==2?"Windows":"Unknow"), + cimg::t_normal,cimg::t_green, + cimg_OS, + cimg::t_normal); + + std::fprintf(cimg::output()," > CPU endianness: %s%s Endian%s\n", + cimg::t_bold, + cimg::endianness()?"Big":"Little", + cimg::t_normal); + + std::fprintf(cimg::output()," > Verbosity mode: %s%-13s%s %s('cimg_verbosity'=%d)%s\n", + cimg::t_bold, + cimg_verbosity==0?"Quiet": + cimg_verbosity==1?"Console": + cimg_verbosity==2?"Dialog": + cimg_verbosity==3?"Console+Warnings":"Dialog+Warnings", + cimg::t_normal,cimg::t_green, + cimg_verbosity, + cimg::t_normal); + + std::fprintf(cimg::output()," > Stricts warnings: %s%-13s%s %s('cimg_strict_warnings' %s)%s\n", + cimg::t_bold, +#ifdef cimg_strict_warnings + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + + std::fprintf(cimg::output()," > Support for C++11: %s%-13s%s %s('cimg_use_cpp11'=%d)%s\n", + cimg::t_bold, + cimg_use_cpp11?"Yes":"No", + cimg::t_normal,cimg::t_green, + (int)cimg_use_cpp11, + cimg::t_normal); + + std::fprintf(cimg::output()," > Using VT100 messages: %s%-13s%s %s('cimg_use_vt100' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_vt100 + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + + std::fprintf(cimg::output()," > Display type: %s%-13s%s %s('cimg_display'=%d)%s\n", + cimg::t_bold, + cimg_display==0?"No display":cimg_display==1?"X11":cimg_display==2?"Windows GDI":"Unknown", + cimg::t_normal,cimg::t_green, + (int)cimg_display, + cimg::t_normal); + +#if cimg_display==1 + std::fprintf(cimg::output()," > Using XShm for X11: %s%-13s%s %s('cimg_use_xshm' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_xshm + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + + std::fprintf(cimg::output()," > Using XRand for X11: %s%-13s%s %s('cimg_use_xrandr' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_xrandr + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); +#endif + std::fprintf(cimg::output()," > Using OpenMP: %s%-13s%s %s('cimg_use_openmp' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_openmp + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + std::fprintf(cimg::output()," > Using PNG library: %s%-13s%s %s('cimg_use_png' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_png + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + std::fprintf(cimg::output()," > Using JPEG library: %s%-13s%s %s('cimg_use_jpeg' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_jpeg + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + + std::fprintf(cimg::output()," > Using TIFF library: %s%-13s%s %s('cimg_use_tiff' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_tiff + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + + std::fprintf(cimg::output()," > Using Magick++ library: %s%-13s%s %s('cimg_use_magick' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_magick + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + + std::fprintf(cimg::output()," > Using FFTW3 library: %s%-13s%s %s('cimg_use_fftw3' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_fftw3 + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + + std::fprintf(cimg::output()," > Using LAPACK library: %s%-13s%s %s('cimg_use_lapack' %s)%s\n", + cimg::t_bold, +#ifdef cimg_use_lapack + "Yes",cimg::t_normal,cimg::t_green,"defined", +#else + "No",cimg::t_normal,cimg::t_green,"undefined", +#endif + cimg::t_normal); + + char *const tmp = new char[1024]; + cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::imagemagick_path()); + std::fprintf(cimg::output()," > Path of ImageMagick: %s%-13s%s\n", + cimg::t_bold, + tmp, + cimg::t_normal); + + cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::graphicsmagick_path()); + std::fprintf(cimg::output()," > Path of GraphicsMagick: %s%-13s%s\n", + cimg::t_bold, + tmp, + cimg::t_normal); + + cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::medcon_path()); + std::fprintf(cimg::output()," > Path of 'medcon': %s%-13s%s\n", + cimg::t_bold, + tmp, + cimg::t_normal); + + cimg_snprintf(tmp,1024,"\"%.1020s\"",cimg::temporary_path()); + std::fprintf(cimg::output()," > Temporary path: %s%-13s%s\n", + cimg::t_bold, + tmp, + cimg::t_normal); + + std::fprintf(cimg::output(),"\n"); + delete[] tmp; + } + + // Declare LAPACK function signatures if LAPACK support is enabled. +#ifdef cimg_use_lapack + template + inline void getrf(int &N, T *lapA, int *IPIV, int &INFO) { + dgetrf_(&N,&N,lapA,&N,IPIV,&INFO); + } + + inline void getrf(int &N, float *lapA, int *IPIV, int &INFO) { + sgetrf_(&N,&N,lapA,&N,IPIV,&INFO); + } + + template + inline void getri(int &N, T *lapA, int *IPIV, T* WORK, int &LWORK, int &INFO) { + dgetri_(&N,lapA,&N,IPIV,WORK,&LWORK,&INFO); + } + + inline void getri(int &N, float *lapA, int *IPIV, float* WORK, int &LWORK, int &INFO) { + sgetri_(&N,lapA,&N,IPIV,WORK,&LWORK,&INFO); + } + + template + inline void gesvd(char &JOB, int &M, int &N, T *lapA, int &MN, + T *lapS, T *lapU, T *lapV, T *WORK, int &LWORK, int &INFO) { + dgesvd_(&JOB,&JOB,&M,&N,lapA,&MN,lapS,lapU,&M,lapV,&N,WORK,&LWORK,&INFO); + } + + inline void gesvd(char &JOB, int &M, int &N, float *lapA, int &MN, + float *lapS, float *lapU, float *lapV, float *WORK, int &LWORK, int &INFO) { + sgesvd_(&JOB,&JOB,&M,&N,lapA,&MN,lapS,lapU,&M,lapV,&N,WORK,&LWORK,&INFO); + } + + template + inline void getrs(char &TRANS, int &N, T *lapA, int *IPIV, T *lapB, int &INFO) { + int one = 1; + dgetrs_(&TRANS,&N,&one,lapA,&N,IPIV,lapB,&N,&INFO); + } + + inline void getrs(char &TRANS, int &N, float *lapA, int *IPIV, float *lapB, int &INFO) { + int one = 1; + sgetrs_(&TRANS,&N,&one,lapA,&N,IPIV,lapB,&N,&INFO); + } + + template + inline void syev(char &JOB, char &UPLO, int &N, T *lapA, T *lapW, T *WORK, int &LWORK, int &INFO) { + dsyev_(&JOB,&UPLO,&N,lapA,&N,lapW,WORK,&LWORK,&INFO); + } + + inline void syev(char &JOB, char &UPLO, int &N, float *lapA, float *lapW, float *WORK, int &LWORK, int &INFO) { + ssyev_(&JOB,&UPLO,&N,lapA,&N,lapW,WORK,&LWORK,&INFO); + } + + template + inline void sgels(char & TRANS, int &M, int &N, int &NRHS, T* lapA, int &LDA, + T* lapB, int &LDB, T* WORK, int &LWORK, int &INFO){ + dgels_(&TRANS, &M, &N, &NRHS, lapA, &LDA, lapB, &LDB, WORK, &LWORK, &INFO); + } + + inline void sgels(char & TRANS, int &M, int &N, int &NRHS, float* lapA, int &LDA, + float* lapB, int &LDB, float* WORK, int &LWORK, int &INFO){ + sgels_(&TRANS, &M, &N, &NRHS, lapA, &LDA, lapB, &LDB, WORK, &LWORK, &INFO); + } + +#endif + + // End of the 'cimg' namespace + } + + /*------------------------------------------------ + # + # + # Definition of mathematical operators and + # external functions. + # + # + -------------------------------------------------*/ + +#define _cimg_create_ext_operators(typ) \ + template \ + inline CImg::type> operator+(const typ val, const CImg& img) { \ + return img + val; \ + } \ + template \ + inline CImg::type> operator-(const typ val, const CImg& img) { \ + typedef typename cimg::superset::type Tt; \ + return CImg(img._width,img._height,img._depth,img._spectrum,val)-=img; \ + } \ + template \ + inline CImg::type> operator*(const typ val, const CImg& img) { \ + return img*val; \ + } \ + template \ + inline CImg::type> operator/(const typ val, const CImg& img) { \ + return val*img.get_invert(); \ + } \ + template \ + inline CImg::type> operator&(const typ val, const CImg& img) { \ + return img & val; \ + } \ + template \ + inline CImg::type> operator|(const typ val, const CImg& img) { \ + return img | val; \ + } \ + template \ + inline CImg::type> operator^(const typ val, const CImg& img) { \ + return img ^ val; \ + } \ + template \ + inline bool operator==(const typ val, const CImg& img) { \ + return img == val; \ + } \ + template \ + inline bool operator!=(const typ val, const CImg& img) { \ + return img != val; \ + } + + _cimg_create_ext_operators(bool) + _cimg_create_ext_operators(unsigned char) + _cimg_create_ext_operators(char) + _cimg_create_ext_operators(signed char) + _cimg_create_ext_operators(unsigned short) + _cimg_create_ext_operators(short) + _cimg_create_ext_operators(unsigned int) + _cimg_create_ext_operators(int) + _cimg_create_ext_operators(cimg_uint64) + _cimg_create_ext_operators(cimg_int64) + _cimg_create_ext_operators(float) + _cimg_create_ext_operators(double) + _cimg_create_ext_operators(long double) + + template + inline CImg<_cimg_Tfloat> operator+(const char *const expression, const CImg& img) { + return img + expression; + } + + template + inline CImg<_cimg_Tfloat> operator-(const char *const expression, const CImg& img) { + return CImg<_cimg_Tfloat>(img,false).fill(expression,true)-=img; + } + + template + inline CImg<_cimg_Tfloat> operator*(const char *const expression, const CImg& img) { + return img*expression; + } + + template + inline CImg<_cimg_Tfloat> operator/(const char *const expression, const CImg& img) { + return expression*img.get_invert(); + } + + template + inline CImg operator&(const char *const expression, const CImg& img) { + return img & expression; + } + + template + inline CImg operator|(const char *const expression, const CImg& img) { + return img | expression; + } + + template + inline CImg operator^(const char *const expression, const CImg& img) { + return img ^ expression; + } + + template + inline bool operator==(const char *const expression, const CImg& img) { + return img==expression; + } + + template + inline bool operator!=(const char *const expression, const CImg& img) { + return img!=expression; + } + + template + inline CImg<_cimg_Tfloat> sqr(const CImg& instance) { + return instance.get_sqr(); + } + + template + inline CImg<_cimg_Tfloat> sqrt(const CImg& instance) { + return instance.get_sqrt(); + } + + template + inline CImg<_cimg_Tfloat> exp(const CImg& instance) { + return instance.get_exp(); + } + + template + inline CImg<_cimg_Tfloat> log(const CImg& instance) { + return instance.get_log(); + } + + template + inline CImg<_cimg_Tfloat> log2(const CImg& instance) { + return instance.get_log2(); + } + + template + inline CImg<_cimg_Tfloat> log10(const CImg& instance) { + return instance.get_log10(); + } + + template + inline CImg<_cimg_Tfloat> abs(const CImg& instance) { + return instance.get_abs(); + } + + template + inline CImg<_cimg_Tfloat> sign(const CImg& instance) { + return instance.get_sign(); + } + + template + inline CImg<_cimg_Tfloat> cos(const CImg& instance) { + return instance.get_cos(); + } + + template + inline CImg<_cimg_Tfloat> sin(const CImg& instance) { + return instance.get_sin(); + } + + template + inline CImg<_cimg_Tfloat> sinc(const CImg& instance) { + return instance.get_sinc(); + } + + template + inline CImg<_cimg_Tfloat> tan(const CImg& instance) { + return instance.get_tan(); + } + + template + inline CImg<_cimg_Tfloat> acos(const CImg& instance) { + return instance.get_acos(); + } + + template + inline CImg<_cimg_Tfloat> asin(const CImg& instance) { + return instance.get_asin(); + } + + template + inline CImg<_cimg_Tfloat> atan(const CImg& instance) { + return instance.get_atan(); + } + + template + inline CImg<_cimg_Tfloat> cosh(const CImg& instance) { + return instance.get_cosh(); + } + + template + inline CImg<_cimg_Tfloat> sinh(const CImg& instance) { + return instance.get_sinh(); + } + + template + inline CImg<_cimg_Tfloat> tanh(const CImg& instance) { + return instance.get_tanh(); + } + + template + inline CImg transpose(const CImg& instance) { + return instance.get_transpose(); + } + + template + inline CImg<_cimg_Tfloat> invert(const CImg& instance) { + return instance.get_invert(); + } + + template + inline CImg<_cimg_Tfloat> pseudoinvert(const CImg& instance) { + return instance.get_pseudoinvert(); + } + + /*----------------------------------- + # + # Define the CImgDisplay structure + # + ----------------------------------*/ + //! Allow the creation of windows, display images on them and manage user events (keyboard, mouse and windows events). + /** + CImgDisplay methods rely on a low-level graphic library to perform: it can be either \b X-Window + (X11, for Unix-based systems) or \b GDI32 (for Windows-based systems). + If both libraries are missing, CImgDisplay will not be able to display images on screen, and will enter + a minimal mode where warning messages will be outputed each time the program is trying to call one of the + CImgDisplay method. + + The configuration variable \c cimg_display tells about the graphic library used. + It is set automatically by \CImg when one of these graphic libraries has been detected. + But, you can override its value if necessary. Valid choices are: + - 0: Disable display capabilities. + - 1: Use \b X-Window (X11) library. + - 2: Use \b GDI32 library. + + Remember to link your program against \b X11 or \b GDI32 libraries if you use CImgDisplay. + **/ + struct CImgDisplay { + cimg_ulong _timer, _fps_frames, _fps_timer; + unsigned int _width, _height, _normalization; + float _fps_fps, _min, _max; + bool _is_fullscreen; + char *_title; + unsigned int _window_width, _window_height, _button, *_keys, *_released_keys; + int _window_x, _window_y, _mouse_x, _mouse_y, _wheel; + bool _is_closed, _is_resized, _is_moved, _is_event, + _is_keyESC, _is_keyF1, _is_keyF2, _is_keyF3, _is_keyF4, _is_keyF5, _is_keyF6, _is_keyF7, + _is_keyF8, _is_keyF9, _is_keyF10, _is_keyF11, _is_keyF12, _is_keyPAUSE, _is_key1, _is_key2, + _is_key3, _is_key4, _is_key5, _is_key6, _is_key7, _is_key8, _is_key9, _is_key0, + _is_keyBACKSPACE, _is_keyINSERT, _is_keyHOME, _is_keyPAGEUP, _is_keyTAB, _is_keyQ, _is_keyW, _is_keyE, + _is_keyR, _is_keyT, _is_keyY, _is_keyU, _is_keyI, _is_keyO, _is_keyP, _is_keyDELETE, + _is_keyEND, _is_keyPAGEDOWN, _is_keyCAPSLOCK, _is_keyA, _is_keyS, _is_keyD, _is_keyF, _is_keyG, + _is_keyH, _is_keyJ, _is_keyK, _is_keyL, _is_keyENTER, _is_keySHIFTLEFT, _is_keyZ, _is_keyX, + _is_keyC, _is_keyV, _is_keyB, _is_keyN, _is_keyM, _is_keySHIFTRIGHT, _is_keyARROWUP, _is_keyCTRLLEFT, + _is_keyAPPLEFT, _is_keyALT, _is_keySPACE, _is_keyALTGR, _is_keyAPPRIGHT, _is_keyMENU, _is_keyCTRLRIGHT, + _is_keyARROWLEFT, _is_keyARROWDOWN, _is_keyARROWRIGHT, _is_keyPAD0, _is_keyPAD1, _is_keyPAD2, _is_keyPAD3, + _is_keyPAD4, _is_keyPAD5, _is_keyPAD6, _is_keyPAD7, _is_keyPAD8, _is_keyPAD9, _is_keyPADADD, _is_keyPADSUB, + _is_keyPADMUL, _is_keyPADDIV; + + //@} + //--------------------------- + // + //! \name Plugins + //@{ + //--------------------------- + +#ifdef cimgdisplay_plugin +#include cimgdisplay_plugin +#endif +#ifdef cimgdisplay_plugin1 +#include cimgdisplay_plugin1 +#endif +#ifdef cimgdisplay_plugin2 +#include cimgdisplay_plugin2 +#endif +#ifdef cimgdisplay_plugin3 +#include cimgdisplay_plugin3 +#endif +#ifdef cimgdisplay_plugin4 +#include cimgdisplay_plugin4 +#endif +#ifdef cimgdisplay_plugin5 +#include cimgdisplay_plugin5 +#endif +#ifdef cimgdisplay_plugin6 +#include cimgdisplay_plugin6 +#endif +#ifdef cimgdisplay_plugin7 +#include cimgdisplay_plugin7 +#endif +#ifdef cimgdisplay_plugin8 +#include cimgdisplay_plugin8 +#endif + + //@} + //-------------------------------------------------------- + // + //! \name Constructors / Destructor / Instance Management + //@{ + //-------------------------------------------------------- + + //! Destructor. + /** + \note If the associated window is visible on the screen, it is closed by the call to the destructor. + **/ + ~CImgDisplay() { + assign(); + delete[] _keys; + delete[] _released_keys; + } + + //! Construct an empty display. + /** + \note Constructing an empty CImgDisplay instance does not make a window appearing on the screen, until + display of valid data is performed. + \par Example + \code + CImgDisplay disp; // Does actually nothing. + ... + disp.display(img); // Construct new window and display image in it. + \endcode + **/ + CImgDisplay(): + _width(0),_height(0),_normalization(0), + _min(0),_max(0), + _is_fullscreen(false), + _title(0), + _window_width(0),_window_height(0),_button(0), + _keys(new unsigned int[128]),_released_keys(new unsigned int[128]), + _window_x(0),_window_y(0),_mouse_x(-1),_mouse_y(-1),_wheel(0), + _is_closed(true),_is_resized(false),_is_moved(false),_is_event(false) { + assign(); + } + + //! Construct a display with specified dimensions. + /** \param width Window width. + \param height Window height. + \param title Window title. + \param normalization Normalization type + (0=none, 1=always, 2=once, 3=pixel type-dependent, see normalization()). + \param is_fullscreen Tells if fullscreen mode is enabled. + \param is_closed Tells if associated window is initially visible or not. + \note A black background is initially displayed on the associated window. + **/ + CImgDisplay(const unsigned int width, const unsigned int height, + const char *const title=0, const unsigned int normalization=3, + const bool is_fullscreen=false, const bool is_closed=false): + _width(0),_height(0),_normalization(0), + _min(0),_max(0), + _is_fullscreen(false), + _title(0), + _window_width(0),_window_height(0),_button(0), + _keys(new unsigned int[128]),_released_keys(new unsigned int[128]), + _window_x(0),_window_y(0),_mouse_x(-1),_mouse_y(-1),_wheel(0), + _is_closed(true),_is_resized(false),_is_moved(false),_is_event(false) { + assign(width,height,title,normalization,is_fullscreen,is_closed); + } + + //! Construct a display from an image. + /** \param img Image used as a model to create the window. + \param title Window title. + \param normalization Normalization type + (0=none, 1=always, 2=once, 3=pixel type-dependent, see normalization()). + \param is_fullscreen Tells if fullscreen mode is enabled. + \param is_closed Tells if associated window is initially visible or not. + \note The pixels of the input image are initially displayed on the associated window. + **/ + template + explicit CImgDisplay(const CImg& img, + const char *const title=0, const unsigned int normalization=3, + const bool is_fullscreen=false, const bool is_closed=false): + _width(0),_height(0),_normalization(0), + _min(0),_max(0), + _is_fullscreen(false), + _title(0), + _window_width(0),_window_height(0),_button(0), + _keys(new unsigned int[128]),_released_keys(new unsigned int[128]), + _window_x(0),_window_y(0),_mouse_x(-1),_mouse_y(-1),_wheel(0), + _is_closed(true),_is_resized(false),_is_moved(false),_is_event(false) { + assign(img,title,normalization,is_fullscreen,is_closed); + } + + //! Construct a display from an image list. + /** \param list The images list to display. + \param title Window title. + \param normalization Normalization type + (0=none, 1=always, 2=once, 3=pixel type-dependent, see normalization()). + \param is_fullscreen Tells if fullscreen mode is enabled. + \param is_closed Tells if associated window is initially visible or not. + \note All images of the list, appended along the X-axis, are initially displayed on the associated window. + **/ + template + explicit CImgDisplay(const CImgList& list, + const char *const title=0, const unsigned int normalization=3, + const bool is_fullscreen=false, const bool is_closed=false): + _width(0),_height(0),_normalization(0), + _min(0),_max(0), + _is_fullscreen(false), + _title(0), + _window_width(0),_window_height(0),_button(0), + _keys(new unsigned int[128]),_released_keys(new unsigned int[128]), + _window_x(0),_window_y(0),_mouse_x(-1),_mouse_y(-1),_wheel(0), + _is_closed(true),_is_resized(false),_is_moved(false),_is_event(false) { + assign(list,title,normalization,is_fullscreen,is_closed); + } + + //! Construct a display as a copy of an existing one. + /** + \param disp Display instance to copy. + \note The pixel buffer of the input window is initially displayed on the associated window. + **/ + CImgDisplay(const CImgDisplay& disp): + _width(0),_height(0),_normalization(0), + _min(0),_max(0), + _is_fullscreen(false), + _title(0), + _window_width(0),_window_height(0),_button(0), + _keys(new unsigned int[128]),_released_keys(new unsigned int[128]), + _window_x(0),_window_y(0),_mouse_x(-1),_mouse_y(-1),_wheel(0), + _is_closed(true),_is_resized(false),_is_moved(false),_is_event(false) { + assign(disp); + } + + //! Take a screenshot. + /** + \param[out] img Output screenshot. Can be empty on input + **/ + template + static void screenshot(CImg& img) { + return screenshot(0,0,cimg::type::max(),cimg::type::max(),img); + } + +#if cimg_display==0 + + static void _no_display_exception() { + throw CImgDisplayException("CImgDisplay(): No display available."); + } + + //! Destructor - Empty constructor \inplace. + /** + \note Replace the current instance by an empty display. + **/ + CImgDisplay& assign() { + return flush(); + } + + //! Construct a display with specified dimensions \inplace. + /** + **/ + CImgDisplay& assign(const unsigned int width, const unsigned int height, + const char *const title=0, const unsigned int normalization=3, + const bool is_fullscreen=false, const bool is_closed=false) { + cimg::unused(width,height,title,normalization,is_fullscreen,is_closed); + _no_display_exception(); + return assign(); + } + + //! Construct a display from an image \inplace. + /** + **/ + template + CImgDisplay& assign(const CImg& img, + const char *const title=0, const unsigned int normalization=3, + const bool is_fullscreen=false, const bool is_closed=false) { + _no_display_exception(); + return assign(img._width,img._height,title,normalization,is_fullscreen,is_closed); + } + + //! Construct a display from an image list \inplace. + /** + **/ + template + CImgDisplay& assign(const CImgList& list, + const char *const title=0, const unsigned int normalization=3, + const bool is_fullscreen=false, const bool is_closed=false) { + _no_display_exception(); + return assign(list._width,list._width,title,normalization,is_fullscreen,is_closed); + } + + //! Construct a display as a copy of another one \inplace. + /** + **/ + CImgDisplay& assign(const CImgDisplay &disp) { + _no_display_exception(); + return assign(disp._width,disp._height); + } + +#endif + + //! Return a reference to an empty display. + /** + \note Can be useful for writing function prototypes where one of the argument (of type CImgDisplay&) + must have a default value. + \par Example + \code + void foo(CImgDisplay& disp=CImgDisplay::empty()); + \endcode + **/ + static CImgDisplay& empty() { + static CImgDisplay _empty; + return _empty.assign(); + } + + //! Return a reference to an empty display \const. + static const CImgDisplay& const_empty() { + static const CImgDisplay _empty; + return _empty; + } + +#define cimg_fitscreen(dx,dy,dz) CImgDisplay::_fitscreen(dx,dy,dz,128,-85,false), \ + CImgDisplay::_fitscreen(dx,dy,dz,128,-85,true) + static unsigned int _fitscreen(const unsigned int dx, const unsigned int dy, const unsigned int dz, + const int dmin, const int dmax,const bool return_y) { + const unsigned int _nw = dx + (dz>1?dz:0), _nh = dy + (dz>1?dz:0); + unsigned int nw = _nw?_nw:1, nh = _nh?_nh:1; + const unsigned int + sw = (unsigned int)CImgDisplay::screen_width(), + sh = (unsigned int)CImgDisplay::screen_height(), + mw = dmin<0?(unsigned int)(sw*-dmin/100):(unsigned int)dmin, + mh = dmin<0?(unsigned int)(sh*-dmin/100):(unsigned int)dmin, + Mw = dmax<0?(unsigned int)(sw*-dmax/100):(unsigned int)dmax, + Mh = dmax<0?(unsigned int)(sh*-dmax/100):(unsigned int)dmax; + if (nwMw) { nh = nh*Mw/nw; nh+=(nh==0); nw = Mw; } + if (nh>Mh) { nw = nw*Mh/nh; nw+=(nw==0); nh = Mh; } + if (nwdisp = img is equivalent to disp.display(img). + **/ + template + CImgDisplay& operator=(const CImg& img) { + return display(img); + } + + //! Display list of images on associated window. + /** + \note disp = list is equivalent to disp.display(list). + **/ + template + CImgDisplay& operator=(const CImgList& list) { + return display(list); + } + + //! Construct a display as a copy of another one \inplace. + /** + \note Equivalent to assign(const CImgDisplay&). + **/ + CImgDisplay& operator=(const CImgDisplay& disp) { + return assign(disp); + } + + //! Return \c false if display is empty, \c true otherwise. + /** + \note if (disp) { ... } is equivalent to if (!disp.is_empty()) { ... }. + **/ + operator bool() const { + return !is_empty(); + } + + //@} + //------------------------------------------ + // + //! \name Instance Checking + //@{ + //------------------------------------------ + + //! Return \c true if display is empty, \c false otherwise. + /** + **/ + bool is_empty() const { + return !(_width && _height); + } + + //! Return \c true if display is closed (i.e. not visible on the screen), \c false otherwise. + /** + \note + - When a user physically closes the associated window, the display is set to closed. + - A closed display is not destroyed. Its associated window can be show again on the screen using show(). + **/ + bool is_closed() const { + return _is_closed; + } + + //! Return \c true if associated window has been resized on the screen, \c false otherwise. + /** + **/ + bool is_resized() const { + return _is_resized; + } + + //! Return \c true if associated window has been moved on the screen, \c false otherwise. + /** + **/ + bool is_moved() const { + return _is_moved; + } + + //! Return \c true if any event has occured on the associated window, \c false otherwise. + /** + **/ + bool is_event() const { + return _is_event; + } + + //! Return \c true if current display is in fullscreen mode, \c false otherwise. + /** + **/ + bool is_fullscreen() const { + return _is_fullscreen; + } + + //! Return \c true if any key is being pressed on the associated window, \c false otherwise. + /** + \note The methods below do the same only for specific keys. + **/ + bool is_key() const { + return _is_keyESC || _is_keyF1 || _is_keyF2 || _is_keyF3 || + _is_keyF4 || _is_keyF5 || _is_keyF6 || _is_keyF7 || + _is_keyF8 || _is_keyF9 || _is_keyF10 || _is_keyF11 || + _is_keyF12 || _is_keyPAUSE || _is_key1 || _is_key2 || + _is_key3 || _is_key4 || _is_key5 || _is_key6 || + _is_key7 || _is_key8 || _is_key9 || _is_key0 || + _is_keyBACKSPACE || _is_keyINSERT || _is_keyHOME || + _is_keyPAGEUP || _is_keyTAB || _is_keyQ || _is_keyW || + _is_keyE || _is_keyR || _is_keyT || _is_keyY || + _is_keyU || _is_keyI || _is_keyO || _is_keyP || + _is_keyDELETE || _is_keyEND || _is_keyPAGEDOWN || + _is_keyCAPSLOCK || _is_keyA || _is_keyS || _is_keyD || + _is_keyF || _is_keyG || _is_keyH || _is_keyJ || + _is_keyK || _is_keyL || _is_keyENTER || + _is_keySHIFTLEFT || _is_keyZ || _is_keyX || _is_keyC || + _is_keyV || _is_keyB || _is_keyN || _is_keyM || + _is_keySHIFTRIGHT || _is_keyARROWUP || _is_keyCTRLLEFT || + _is_keyAPPLEFT || _is_keyALT || _is_keySPACE || _is_keyALTGR || + _is_keyAPPRIGHT || _is_keyMENU || _is_keyCTRLRIGHT || + _is_keyARROWLEFT || _is_keyARROWDOWN || _is_keyARROWRIGHT || + _is_keyPAD0 || _is_keyPAD1 || _is_keyPAD2 || + _is_keyPAD3 || _is_keyPAD4 || _is_keyPAD5 || + _is_keyPAD6 || _is_keyPAD7 || _is_keyPAD8 || + _is_keyPAD9 || _is_keyPADADD || _is_keyPADSUB || + _is_keyPADMUL || _is_keyPADDIV; + } + + //! Return \c true if key specified by given keycode is being pressed on the associated window, \c false otherwise. + /** + \param keycode Keycode to test. + \note Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure + your code stay portable (see cimg::keyESC). + \par Example + \code + CImgDisplay disp(400,400); + while (!disp.is_closed()) { + if (disp.key(cimg::keyTAB)) { ... } // Equivalent to 'if (disp.is_keyTAB())'. + disp.wait(); + } + \endcode + **/ + bool is_key(const unsigned int keycode) const { +#define _cimg_iskey_test(k) if (keycode==cimg::key##k) return _is_key##k; + _cimg_iskey_test(ESC); _cimg_iskey_test(F1); _cimg_iskey_test(F2); _cimg_iskey_test(F3); + _cimg_iskey_test(F4); _cimg_iskey_test(F5); _cimg_iskey_test(F6); _cimg_iskey_test(F7); + _cimg_iskey_test(F8); _cimg_iskey_test(F9); _cimg_iskey_test(F10); _cimg_iskey_test(F11); + _cimg_iskey_test(F12); _cimg_iskey_test(PAUSE); _cimg_iskey_test(1); _cimg_iskey_test(2); + _cimg_iskey_test(3); _cimg_iskey_test(4); _cimg_iskey_test(5); _cimg_iskey_test(6); + _cimg_iskey_test(7); _cimg_iskey_test(8); _cimg_iskey_test(9); _cimg_iskey_test(0); + _cimg_iskey_test(BACKSPACE); _cimg_iskey_test(INSERT); _cimg_iskey_test(HOME); + _cimg_iskey_test(PAGEUP); _cimg_iskey_test(TAB); _cimg_iskey_test(Q); _cimg_iskey_test(W); + _cimg_iskey_test(E); _cimg_iskey_test(R); _cimg_iskey_test(T); _cimg_iskey_test(Y); + _cimg_iskey_test(U); _cimg_iskey_test(I); _cimg_iskey_test(O); _cimg_iskey_test(P); + _cimg_iskey_test(DELETE); _cimg_iskey_test(END); _cimg_iskey_test(PAGEDOWN); + _cimg_iskey_test(CAPSLOCK); _cimg_iskey_test(A); _cimg_iskey_test(S); _cimg_iskey_test(D); + _cimg_iskey_test(F); _cimg_iskey_test(G); _cimg_iskey_test(H); _cimg_iskey_test(J); + _cimg_iskey_test(K); _cimg_iskey_test(L); _cimg_iskey_test(ENTER); + _cimg_iskey_test(SHIFTLEFT); _cimg_iskey_test(Z); _cimg_iskey_test(X); _cimg_iskey_test(C); + _cimg_iskey_test(V); _cimg_iskey_test(B); _cimg_iskey_test(N); _cimg_iskey_test(M); + _cimg_iskey_test(SHIFTRIGHT); _cimg_iskey_test(ARROWUP); _cimg_iskey_test(CTRLLEFT); + _cimg_iskey_test(APPLEFT); _cimg_iskey_test(ALT); _cimg_iskey_test(SPACE); _cimg_iskey_test(ALTGR); + _cimg_iskey_test(APPRIGHT); _cimg_iskey_test(MENU); _cimg_iskey_test(CTRLRIGHT); + _cimg_iskey_test(ARROWLEFT); _cimg_iskey_test(ARROWDOWN); _cimg_iskey_test(ARROWRIGHT); + _cimg_iskey_test(PAD0); _cimg_iskey_test(PAD1); _cimg_iskey_test(PAD2); + _cimg_iskey_test(PAD3); _cimg_iskey_test(PAD4); _cimg_iskey_test(PAD5); + _cimg_iskey_test(PAD6); _cimg_iskey_test(PAD7); _cimg_iskey_test(PAD8); + _cimg_iskey_test(PAD9); _cimg_iskey_test(PADADD); _cimg_iskey_test(PADSUB); + _cimg_iskey_test(PADMUL); _cimg_iskey_test(PADDIV); + return false; + } + + //! Return \c true if key specified by given keycode is being pressed on the associated window, \c false otherwise. + /** + \param keycode C-string containing the keycode label of the key to test. + \note Use it when the key you want to test can be dynamically set by the user. + \par Example + \code + CImgDisplay disp(400,400); + const char *const keycode = "TAB"; + while (!disp.is_closed()) { + if (disp.is_key(keycode)) { ... } // Equivalent to 'if (disp.is_keyTAB())'. + disp.wait(); + } + \endcode + **/ + bool& is_key(const char *const keycode) { + static bool f = false; + f = false; +#define _cimg_iskey_test2(k) if (!cimg::strcasecmp(keycode,#k)) return _is_key##k; + _cimg_iskey_test2(ESC); _cimg_iskey_test2(F1); _cimg_iskey_test2(F2); _cimg_iskey_test2(F3); + _cimg_iskey_test2(F4); _cimg_iskey_test2(F5); _cimg_iskey_test2(F6); _cimg_iskey_test2(F7); + _cimg_iskey_test2(F8); _cimg_iskey_test2(F9); _cimg_iskey_test2(F10); _cimg_iskey_test2(F11); + _cimg_iskey_test2(F12); _cimg_iskey_test2(PAUSE); _cimg_iskey_test2(1); _cimg_iskey_test2(2); + _cimg_iskey_test2(3); _cimg_iskey_test2(4); _cimg_iskey_test2(5); _cimg_iskey_test2(6); + _cimg_iskey_test2(7); _cimg_iskey_test2(8); _cimg_iskey_test2(9); _cimg_iskey_test2(0); + _cimg_iskey_test2(BACKSPACE); _cimg_iskey_test2(INSERT); _cimg_iskey_test2(HOME); + _cimg_iskey_test2(PAGEUP); _cimg_iskey_test2(TAB); _cimg_iskey_test2(Q); _cimg_iskey_test2(W); + _cimg_iskey_test2(E); _cimg_iskey_test2(R); _cimg_iskey_test2(T); _cimg_iskey_test2(Y); + _cimg_iskey_test2(U); _cimg_iskey_test2(I); _cimg_iskey_test2(O); _cimg_iskey_test2(P); + _cimg_iskey_test2(DELETE); _cimg_iskey_test2(END); _cimg_iskey_test2(PAGEDOWN); + _cimg_iskey_test2(CAPSLOCK); _cimg_iskey_test2(A); _cimg_iskey_test2(S); _cimg_iskey_test2(D); + _cimg_iskey_test2(F); _cimg_iskey_test2(G); _cimg_iskey_test2(H); _cimg_iskey_test2(J); + _cimg_iskey_test2(K); _cimg_iskey_test2(L); _cimg_iskey_test2(ENTER); + _cimg_iskey_test2(SHIFTLEFT); _cimg_iskey_test2(Z); _cimg_iskey_test2(X); _cimg_iskey_test2(C); + _cimg_iskey_test2(V); _cimg_iskey_test2(B); _cimg_iskey_test2(N); _cimg_iskey_test2(M); + _cimg_iskey_test2(SHIFTRIGHT); _cimg_iskey_test2(ARROWUP); _cimg_iskey_test2(CTRLLEFT); + _cimg_iskey_test2(APPLEFT); _cimg_iskey_test2(ALT); _cimg_iskey_test2(SPACE); _cimg_iskey_test2(ALTGR); + _cimg_iskey_test2(APPRIGHT); _cimg_iskey_test2(MENU); _cimg_iskey_test2(CTRLRIGHT); + _cimg_iskey_test2(ARROWLEFT); _cimg_iskey_test2(ARROWDOWN); _cimg_iskey_test2(ARROWRIGHT); + _cimg_iskey_test2(PAD0); _cimg_iskey_test2(PAD1); _cimg_iskey_test2(PAD2); + _cimg_iskey_test2(PAD3); _cimg_iskey_test2(PAD4); _cimg_iskey_test2(PAD5); + _cimg_iskey_test2(PAD6); _cimg_iskey_test2(PAD7); _cimg_iskey_test2(PAD8); + _cimg_iskey_test2(PAD9); _cimg_iskey_test2(PADADD); _cimg_iskey_test2(PADSUB); + _cimg_iskey_test2(PADMUL); _cimg_iskey_test2(PADDIV); + return f; + } + + //! Return \c true if specified key sequence has been typed on the associated window, \c false otherwise. + /** + \param keycodes_sequence Buffer of keycodes to test. + \param length Number of keys in the \c keycodes_sequence buffer. + \param remove_sequence Tells if the key sequence must be removed from the key history, if found. + \note Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure + your code stay portable (see cimg::keyESC). + \par Example + \code + CImgDisplay disp(400,400); + const unsigned int key_seq[] = { cimg::keyCTRLLEFT, cimg::keyD }; + while (!disp.is_closed()) { + if (disp.is_key_sequence(key_seq,2)) { ... } // Test for the 'CTRL+D' keyboard event. + disp.wait(); + } + \endcode + **/ + bool is_key_sequence(const unsigned int *const keycodes_sequence, const unsigned int length, + const bool remove_sequence=false) { + if (keycodes_sequence && length) { + const unsigned int + *const ps_end = keycodes_sequence + length - 1, + *const pk_end = (unsigned int*)_keys + 1 + 128 - length, + k = *ps_end; + for (unsigned int *pk = (unsigned int*)_keys; pk[0,255]. + If the range of values of the data to display is different, a normalization may be required for displaying + the data in a correct way. The normalization type can be one of: + - \c 0: Value normalization is disabled. It is then assumed that all input data to be displayed by the + CImgDisplay instance have values in range [0,255]. + - \c 1: Value normalization is always performed (this is the default behavior). + Before displaying an input image, its values will be (virtually) stretched + in range [0,255], so that the contrast of the displayed pixels will be maximum. + Use this mode for images whose minimum and maximum values are not prescribed to known values + (e.g. float-valued images). + Note that when normalized versions of images are computed for display purposes, the actual values of these + images are not modified. + - \c 2: Value normalization is performed once (on the first image display), then the same normalization + coefficients are kept for next displayed frames. + - \c 3: Value normalization depends on the pixel type of the data to display. For integer pixel types, + the normalization is done regarding the minimum/maximum values of the type (no normalization occurs then + for unsigned char). + For float-valued pixel types, the normalization is done regarding the minimum/maximum value of the image + data instead. + **/ + unsigned int normalization() const { + return _normalization; + } + + //! Return title of the associated window as a C-string. + /** + \note Window title may be not visible, depending on the used window manager or if the current display is + in fullscreen mode. + **/ + const char *title() const { + return _title?_title:""; + } + + //! Return width of the associated window. + /** + \note The width of the display (i.e. the width of the pixel data buffer associated to the CImgDisplay instance) + may be different from the actual width of the associated window. + **/ + int window_width() const { + return (int)_window_width; + } + + //! Return height of the associated window. + /** + \note The height of the display (i.e. the height of the pixel data buffer associated to the CImgDisplay instance) + may be different from the actual height of the associated window. + **/ + int window_height() const { + return (int)_window_height; + } + + //! Return X-coordinate of the associated window. + /** + \note The returned coordinate corresponds to the location of the upper-left corner of the associated window. + **/ + int window_x() const { + return _window_x; + } + + //! Return Y-coordinate of the associated window. + /** + \note The returned coordinate corresponds to the location of the upper-left corner of the associated window. + **/ + int window_y() const { + return _window_y; + } + + //! Return X-coordinate of the mouse pointer. + /** + \note + - If the mouse pointer is outside window area, \c -1 is returned. + - Otherwise, the returned value is in the range [0,width()-1]. + **/ + int mouse_x() const { + return _mouse_x; + } + + //! Return Y-coordinate of the mouse pointer. + /** + \note + - If the mouse pointer is outside window area, \c -1 is returned. + - Otherwise, the returned value is in the range [0,height()-1]. + **/ + int mouse_y() const { + return _mouse_y; + } + + //! Return current state of the mouse buttons. + /** + \note Three mouse buttons can be managed. If one button is pressed, its corresponding bit in the returned + value is set: + - bit \c 0 (value \c 0x1): State of the left mouse button. + - bit \c 1 (value \c 0x2): State of the right mouse button. + - bit \c 2 (value \c 0x4): State of the middle mouse button. + + Several bits can be activated if more than one button are pressed at the same time. + \par Example + \code + CImgDisplay disp(400,400); + while (!disp.is_closed()) { + if (disp.button()&1) { // Left button clicked. + ... + } + if (disp.button()&2) { // Right button clicked. + ... + } + if (disp.button()&4) { // Middle button clicked. + ... + } + disp.wait(); + } + \endcode + **/ + unsigned int button() const { + return _button; + } + + //! Return current state of the mouse wheel. + /** + \note + - The returned value can be positive or negative depending on whether the mouse wheel has been scrolled + forward or backward. + - Scrolling the wheel forward add \c 1 to the wheel value. + - Scrolling the wheel backward substract \c 1 to the wheel value. + - The returned value cumulates the number of forward of backward scrolls since the creation of the display, + or since the last reset of the wheel value (using set_wheel()). It is strongly recommended to quickly reset + the wheel counter when an action has been performed regarding the current wheel value. + Otherwise, the returned wheel value may be for instance \c 0 despite the fact that many scrolls have been done + (as many in forward as in backward directions). + \par Example + \code + CImgDisplay disp(400,400); + while (!disp.is_closed()) { + if (disp.wheel()) { + int counter = disp.wheel(); // Read the state of the mouse wheel. + ... // Do what you want with 'counter'. + disp.set_wheel(); // Reset the wheel value to 0. + } + disp.wait(); + } + \endcode + **/ + int wheel() const { + return _wheel; + } + + //! Return one entry from the pressed keys history. + /** + \param pos Indice to read from the pressed keys history (indice \c 0 corresponds to latest entry). + \return Keycode of a pressed key or \c 0 for a released key. + \note + - Each CImgDisplay stores a history of the pressed keys in a buffer of size \c 128. When a new key is pressed, + its keycode is stored in the pressed keys history. When a key is released, \c 0 is put instead. + This means that up to the 64 last pressed keys may be read from the pressed keys history. + When a new value is stored, the pressed keys history is shifted so that the latest entry is always + stored at position \c 0. + - Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure + your code stay portable (see cimg::keyESC). + **/ + unsigned int key(const unsigned int pos=0) const { + return pos<128?_keys[pos]:0; + } + + //! Return one entry from the released keys history. + /** + \param pos Indice to read from the released keys history (indice \c 0 corresponds to latest entry). + \return Keycode of a released key or \c 0 for a pressed key. + \note + - Each CImgDisplay stores a history of the released keys in a buffer of size \c 128. When a new key is released, + its keycode is stored in the pressed keys history. When a key is pressed, \c 0 is put instead. + This means that up to the 64 last released keys may be read from the released keys history. + When a new value is stored, the released keys history is shifted so that the latest entry is always + stored at position \c 0. + - Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure + your code stay portable (see cimg::keyESC). + **/ + unsigned int released_key(const unsigned int pos=0) const { + return pos<128?_released_keys[pos]:0; + } + + //! Return keycode corresponding to the specified string. + /** + \note Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure + your code stay portable (see cimg::keyESC). + \par Example + \code + const unsigned int keyTAB = CImgDisplay::keycode("TAB"); // Return cimg::keyTAB. + \endcode + **/ + static unsigned int keycode(const char *const keycode) { +#define _cimg_keycode(k) if (!cimg::strcasecmp(keycode,#k)) return cimg::key##k; + _cimg_keycode(ESC); _cimg_keycode(F1); _cimg_keycode(F2); _cimg_keycode(F3); + _cimg_keycode(F4); _cimg_keycode(F5); _cimg_keycode(F6); _cimg_keycode(F7); + _cimg_keycode(F8); _cimg_keycode(F9); _cimg_keycode(F10); _cimg_keycode(F11); + _cimg_keycode(F12); _cimg_keycode(PAUSE); _cimg_keycode(1); _cimg_keycode(2); + _cimg_keycode(3); _cimg_keycode(4); _cimg_keycode(5); _cimg_keycode(6); + _cimg_keycode(7); _cimg_keycode(8); _cimg_keycode(9); _cimg_keycode(0); + _cimg_keycode(BACKSPACE); _cimg_keycode(INSERT); _cimg_keycode(HOME); + _cimg_keycode(PAGEUP); _cimg_keycode(TAB); _cimg_keycode(Q); _cimg_keycode(W); + _cimg_keycode(E); _cimg_keycode(R); _cimg_keycode(T); _cimg_keycode(Y); + _cimg_keycode(U); _cimg_keycode(I); _cimg_keycode(O); _cimg_keycode(P); + _cimg_keycode(DELETE); _cimg_keycode(END); _cimg_keycode(PAGEDOWN); + _cimg_keycode(CAPSLOCK); _cimg_keycode(A); _cimg_keycode(S); _cimg_keycode(D); + _cimg_keycode(F); _cimg_keycode(G); _cimg_keycode(H); _cimg_keycode(J); + _cimg_keycode(K); _cimg_keycode(L); _cimg_keycode(ENTER); + _cimg_keycode(SHIFTLEFT); _cimg_keycode(Z); _cimg_keycode(X); _cimg_keycode(C); + _cimg_keycode(V); _cimg_keycode(B); _cimg_keycode(N); _cimg_keycode(M); + _cimg_keycode(SHIFTRIGHT); _cimg_keycode(ARROWUP); _cimg_keycode(CTRLLEFT); + _cimg_keycode(APPLEFT); _cimg_keycode(ALT); _cimg_keycode(SPACE); _cimg_keycode(ALTGR); + _cimg_keycode(APPRIGHT); _cimg_keycode(MENU); _cimg_keycode(CTRLRIGHT); + _cimg_keycode(ARROWLEFT); _cimg_keycode(ARROWDOWN); _cimg_keycode(ARROWRIGHT); + _cimg_keycode(PAD0); _cimg_keycode(PAD1); _cimg_keycode(PAD2); + _cimg_keycode(PAD3); _cimg_keycode(PAD4); _cimg_keycode(PAD5); + _cimg_keycode(PAD6); _cimg_keycode(PAD7); _cimg_keycode(PAD8); + _cimg_keycode(PAD9); _cimg_keycode(PADADD); _cimg_keycode(PADSUB); + _cimg_keycode(PADMUL); _cimg_keycode(PADDIV); + return 0; + } + + //! Return the current refresh rate, in frames per second. + /** + \note Returns a significant value when the current instance is used to display successive frames. + It measures the delay between successive calls to frames_per_second(). + **/ + float frames_per_second() { + if (!_fps_timer) _fps_timer = cimg::time(); + const float delta = (cimg::time() - _fps_timer)/1000.0f; + ++_fps_frames; + if (delta>=1) { + _fps_fps = _fps_frames/delta; + _fps_frames = 0; + _fps_timer = cimg::time(); + } + return _fps_fps; + } + + //@} + //--------------------------------------- + // + //! \name Window Manipulation + //@{ + //--------------------------------------- + +#if cimg_display==0 + + //! Display image on associated window. + /** + \param img Input image to display. + \note This method returns immediately. + **/ + template + CImgDisplay& display(const CImg& img) { + return assign(img); + } + +#endif + + //! Display list of images on associated window. + /** + \param list List of images to display. + \param axis Axis used to append the images along, for the visualization (can be \c x, \c y, \c z or \c c). + \param align Relative position of aligned images when displaying lists with images of different sizes + (\c 0 for upper-left, \c 0.5 for centering and \c 1 for lower-right). + \note This method returns immediately. + **/ + template + CImgDisplay& display(const CImgList& list, const char axis='x', const float align=0) { + if (list._width==1) { + const CImg& img = list[0]; + if (img._depth==1 && (img._spectrum==1 || img._spectrum>=3) && _normalization!=1) return display(img); + } + CImgList::ucharT> visu(list._width); + unsigned int dims = 0; + cimglist_for(list,l) { + const CImg& img = list._data[l]; + img.__get_select(*this,_normalization,(img._width - 1)/2,(img._height - 1)/2, + (img._depth - 1)/2).move_to(visu[l]); + dims = std::max(dims,visu[l]._spectrum); + } + cimglist_for(list,l) if (visu[l]._spectrumimg.width() become equal, as well as height() and + img.height(). + - The associated window is also resized to specified dimensions. + **/ + template + CImgDisplay& resize(const CImg& img, const bool force_redraw=true) { + return resize(img._width,img._height,force_redraw); + } + + //! Resize display to the size of another CImgDisplay instance. + /** + \param disp Input display to take size from. + \param force_redraw Tells if the previous window content must be resized and updated as well. + \note + - Calling this method ensures that width() and disp.width() become equal, as well as height() and + disp.height(). + - The associated window is also resized to specified dimensions. + **/ + CImgDisplay& resize(const CImgDisplay& disp, const bool force_redraw=true) { + return resize(disp.width(),disp.height(),force_redraw); + } + + // [internal] Render pixel buffer with size (wd,hd) from source buffer of size (ws,hs). + template + static void _render_resize(const T *ptrs, const unsigned int ws, const unsigned int hs, + t *ptrd, const unsigned int wd, const unsigned int hd) { + unsigned int *const offx = new unsigned int[wd], *const offy = new unsigned int[hd + 1], *poffx, *poffy; + float s, curr, old; + s = (float)ws/wd; + poffx = offx; curr = 0; for (unsigned int x = 0; xstd::printf(). + \warning As the first argument is a format string, it is highly recommended to write + \code + disp.set_title("%s",window_title); + \endcode + instead of + \code + disp.set_title(window_title); + \endcode + if \c window_title can be arbitrary, to prevent nasty memory access. + **/ + CImgDisplay& set_title(const char *const format, ...) { + return assign(0,0,format); + } + +#endif + + //! Enable or disable fullscreen mode. + /** + \param is_fullscreen Tells is the fullscreen mode must be activated or not. + \param force_redraw Tells if the previous window content must be displayed as well. + \note + - When the fullscreen mode is enabled, the associated window fills the entire screen but the size of the + current display is not modified. + - The screen resolution may be switched to fit the associated window size and ensure it appears the largest + as possible. + For X-Window (X11) users, the configuration flag \c cimg_use_xrandr has to be set to allow the screen + resolution change (requires the X11 extensions to be enabled). + **/ + CImgDisplay& set_fullscreen(const bool is_fullscreen, const bool force_redraw=true) { + if (is_empty() || _is_fullscreen==is_fullscreen) return *this; + return toggle_fullscreen(force_redraw); + } + +#if cimg_display==0 + + //! Toggle fullscreen mode. + /** + \param force_redraw Tells if the previous window content must be displayed as well. + \note Enable fullscreen mode if it was not enabled, and disable it otherwise. + **/ + CImgDisplay& toggle_fullscreen(const bool force_redraw=true) { + return assign(_width,_height,0,3,force_redraw); + } + + //! Show mouse pointer. + /** + \note Depending on the window manager behavior, this method may not succeed + (no exceptions are thrown nevertheless). + **/ + CImgDisplay& show_mouse() { + return assign(); + } + + //! Hide mouse pointer. + /** + \note Depending on the window manager behavior, this method may not succeed + (no exceptions are thrown nevertheless). + **/ + CImgDisplay& hide_mouse() { + return assign(); + } + + //! Move mouse pointer to a specified location. + /** + \note Depending on the window manager behavior, this method may not succeed + (no exceptions are thrown nevertheless). + **/ + CImgDisplay& set_mouse(const int pos_x, const int pos_y) { + return assign(pos_x,pos_y); + } + +#endif + + //! Simulate a mouse button release event. + /** + \note All mouse buttons are considered released at the same time. + **/ + CImgDisplay& set_button() { + _button = 0; + _is_event = true; +#if cimg_display==1 + pthread_cond_broadcast(&cimg::X11_attr().wait_event); +#elif cimg_display==2 + SetEvent(cimg::Win32_attr().wait_event); +#endif + return *this; + } + + //! Simulate a mouse button press or release event. + /** + \param button Buttons event code, where each button is associated to a single bit. + \param is_pressed Tells if the mouse button is considered as pressed or released. + **/ + CImgDisplay& set_button(const unsigned int button, const bool is_pressed=true) { + const unsigned int buttoncode = button==1U?1U:button==2U?2U:button==3U?4U:0U; + if (is_pressed) _button |= buttoncode; else _button &= ~buttoncode; + _is_event = buttoncode?true:false; + if (buttoncode) { +#if cimg_display==1 + pthread_cond_broadcast(&cimg::X11_attr().wait_event); +#elif cimg_display==2 + SetEvent(cimg::Win32_attr().wait_event); +#endif + } + return *this; + } + + //! Flush all mouse wheel events. + /** + \note Make wheel() to return \c 0, if called afterwards. + **/ + CImgDisplay& set_wheel() { + _wheel = 0; + _is_event = true; +#if cimg_display==1 + pthread_cond_broadcast(&cimg::X11_attr().wait_event); +#elif cimg_display==2 + SetEvent(cimg::Win32_attr().wait_event); +#endif + return *this; + } + + //! Simulate a wheel event. + /** + \param amplitude Amplitude of the wheel scrolling to simulate. + \note Make wheel() to return \c amplitude, if called afterwards. + **/ + CImgDisplay& set_wheel(const int amplitude) { + _wheel+=amplitude; + _is_event = amplitude?true:false; + if (amplitude) { +#if cimg_display==1 + pthread_cond_broadcast(&cimg::X11_attr().wait_event); +#elif cimg_display==2 + SetEvent(cimg::Win32_attr().wait_event); +#endif + } + return *this; + } + + //! Flush all key events. + /** + \note Make key() to return \c 0, if called afterwards. + **/ + CImgDisplay& set_key() { + std::memset((void*)_keys,0,128*sizeof(unsigned int)); + std::memset((void*)_released_keys,0,128*sizeof(unsigned int)); + _is_keyESC = _is_keyF1 = _is_keyF2 = _is_keyF3 = _is_keyF4 = _is_keyF5 = _is_keyF6 = _is_keyF7 = _is_keyF8 = + _is_keyF9 = _is_keyF10 = _is_keyF11 = _is_keyF12 = _is_keyPAUSE = _is_key1 = _is_key2 = _is_key3 = _is_key4 = + _is_key5 = _is_key6 = _is_key7 = _is_key8 = _is_key9 = _is_key0 = _is_keyBACKSPACE = _is_keyINSERT = + _is_keyHOME = _is_keyPAGEUP = _is_keyTAB = _is_keyQ = _is_keyW = _is_keyE = _is_keyR = _is_keyT = _is_keyY = + _is_keyU = _is_keyI = _is_keyO = _is_keyP = _is_keyDELETE = _is_keyEND = _is_keyPAGEDOWN = _is_keyCAPSLOCK = + _is_keyA = _is_keyS = _is_keyD = _is_keyF = _is_keyG = _is_keyH = _is_keyJ = _is_keyK = _is_keyL = + _is_keyENTER = _is_keySHIFTLEFT = _is_keyZ = _is_keyX = _is_keyC = _is_keyV = _is_keyB = _is_keyN = + _is_keyM = _is_keySHIFTRIGHT = _is_keyARROWUP = _is_keyCTRLLEFT = _is_keyAPPLEFT = _is_keyALT = _is_keySPACE = + _is_keyALTGR = _is_keyAPPRIGHT = _is_keyMENU = _is_keyCTRLRIGHT = _is_keyARROWLEFT = _is_keyARROWDOWN = + _is_keyARROWRIGHT = _is_keyPAD0 = _is_keyPAD1 = _is_keyPAD2 = _is_keyPAD3 = _is_keyPAD4 = _is_keyPAD5 = + _is_keyPAD6 = _is_keyPAD7 = _is_keyPAD8 = _is_keyPAD9 = _is_keyPADADD = _is_keyPADSUB = _is_keyPADMUL = + _is_keyPADDIV = false; + _is_event = true; +#if cimg_display==1 + pthread_cond_broadcast(&cimg::X11_attr().wait_event); +#elif cimg_display==2 + SetEvent(cimg::Win32_attr().wait_event); +#endif + return *this; + } + + //! Simulate a keyboard press/release event. + /** + \param keycode Keycode of the associated key. + \param is_pressed Tells if the key is considered as pressed or released. + \note Keycode constants are defined in the cimg namespace and are architecture-dependent. Use them to ensure + your code stay portable (see cimg::keyESC). + **/ + CImgDisplay& set_key(const unsigned int keycode, const bool is_pressed=true) { +#define _cimg_set_key(k) if (keycode==cimg::key##k) _is_key##k = is_pressed; + _cimg_set_key(ESC); _cimg_set_key(F1); _cimg_set_key(F2); _cimg_set_key(F3); + _cimg_set_key(F4); _cimg_set_key(F5); _cimg_set_key(F6); _cimg_set_key(F7); + _cimg_set_key(F8); _cimg_set_key(F9); _cimg_set_key(F10); _cimg_set_key(F11); + _cimg_set_key(F12); _cimg_set_key(PAUSE); _cimg_set_key(1); _cimg_set_key(2); + _cimg_set_key(3); _cimg_set_key(4); _cimg_set_key(5); _cimg_set_key(6); + _cimg_set_key(7); _cimg_set_key(8); _cimg_set_key(9); _cimg_set_key(0); + _cimg_set_key(BACKSPACE); _cimg_set_key(INSERT); _cimg_set_key(HOME); + _cimg_set_key(PAGEUP); _cimg_set_key(TAB); _cimg_set_key(Q); _cimg_set_key(W); + _cimg_set_key(E); _cimg_set_key(R); _cimg_set_key(T); _cimg_set_key(Y); + _cimg_set_key(U); _cimg_set_key(I); _cimg_set_key(O); _cimg_set_key(P); + _cimg_set_key(DELETE); _cimg_set_key(END); _cimg_set_key(PAGEDOWN); + _cimg_set_key(CAPSLOCK); _cimg_set_key(A); _cimg_set_key(S); _cimg_set_key(D); + _cimg_set_key(F); _cimg_set_key(G); _cimg_set_key(H); _cimg_set_key(J); + _cimg_set_key(K); _cimg_set_key(L); _cimg_set_key(ENTER); + _cimg_set_key(SHIFTLEFT); _cimg_set_key(Z); _cimg_set_key(X); _cimg_set_key(C); + _cimg_set_key(V); _cimg_set_key(B); _cimg_set_key(N); _cimg_set_key(M); + _cimg_set_key(SHIFTRIGHT); _cimg_set_key(ARROWUP); _cimg_set_key(CTRLLEFT); + _cimg_set_key(APPLEFT); _cimg_set_key(ALT); _cimg_set_key(SPACE); _cimg_set_key(ALTGR); + _cimg_set_key(APPRIGHT); _cimg_set_key(MENU); _cimg_set_key(CTRLRIGHT); + _cimg_set_key(ARROWLEFT); _cimg_set_key(ARROWDOWN); _cimg_set_key(ARROWRIGHT); + _cimg_set_key(PAD0); _cimg_set_key(PAD1); _cimg_set_key(PAD2); + _cimg_set_key(PAD3); _cimg_set_key(PAD4); _cimg_set_key(PAD5); + _cimg_set_key(PAD6); _cimg_set_key(PAD7); _cimg_set_key(PAD8); + _cimg_set_key(PAD9); _cimg_set_key(PADADD); _cimg_set_key(PADSUB); + _cimg_set_key(PADMUL); _cimg_set_key(PADDIV); + if (is_pressed) { + if (*_keys) + std::memmove((void*)(_keys + 1),(void*)_keys,127*sizeof(unsigned int)); + *_keys = keycode; + if (*_released_keys) { + std::memmove((void*)(_released_keys + 1),(void*)_released_keys,127*sizeof(unsigned int)); + *_released_keys = 0; + } + } else { + if (*_keys) { + std::memmove((void*)(_keys + 1),(void*)_keys,127*sizeof(unsigned int)); + *_keys = 0; + } + if (*_released_keys) + std::memmove((void*)(_released_keys + 1),(void*)_released_keys,127*sizeof(unsigned int)); + *_released_keys = keycode; + } + _is_event = keycode?true:false; + if (keycode) { +#if cimg_display==1 + pthread_cond_broadcast(&cimg::X11_attr().wait_event); +#elif cimg_display==2 + SetEvent(cimg::Win32_attr().wait_event); +#endif + } + return *this; + } + + //! Flush all display events. + /** + \note Remove all passed events from the current display. + **/ + CImgDisplay& flush() { + set_key().set_button().set_wheel(); + _is_resized = _is_moved = _is_event = false; + _fps_timer = _fps_frames = _timer = 0; + _fps_fps = 0; + return *this; + } + + //! Wait for any user event occuring on the current display. + CImgDisplay& wait() { + wait(*this); + return *this; + } + + //! Wait for a given number of milliseconds since the last call to wait(). + /** + \param milliseconds Number of milliseconds to wait for. + \note Similar to cimg::wait(). + **/ + CImgDisplay& wait(const unsigned int milliseconds) { + cimg::_wait(milliseconds,_timer); + return *this; + } + + //! Wait for any event occuring on the display \c disp1. + static void wait(CImgDisplay& disp1) { + disp1._is_event = false; + while (!disp1._is_closed && !disp1._is_event) wait_all(); + } + + //! Wait for any event occuring either on the display \c disp1 or \c disp2. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2) { + disp1._is_event = disp2._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed) && + !disp1._is_event && !disp2._is_event) wait_all(); + } + + //! Wait for any event occuring either on the display \c disp1, \c disp2 or \c disp3. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3) { + disp1._is_event = disp2._is_event = disp3._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed) && + !disp1._is_event && !disp2._is_event && !disp3._is_event) wait_all(); + } + + //! Wait for any event occuring either on the display \c disp1, \c disp2, \c disp3 or \c disp4. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4) { + disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed) && + !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event) wait_all(); + } + + //! Wait for any event occuring either on the display \c disp1, \c disp2, \c disp3, \c disp4 or \c disp5. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, + CImgDisplay& disp5) { + disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed) && + !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event) + wait_all(); + } + + //! Wait for any event occuring either on the display \c disp1, \c disp2, \c disp3, \c disp4, ... \c disp6. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5, + CImgDisplay& disp6) { + disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = + disp6._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed || + !disp6._is_closed) && + !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event && + !disp6._is_event) wait_all(); + } + + //! Wait for any event occuring either on the display \c disp1, \c disp2, \c disp3, \c disp4, ... \c disp7. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5, + CImgDisplay& disp6, CImgDisplay& disp7) { + disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = + disp6._is_event = disp7._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed || + !disp6._is_closed || !disp7._is_closed) && + !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event && + !disp6._is_event && !disp7._is_event) wait_all(); + } + + //! Wait for any event occuring either on the display \c disp1, \c disp2, \c disp3, \c disp4, ... \c disp8. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5, + CImgDisplay& disp6, CImgDisplay& disp7, CImgDisplay& disp8) { + disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = + disp6._is_event = disp7._is_event = disp8._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed || + !disp6._is_closed || !disp7._is_closed || !disp8._is_closed) && + !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event && + !disp6._is_event && !disp7._is_event && !disp8._is_event) wait_all(); + } + + //! Wait for any event occuring either on the display \c disp1, \c disp2, \c disp3, \c disp4, ... \c disp9. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5, + CImgDisplay& disp6, CImgDisplay& disp7, CImgDisplay& disp8, CImgDisplay& disp9) { + disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = + disp6._is_event = disp7._is_event = disp8._is_event = disp9._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed || + !disp6._is_closed || !disp7._is_closed || !disp8._is_closed || !disp9._is_closed) && + !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event && + !disp6._is_event && !disp7._is_event && !disp8._is_event && !disp9._is_event) wait_all(); + } + + //! Wait for any event occuring either on the display \c disp1, \c disp2, \c disp3, \c disp4, ... \c disp10. + static void wait(CImgDisplay& disp1, CImgDisplay& disp2, CImgDisplay& disp3, CImgDisplay& disp4, CImgDisplay& disp5, + CImgDisplay& disp6, CImgDisplay& disp7, CImgDisplay& disp8, CImgDisplay& disp9, + CImgDisplay& disp10) { + disp1._is_event = disp2._is_event = disp3._is_event = disp4._is_event = disp5._is_event = + disp6._is_event = disp7._is_event = disp8._is_event = disp9._is_event = disp10._is_event = false; + while ((!disp1._is_closed || !disp2._is_closed || !disp3._is_closed || !disp4._is_closed || !disp5._is_closed || + !disp6._is_closed || !disp7._is_closed || !disp8._is_closed || !disp9._is_closed || !disp10._is_closed) && + !disp1._is_event && !disp2._is_event && !disp3._is_event && !disp4._is_event && !disp5._is_event && + !disp6._is_event && !disp7._is_event && !disp8._is_event && !disp9._is_event && !disp10._is_event) + wait_all(); + } + +#if cimg_display==0 + + //! Wait for any window event occuring in any opened CImgDisplay. + static void wait_all() { + return _no_display_exception(); + } + + //! Render image into internal display buffer. + /** + \param img Input image data to render. + \note + - Convert image data representation into the internal display buffer (architecture-dependent structure). + - The content of the associated window is not modified, until paint() is called. + - Should not be used for common CImgDisplay uses, since display() is more useful. + **/ + template + CImgDisplay& render(const CImg& img) { + return assign(img); + } + + //! Paint internal display buffer on associated window. + /** + \note + - Update the content of the associated window with the internal display buffer, e.g. after a render() call. + - Should not be used for common CImgDisplay uses, since display() is more useful. + **/ + CImgDisplay& paint() { + return assign(); + } + + + //! Take a snapshot of the current screen content. + /** + \param x0 X-coordinate of the upper left corner. + \param y0 Y-coordinate of the upper left corner. + \param x1 X-coordinate of the lower right corner. + \param y1 Y-coordinate of the lower right corner. + \param[out] img Output screenshot. Can be empty on input + **/ + template + static void screenshot(const int x0, const int y0, const int x1, const int y1, CImg& img) { + cimg::unused(x0,y0,x1,y1,&img); + _no_display_exception(); + } + + //! Take a snapshot of the associated window content. + /** + \param[out] img Output snapshot. Can be empty on input. + **/ + template + const CImgDisplay& snapshot(CImg& img) const { + cimg::unused(img); + _no_display_exception(); + return *this; + } +#endif + + // X11-based implementation + //-------------------------- +#if cimg_display==1 + + Atom _wm_window_atom, _wm_protocol_atom; + Window _window, _background_window; + Colormap _colormap; + XImage *_image; + void *_data; +#ifdef cimg_use_xshm + XShmSegmentInfo *_shminfo; +#endif + + static int screen_width() { + Display *const dpy = cimg::X11_attr().display; + int res = 0; + if (!dpy) { + Display *const _dpy = XOpenDisplay(0); + if (!_dpy) + throw CImgDisplayException("CImgDisplay::screen_width(): Failed to open X11 display."); + res = DisplayWidth(_dpy,DefaultScreen(_dpy)); + XCloseDisplay(_dpy); + } else { +#ifdef cimg_use_xrandr + if (cimg::X11_attr().resolutions && cimg::X11_attr().curr_resolution) + res = cimg::X11_attr().resolutions[cimg::X11_attr().curr_resolution].width; + else res = DisplayWidth(dpy,DefaultScreen(dpy)); +#else + res = DisplayWidth(dpy,DefaultScreen(dpy)); +#endif + } + return res; + } + + static int screen_height() { + Display *const dpy = cimg::X11_attr().display; + int res = 0; + if (!dpy) { + Display *const _dpy = XOpenDisplay(0); + if (!_dpy) + throw CImgDisplayException("CImgDisplay::screen_height(): Failed to open X11 display."); + res = DisplayHeight(_dpy,DefaultScreen(_dpy)); + XCloseDisplay(_dpy); + } else { +#ifdef cimg_use_xrandr + if (cimg::X11_attr().resolutions && cimg::X11_attr().curr_resolution) + res = cimg::X11_attr().resolutions[cimg::X11_attr().curr_resolution].height; + else res = DisplayHeight(dpy,DefaultScreen(dpy)); +#else + res = DisplayHeight(dpy,DefaultScreen(dpy)); +#endif + } + return res; + } + + static void wait_all() { + if (!cimg::X11_attr().display) return; + pthread_mutex_lock(&cimg::X11_attr().wait_event_mutex); + pthread_cond_wait(&cimg::X11_attr().wait_event,&cimg::X11_attr().wait_event_mutex); + pthread_mutex_unlock(&cimg::X11_attr().wait_event_mutex); + } + + void _handle_events(const XEvent *const pevent) { + Display *const dpy = cimg::X11_attr().display; + XEvent event = *pevent; + switch (event.type) { + case ClientMessage : { + if ((int)event.xclient.message_type==(int)_wm_protocol_atom && + (int)event.xclient.data.l[0]==(int)_wm_window_atom) { + XUnmapWindow(cimg::X11_attr().display,_window); + _is_closed = _is_event = true; + pthread_cond_broadcast(&cimg::X11_attr().wait_event); + } + } break; + case ConfigureNotify : { + while (XCheckWindowEvent(dpy,_window,StructureNotifyMask,&event)) {} + const unsigned int nw = event.xconfigure.width, nh = event.xconfigure.height; + const int nx = event.xconfigure.x, ny = event.xconfigure.y; + if (nw && nh && (nw!=_window_width || nh!=_window_height)) { + _window_width = nw; _window_height = nh; _mouse_x = _mouse_y = -1; + XResizeWindow(dpy,_window,_window_width,_window_height); + _is_resized = _is_event = true; + pthread_cond_broadcast(&cimg::X11_attr().wait_event); + } + if (nx!=_window_x || ny!=_window_y) { + _window_x = nx; _window_y = ny; _is_moved = _is_event = true; + pthread_cond_broadcast(&cimg::X11_attr().wait_event); + } + } break; + case Expose : { + while (XCheckWindowEvent(dpy,_window,ExposureMask,&event)) {} + _paint(false); + if (_is_fullscreen) { + XWindowAttributes attr; + XGetWindowAttributes(dpy,_window,&attr); + while (attr.map_state!=IsViewable) XSync(dpy,0); + XSetInputFocus(dpy,_window,RevertToParent,CurrentTime); + } + } break; + case ButtonPress : { + do { + _mouse_x = event.xmotion.x; _mouse_y = event.xmotion.y; + if (_mouse_x<0 || _mouse_y<0 || _mouse_x>=width() || _mouse_y>=height()) _mouse_x = _mouse_y = -1; + switch (event.xbutton.button) { + case 1 : set_button(1); break; + case 3 : set_button(2); break; + case 2 : set_button(3); break; + } + } while (XCheckWindowEvent(dpy,_window,ButtonPressMask,&event)); + } break; + case ButtonRelease : { + do { + _mouse_x = event.xmotion.x; _mouse_y = event.xmotion.y; + if (_mouse_x<0 || _mouse_y<0 || _mouse_x>=width() || _mouse_y>=height()) _mouse_x = _mouse_y = -1; + switch (event.xbutton.button) { + case 1 : set_button(1,false); break; + case 3 : set_button(2,false); break; + case 2 : set_button(3,false); break; + case 4 : set_wheel(1); break; + case 5 : set_wheel(-1); break; + } + } while (XCheckWindowEvent(dpy,_window,ButtonReleaseMask,&event)); + } break; + case KeyPress : { + char tmp = 0; KeySym ksym; + XLookupString(&event.xkey,&tmp,1,&ksym,0); + set_key((unsigned int)ksym,true); + } break; + case KeyRelease : { + char keys_return[32]; // Check that the key has been physically unpressed. + XQueryKeymap(dpy,keys_return); + const unsigned int kc = event.xkey.keycode, kc1 = kc/8, kc2 = kc%8; + const bool is_key_pressed = kc1>=32?false:(keys_return[kc1]>>kc2)&1; + if (!is_key_pressed) { + char tmp = 0; KeySym ksym; + XLookupString(&event.xkey,&tmp,1,&ksym,0); + set_key((unsigned int)ksym,false); + } + } break; + case EnterNotify: { + while (XCheckWindowEvent(dpy,_window,EnterWindowMask,&event)) {} + _mouse_x = event.xmotion.x; + _mouse_y = event.xmotion.y; + if (_mouse_x<0 || _mouse_y<0 || _mouse_x>=width() || _mouse_y>=height()) _mouse_x = _mouse_y = -1; + } break; + case LeaveNotify : { + while (XCheckWindowEvent(dpy,_window,LeaveWindowMask,&event)) {} + _mouse_x = _mouse_y = -1; _is_event = true; + pthread_cond_broadcast(&cimg::X11_attr().wait_event); + } break; + case MotionNotify : { + while (XCheckWindowEvent(dpy,_window,PointerMotionMask,&event)) {} + _mouse_x = event.xmotion.x; + _mouse_y = event.xmotion.y; + if (_mouse_x<0 || _mouse_y<0 || _mouse_x>=width() || _mouse_y>=height()) _mouse_x = _mouse_y = -1; + _is_event = true; + pthread_cond_broadcast(&cimg::X11_attr().wait_event); + } break; + } + } + + static void* _events_thread(void *arg) { // Thread to manage events for all opened display windows. + Display *const dpy = cimg::X11_attr().display; + XEvent event; + pthread_setcanceltype(PTHREAD_CANCEL_DEFERRED,0); + pthread_setcancelstate(PTHREAD_CANCEL_ENABLE,0); + if (!arg) for ( ; ; ) { + cimg_lock_display(); + bool event_flag = XCheckTypedEvent(dpy,ClientMessage,&event); + if (!event_flag) event_flag = XCheckMaskEvent(dpy, + ExposureMask | StructureNotifyMask | ButtonPressMask | + KeyPressMask | PointerMotionMask | EnterWindowMask | + LeaveWindowMask | ButtonReleaseMask | KeyReleaseMask,&event); + if (event_flag) + for (unsigned int i = 0; i_is_closed && event.xany.window==cimg::X11_attr().wins[i]->_window) + cimg::X11_attr().wins[i]->_handle_events(&event); + cimg_unlock_display(); + pthread_testcancel(); + cimg::sleep(8); + } + return 0; + } + + void _set_colormap(Colormap& _colormap, const unsigned int dim) { + XColor *const colormap = new XColor[256]; + switch (dim) { + case 1 : { // colormap for greyscale images + for (unsigned int index = 0; index<256; ++index) { + colormap[index].pixel = index; + colormap[index].red = colormap[index].green = colormap[index].blue = (unsigned short)(index<<8); + colormap[index].flags = DoRed | DoGreen | DoBlue; + } + } break; + case 2 : { // colormap for RG images + for (unsigned int index = 0, r = 8; r<256; r+=16) + for (unsigned int g = 8; g<256; g+=16) { + colormap[index].pixel = index; + colormap[index].red = colormap[index].blue = (unsigned short)(r<<8); + colormap[index].green = (unsigned short)(g<<8); + colormap[index++].flags = DoRed | DoGreen | DoBlue; + } + } break; + default : { // colormap for RGB images + for (unsigned int index = 0, r = 16; r<256; r+=32) + for (unsigned int g = 16; g<256; g+=32) + for (unsigned int b = 32; b<256; b+=64) { + colormap[index].pixel = index; + colormap[index].red = (unsigned short)(r<<8); + colormap[index].green = (unsigned short)(g<<8); + colormap[index].blue = (unsigned short)(b<<8); + colormap[index++].flags = DoRed | DoGreen | DoBlue; + } + } + } + XStoreColors(cimg::X11_attr().display,_colormap,colormap,256); + delete[] colormap; + } + + void _map_window() { + Display *const dpy = cimg::X11_attr().display; + bool is_exposed = false, is_mapped = false; + XWindowAttributes attr; + XEvent event; + XMapRaised(dpy,_window); + do { // Wait for the window to be mapped. + XWindowEvent(dpy,_window,StructureNotifyMask | ExposureMask,&event); + switch (event.type) { + case MapNotify : is_mapped = true; break; + case Expose : is_exposed = true; break; + } + } while (!is_exposed || !is_mapped); + do { // Wait for the window to be visible. + XGetWindowAttributes(dpy,_window,&attr); + if (attr.map_state!=IsViewable) { XSync(dpy,0); cimg::sleep(10); } + } while (attr.map_state!=IsViewable); + _window_x = attr.x; + _window_y = attr.y; + } + + void _paint(const bool wait_expose=true) { + if (_is_closed || !_image) return; + Display *const dpy = cimg::X11_attr().display; + if (wait_expose) { // Send an expose event sticked to display window to force repaint. + XEvent event; + event.xexpose.type = Expose; + event.xexpose.serial = 0; + event.xexpose.send_event = 1; + event.xexpose.display = dpy; + event.xexpose.window = _window; + event.xexpose.x = 0; + event.xexpose.y = 0; + event.xexpose.width = width(); + event.xexpose.height = height(); + event.xexpose.count = 0; + XSendEvent(dpy,_window,0,0,&event); + } else { // Repaint directly (may be called from the expose event). + GC gc = DefaultGC(dpy,DefaultScreen(dpy)); +#ifdef cimg_use_xshm + if (_shminfo) XShmPutImage(dpy,_window,gc,_image,0,0,0,0,_width,_height,1); + else XPutImage(dpy,_window,gc,_image,0,0,0,0,_width,_height); +#else + XPutImage(dpy,_window,gc,_image,0,0,0,0,_width,_height); +#endif + } + } + + template + void _resize(T pixel_type, const unsigned int ndimx, const unsigned int ndimy, const bool force_redraw) { + Display *const dpy = cimg::X11_attr().display; + cimg::unused(pixel_type); + +#ifdef cimg_use_xshm + if (_shminfo) { + XShmSegmentInfo *const nshminfo = new XShmSegmentInfo; + XImage *const nimage = XShmCreateImage(dpy,DefaultVisual(dpy,DefaultScreen(dpy)), + cimg::X11_attr().nb_bits,ZPixmap,0,nshminfo,ndimx,ndimy); + if (!nimage) { delete nshminfo; return; } + else { + nshminfo->shmid = shmget(IPC_PRIVATE,ndimx*ndimy*sizeof(T),IPC_CREAT | 0777); + if (nshminfo->shmid==-1) { XDestroyImage(nimage); delete nshminfo; return; } + else { + nshminfo->shmaddr = nimage->data = (char*)shmat(nshminfo->shmid,0,0); + if (nshminfo->shmaddr==(char*)-1) { + shmctl(nshminfo->shmid,IPC_RMID,0); XDestroyImage(nimage); delete nshminfo; return; + } else { + nshminfo->readOnly = 0; + cimg::X11_attr().is_shm_enabled = true; + XErrorHandler oldXErrorHandler = XSetErrorHandler(_assign_xshm); + XShmAttach(dpy,nshminfo); + XFlush(dpy); + XSetErrorHandler(oldXErrorHandler); + if (!cimg::X11_attr().is_shm_enabled) { + shmdt(nshminfo->shmaddr); + shmctl(nshminfo->shmid,IPC_RMID,0); + XDestroyImage(nimage); + delete nshminfo; + return; + } else { + T *const ndata = (T*)nimage->data; + if (force_redraw) _render_resize((T*)_data,_width,_height,ndata,ndimx,ndimy); + else std::memset(ndata,0,sizeof(T)*ndimx*ndimy); + XShmDetach(dpy,_shminfo); + XDestroyImage(_image); + shmdt(_shminfo->shmaddr); + shmctl(_shminfo->shmid,IPC_RMID,0); + delete _shminfo; + _shminfo = nshminfo; + _image = nimage; + _data = (void*)ndata; + } + } + } + } + } else +#endif + { + T *ndata = (T*)std::malloc(ndimx*ndimy*sizeof(T)); + if (force_redraw) _render_resize((T*)_data,_width,_height,ndata,ndimx,ndimy); + else std::memset(ndata,0,sizeof(T)*ndimx*ndimy); + _data = (void*)ndata; + XDestroyImage(_image); + _image = XCreateImage(dpy,DefaultVisual(dpy,DefaultScreen(dpy)), + cimg::X11_attr().nb_bits,ZPixmap,0,(char*)_data,ndimx,ndimy,8,0); + } + } + + void _init_fullscreen() { + if (!_is_fullscreen || _is_closed) return; + Display *const dpy = cimg::X11_attr().display; + _background_window = 0; + +#ifdef cimg_use_xrandr + int foo; + if (XRRQueryExtension(dpy,&foo,&foo)) { + XRRRotations(dpy,DefaultScreen(dpy),&cimg::X11_attr().curr_rotation); + if (!cimg::X11_attr().resolutions) { + cimg::X11_attr().resolutions = XRRSizes(dpy,DefaultScreen(dpy),&foo); + cimg::X11_attr().nb_resolutions = (unsigned int)foo; + } + if (cimg::X11_attr().resolutions) { + cimg::X11_attr().curr_resolution = 0; + for (unsigned int i = 0; i=_width && nh>=_height && + nw<=(unsigned int)(cimg::X11_attr().resolutions[cimg::X11_attr().curr_resolution].width) && + nh<=(unsigned int)(cimg::X11_attr().resolutions[cimg::X11_attr().curr_resolution].height)) + cimg::X11_attr().curr_resolution = i; + } + if (cimg::X11_attr().curr_resolution>0) { + XRRScreenConfiguration *config = XRRGetScreenInfo(dpy,DefaultRootWindow(dpy)); + XRRSetScreenConfig(dpy,config,DefaultRootWindow(dpy), + cimg::X11_attr().curr_resolution,cimg::X11_attr().curr_rotation,CurrentTime); + XRRFreeScreenConfigInfo(config); + XSync(dpy,0); + } + } + } + if (!cimg::X11_attr().resolutions) + cimg::warn(_cimgdisplay_instance + "init_fullscreen(): Xrandr extension not supported by the X server.", + cimgdisplay_instance); +#endif + + const unsigned int sx = screen_width(), sy = screen_height(); + if (sx==_width && sy==_height) return; + XSetWindowAttributes winattr; + winattr.override_redirect = 1; + _background_window = XCreateWindow(dpy,DefaultRootWindow(dpy),0,0,sx,sy,0,0, + InputOutput,CopyFromParent,CWOverrideRedirect,&winattr); + const cimg_ulong buf_size = (cimg_ulong)sx*sy*(cimg::X11_attr().nb_bits==8?1: + (cimg::X11_attr().nb_bits==16?2:4)); + void *background_data = std::malloc(buf_size); + std::memset(background_data,0,buf_size); + XImage *background_image = XCreateImage(dpy,DefaultVisual(dpy,DefaultScreen(dpy)),cimg::X11_attr().nb_bits, + ZPixmap,0,(char*)background_data,sx,sy,8,0); + XEvent event; + XSelectInput(dpy,_background_window,StructureNotifyMask); + XMapRaised(dpy,_background_window); + do XWindowEvent(dpy,_background_window,StructureNotifyMask,&event); + while (event.type!=MapNotify); + GC gc = DefaultGC(dpy,DefaultScreen(dpy)); +#ifdef cimg_use_xshm + if (_shminfo) XShmPutImage(dpy,_background_window,gc,background_image,0,0,0,0,sx,sy,0); + else XPutImage(dpy,_background_window,gc,background_image,0,0,0,0,sx,sy); +#else + XPutImage(dpy,_background_window,gc,background_image,0,0,0,0,sx,sy); +#endif + XWindowAttributes attr; + XGetWindowAttributes(dpy,_background_window,&attr); + while (attr.map_state!=IsViewable) XSync(dpy,0); + XDestroyImage(background_image); + } + + void _desinit_fullscreen() { + if (!_is_fullscreen) return; + Display *const dpy = cimg::X11_attr().display; + XUngrabKeyboard(dpy,CurrentTime); +#ifdef cimg_use_xrandr + if (cimg::X11_attr().resolutions && cimg::X11_attr().curr_resolution) { + XRRScreenConfiguration *config = XRRGetScreenInfo(dpy,DefaultRootWindow(dpy)); + XRRSetScreenConfig(dpy,config,DefaultRootWindow(dpy),0,cimg::X11_attr().curr_rotation,CurrentTime); + XRRFreeScreenConfigInfo(config); + XSync(dpy,0); + cimg::X11_attr().curr_resolution = 0; + } +#endif + if (_background_window) XDestroyWindow(dpy,_background_window); + _background_window = 0; + _is_fullscreen = false; + } + + static int _assign_xshm(Display *dpy, XErrorEvent *error) { + cimg::unused(dpy,error); + cimg::X11_attr().is_shm_enabled = false; + return 0; + } + + void _assign(const unsigned int dimw, const unsigned int dimh, const char *const ptitle=0, + const unsigned int normalization_type=3, + const bool fullscreen_flag=false, const bool closed_flag=false) { + cimg::mutex(14); + + // Allocate space for window title + const char *const nptitle = ptitle?ptitle:""; + const unsigned int s = (unsigned int)std::strlen(nptitle) + 1; + char *const tmp_title = s?new char[s]:0; + if (s) std::memcpy(tmp_title,nptitle,s*sizeof(char)); + + // Destroy previous display window if existing + if (!is_empty()) assign(); + + // Open X11 display and retrieve graphical properties. + Display* &dpy = cimg::X11_attr().display; + if (!dpy) { + dpy = XOpenDisplay(0); + if (!dpy) + throw CImgDisplayException(_cimgdisplay_instance + "assign(): Failed to open X11 display.", + cimgdisplay_instance); + + cimg::X11_attr().nb_bits = DefaultDepth(dpy,DefaultScreen(dpy)); + if (cimg::X11_attr().nb_bits!=8 && cimg::X11_attr().nb_bits!=16 && + cimg::X11_attr().nb_bits!=24 && cimg::X11_attr().nb_bits!=32) + throw CImgDisplayException(_cimgdisplay_instance + "assign(): Invalid %u bits screen mode detected " + "(only 8, 16, 24 and 32 bits modes are managed).", + cimgdisplay_instance, + cimg::X11_attr().nb_bits); + XVisualInfo vtemplate; + vtemplate.visualid = XVisualIDFromVisual(DefaultVisual(dpy,DefaultScreen(dpy))); + int nb_visuals; + XVisualInfo *vinfo = XGetVisualInfo(dpy,VisualIDMask,&vtemplate,&nb_visuals); + if (vinfo && vinfo->red_maskblue_mask) cimg::X11_attr().is_blue_first = true; + cimg::X11_attr().byte_order = ImageByteOrder(dpy); + XFree(vinfo); + + cimg_lock_display(); + cimg::X11_attr().events_thread = new pthread_t; + pthread_create(cimg::X11_attr().events_thread,0,_events_thread,0); + } else cimg_lock_display(); + + // Set display variables. + _width = std::min(dimw,(unsigned int)screen_width()); + _height = std::min(dimh,(unsigned int)screen_height()); + _normalization = normalization_type<4?normalization_type:3; + _is_fullscreen = fullscreen_flag; + _window_x = _window_y = 0; + _is_closed = closed_flag; + _title = tmp_title; + flush(); + + // Create X11 window (and LUT, if 8bits display) + if (_is_fullscreen) { + if (!_is_closed) _init_fullscreen(); + const unsigned int sx = screen_width(), sy = screen_height(); + XSetWindowAttributes winattr; + winattr.override_redirect = 1; + _window = XCreateWindow(dpy,DefaultRootWindow(dpy),(sx - _width)/2,(sy - _height)/2,_width,_height,0,0, + InputOutput,CopyFromParent,CWOverrideRedirect,&winattr); + } else + _window = XCreateSimpleWindow(dpy,DefaultRootWindow(dpy),0,0,_width,_height,0,0L,0L); + + XSelectInput(dpy,_window, + ExposureMask | StructureNotifyMask | ButtonPressMask | KeyPressMask | PointerMotionMask | + EnterWindowMask | LeaveWindowMask | ButtonReleaseMask | KeyReleaseMask); + + XStoreName(dpy,_window,_title?_title:" "); + if (cimg::X11_attr().nb_bits==8) { + _colormap = XCreateColormap(dpy,_window,DefaultVisual(dpy,DefaultScreen(dpy)),AllocAll); + _set_colormap(_colormap,3); + XSetWindowColormap(dpy,_window,_colormap); + } + + static const char *const _window_class = cimg_appname; + XClassHint *const window_class = XAllocClassHint(); + window_class->res_name = (char*)_window_class; + window_class->res_class = (char*)_window_class; + XSetClassHint(dpy,_window,window_class); + XFree(window_class); + + _window_width = _width; + _window_height = _height; + + // Create XImage +#ifdef cimg_use_xshm + _shminfo = 0; + if (XShmQueryExtension(dpy)) { + _shminfo = new XShmSegmentInfo; + _image = XShmCreateImage(dpy,DefaultVisual(dpy,DefaultScreen(dpy)),cimg::X11_attr().nb_bits, + ZPixmap,0,_shminfo,_width,_height); + if (!_image) { delete _shminfo; _shminfo = 0; } + else { + _shminfo->shmid = shmget(IPC_PRIVATE,_image->bytes_per_line*_image->height,IPC_CREAT|0777); + if (_shminfo->shmid==-1) { XDestroyImage(_image); delete _shminfo; _shminfo = 0; } + else { + _shminfo->shmaddr = _image->data = (char*)(_data = shmat(_shminfo->shmid,0,0)); + if (_shminfo->shmaddr==(char*)-1) { + shmctl(_shminfo->shmid,IPC_RMID,0); XDestroyImage(_image); delete _shminfo; _shminfo = 0; + } else { + _shminfo->readOnly = 0; + cimg::X11_attr().is_shm_enabled = true; + XErrorHandler oldXErrorHandler = XSetErrorHandler(_assign_xshm); + XShmAttach(dpy,_shminfo); + XSync(dpy,0); + XSetErrorHandler(oldXErrorHandler); + if (!cimg::X11_attr().is_shm_enabled) { + shmdt(_shminfo->shmaddr); shmctl(_shminfo->shmid,IPC_RMID,0); XDestroyImage(_image); + delete _shminfo; _shminfo = 0; + } + } + } + } + } + if (!_shminfo) +#endif + { + const cimg_ulong buf_size = (cimg_ulong)_width*_height*(cimg::X11_attr().nb_bits==8?1: + (cimg::X11_attr().nb_bits==16?2:4)); + _data = std::malloc(buf_size); + _image = XCreateImage(dpy,DefaultVisual(dpy,DefaultScreen(dpy)),cimg::X11_attr().nb_bits, + ZPixmap,0,(char*)_data,_width,_height,8,0); + } + + _wm_window_atom = XInternAtom(dpy,"WM_DELETE_WINDOW",0); + _wm_protocol_atom = XInternAtom(dpy,"WM_PROTOCOLS",0); + XSetWMProtocols(dpy,_window,&_wm_window_atom,1); + + if (_is_fullscreen) XGrabKeyboard(dpy,_window,1,GrabModeAsync,GrabModeAsync,CurrentTime); + cimg::X11_attr().wins[cimg::X11_attr().nb_wins++]=this; + if (!_is_closed) _map_window(); else { _window_x = _window_y = cimg::type::min(); } + cimg_unlock_display(); + cimg::mutex(14,0); + } + + CImgDisplay& assign() { + if (is_empty()) return flush(); + Display *const dpy = cimg::X11_attr().display; + cimg_lock_display(); + + // Remove display window from event thread list. + unsigned int i; + for (i = 0; ishmaddr); + shmctl(_shminfo->shmid,IPC_RMID,0); + delete _shminfo; + _shminfo = 0; + } else +#endif + XDestroyImage(_image); + _data = 0; _image = 0; + if (cimg::X11_attr().nb_bits==8) XFreeColormap(dpy,_colormap); + _colormap = 0; + XSync(dpy,0); + + // Reset display variables. + delete[] _title; + _width = _height = _normalization = _window_width = _window_height = 0; + _window_x = _window_y = 0; + _is_fullscreen = false; + _is_closed = true; + _min = _max = 0; + _title = 0; + flush(); + + cimg_unlock_display(); + return *this; + } + + CImgDisplay& assign(const unsigned int dimw, const unsigned int dimh, const char *const title=0, + const unsigned int normalization_type=3, + const bool fullscreen_flag=false, const bool closed_flag=false) { + if (!dimw || !dimh) return assign(); + _assign(dimw,dimh,title,normalization_type,fullscreen_flag,closed_flag); + _min = _max = 0; + std::memset(_data,0,(cimg::X11_attr().nb_bits==8?sizeof(unsigned char): + (cimg::X11_attr().nb_bits==16?sizeof(unsigned short):sizeof(unsigned int)))* + (size_t)_width*_height); + return paint(); + } + + template + CImgDisplay& assign(const CImg& img, const char *const title=0, + const unsigned int normalization_type=3, + const bool fullscreen_flag=false, const bool closed_flag=false) { + if (!img) return assign(); + CImg tmp; + const CImg& nimg = (img._depth==1)?img:(tmp=img.get_projections2d((img._width - 1)/2, + (img._height - 1)/2, + (img._depth - 1)/2)); + _assign(nimg._width,nimg._height,title,normalization_type,fullscreen_flag,closed_flag); + if (_normalization==2) _min = (float)nimg.min_max(_max); + return render(nimg).paint(); + } + + template + CImgDisplay& assign(const CImgList& list, const char *const title=0, + const unsigned int normalization_type=3, + const bool fullscreen_flag=false, const bool closed_flag=false) { + if (!list) return assign(); + CImg tmp; + const CImg img = list>'x', &nimg = (img._depth==1)?img:(tmp=img.get_projections2d((img._width - 1)/2, + (img._height - 1)/2, + (img._depth - 1)/2)); + _assign(nimg._width,nimg._height,title,normalization_type,fullscreen_flag,closed_flag); + if (_normalization==2) _min = (float)nimg.min_max(_max); + return render(nimg).paint(); + } + + CImgDisplay& assign(const CImgDisplay& disp) { + if (!disp) return assign(); + _assign(disp._width,disp._height,disp._title,disp._normalization,disp._is_fullscreen,disp._is_closed); + std::memcpy(_data,disp._data,(cimg::X11_attr().nb_bits==8?sizeof(unsigned char): + cimg::X11_attr().nb_bits==16?sizeof(unsigned short): + sizeof(unsigned int))*(size_t)_width*_height); + return paint(); + } + + CImgDisplay& resize(const int nwidth, const int nheight, const bool force_redraw=true) { + if (!nwidth || !nheight || (is_empty() && (nwidth<0 || nheight<0))) return assign(); + if (is_empty()) return assign(nwidth,nheight); + Display *const dpy = cimg::X11_attr().display; + const unsigned int + tmpdimx = (nwidth>0)?nwidth:(-nwidth*width()/100), + tmpdimy = (nheight>0)?nheight:(-nheight*height()/100), + dimx = tmpdimx?tmpdimx:1, + dimy = tmpdimy?tmpdimy:1; + if (_width!=dimx || _height!=dimy || _window_width!=dimx || _window_height!=dimy) { + show(); + cimg_lock_display(); + if (_window_width!=dimx || _window_height!=dimy) { + XWindowAttributes attr; + for (unsigned int i = 0; i<10; ++i) { + XResizeWindow(dpy,_window,dimx,dimy); + XGetWindowAttributes(dpy,_window,&attr); + if (attr.width==(int)dimx && attr.height==(int)dimy) break; + cimg::wait(5); + } + } + if (_width!=dimx || _height!=dimy) switch (cimg::X11_attr().nb_bits) { + case 8 : { unsigned char pixel_type = 0; _resize(pixel_type,dimx,dimy,force_redraw); } break; + case 16 : { unsigned short pixel_type = 0; _resize(pixel_type,dimx,dimy,force_redraw); } break; + default : { unsigned int pixel_type = 0; _resize(pixel_type,dimx,dimy,force_redraw); } + } + _window_width = _width = dimx; _window_height = _height = dimy; + cimg_unlock_display(); + } + _is_resized = false; + if (_is_fullscreen) move((screen_width() - _width)/2,(screen_height() - _height)/2); + if (force_redraw) return paint(); + return *this; + } + + CImgDisplay& toggle_fullscreen(const bool force_redraw=true) { + if (is_empty()) return *this; + if (force_redraw) { + const cimg_ulong buf_size = (cimg_ulong)_width*_height* + (cimg::X11_attr().nb_bits==8?1:(cimg::X11_attr().nb_bits==16?2:4)); + void *image_data = std::malloc(buf_size); + std::memcpy(image_data,_data,buf_size); + assign(_width,_height,_title,_normalization,!_is_fullscreen,false); + std::memcpy(_data,image_data,buf_size); + std::free(image_data); + return paint(); + } + return assign(_width,_height,_title,_normalization,!_is_fullscreen,false); + } + + CImgDisplay& show() { + if (is_empty() || !_is_closed) return *this; + cimg_lock_display(); + if (_is_fullscreen) _init_fullscreen(); + _map_window(); + _is_closed = false; + cimg_unlock_display(); + return paint(); + } + + CImgDisplay& close() { + if (is_empty() || _is_closed) return *this; + Display *const dpy = cimg::X11_attr().display; + cimg_lock_display(); + if (_is_fullscreen) _desinit_fullscreen(); + XUnmapWindow(dpy,_window); + _window_x = _window_y = -1; + _is_closed = true; + cimg_unlock_display(); + return *this; + } + + CImgDisplay& move(const int posx, const int posy) { + if (is_empty()) return *this; + if (_window_x!=posx || _window_y!=posy) { + show(); + Display *const dpy = cimg::X11_attr().display; + cimg_lock_display(); + XMoveWindow(dpy,_window,posx,posy); + _window_x = posx; _window_y = posy; + cimg_unlock_display(); + } + _is_moved = false; + return paint(); + } + + CImgDisplay& show_mouse() { + if (is_empty()) return *this; + Display *const dpy = cimg::X11_attr().display; + cimg_lock_display(); + XUndefineCursor(dpy,_window); + cimg_unlock_display(); + return *this; + } + + CImgDisplay& hide_mouse() { + if (is_empty()) return *this; + Display *const dpy = cimg::X11_attr().display; + cimg_lock_display(); + static const char pix_data[8] = { 0 }; + XColor col; + col.red = col.green = col.blue = 0; + Pixmap pix = XCreateBitmapFromData(dpy,_window,pix_data,8,8); + Cursor cur = XCreatePixmapCursor(dpy,pix,pix,&col,&col,0,0); + XFreePixmap(dpy,pix); + XDefineCursor(dpy,_window,cur); + cimg_unlock_display(); + return *this; + } + + CImgDisplay& set_mouse(const int posx, const int posy) { + if (is_empty() || _is_closed) return *this; + Display *const dpy = cimg::X11_attr().display; + cimg_lock_display(); + XWarpPointer(dpy,0L,_window,0,0,0,0,posx,posy); + _mouse_x = posx; _mouse_y = posy; + _is_moved = false; + XSync(dpy,0); + cimg_unlock_display(); + return *this; + } + + CImgDisplay& set_title(const char *const format, ...) { + if (is_empty()) return *this; + char *const tmp = new char[1024]; + va_list ap; + va_start(ap, format); + cimg_vsnprintf(tmp,1024,format,ap); + va_end(ap); + if (!std::strcmp(_title,tmp)) { delete[] tmp; return *this; } + delete[] _title; + const unsigned int s = (unsigned int)std::strlen(tmp) + 1; + _title = new char[s]; + std::memcpy(_title,tmp,s*sizeof(char)); + Display *const dpy = cimg::X11_attr().display; + cimg_lock_display(); + XStoreName(dpy,_window,tmp); + cimg_unlock_display(); + delete[] tmp; + return *this; + } + + template + CImgDisplay& display(const CImg& img) { + if (!img) + throw CImgArgumentException(_cimgdisplay_instance + "display(): Empty specified image.", + cimgdisplay_instance); + if (is_empty()) return assign(img); + return render(img).paint(false); + } + + CImgDisplay& paint(const bool wait_expose=true) { + if (is_empty()) return *this; + cimg_lock_display(); + _paint(wait_expose); + cimg_unlock_display(); + return *this; + } + + template + CImgDisplay& render(const CImg& img, const bool flag8=false) { + if (!img) + throw CImgArgumentException(_cimgdisplay_instance + "render(): Empty specified image.", + cimgdisplay_instance); + if (is_empty()) return *this; + if (img._depth!=1) return render(img.get_projections2d((img._width - 1)/2,(img._height - 1)/2, + (img._depth - 1)/2)); + if (cimg::X11_attr().nb_bits==8 && (img._width!=_width || img._height!=_height)) + return render(img.get_resize(_width,_height,1,-100,1)); + if (cimg::X11_attr().nb_bits==8 && !flag8 && img._spectrum==3) { + static const CImg::ucharT> default_colormap = CImg::ucharT>::default_LUT256(); + return render(img.get_index(default_colormap,1,false)); + } + + const T + *data1 = img._data, + *data2 = (img._spectrum>1)?img.data(0,0,0,1):data1, + *data3 = (img._spectrum>2)?img.data(0,0,0,2):data1; + + if (cimg::X11_attr().is_blue_first) cimg::swap(data1,data3); + cimg_lock_display(); + + if (!_normalization || (_normalization==3 && cimg::type::string()==cimg::type::string())) { + _min = _max = 0; + switch (cimg::X11_attr().nb_bits) { + case 8 : { // 256 colormap, no normalization + _set_colormap(_colormap,img._spectrum); + unsigned char + *const ndata = (img._width==_width && img._height==_height)?(unsigned char*)_data: + new unsigned char[(size_t)img._width*img._height], + *ptrd = (unsigned char*)ndata; + switch (img._spectrum) { + case 1 : + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + (*ptrd++) = (unsigned char)*(data1++); + break; + case 2 : for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + R = (unsigned char)*(data1++), + G = (unsigned char)*(data2++); + (*ptrd++) = (R&0xf0) | (G>>4); + } break; + default : for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + R = (unsigned char)*(data1++), + G = (unsigned char)*(data2++), + B = (unsigned char)*(data3++); + (*ptrd++) = (R&0xe0) | ((G>>5)<<2) | (B>>6); + } + } + if (ndata!=_data) { + _render_resize(ndata,img._width,img._height,(unsigned char*)_data,_width,_height); + delete[] ndata; + } + } break; + case 16 : { // 16 bits colors, no normalization + unsigned short *const ndata = (img._width==_width && img._height==_height)?(unsigned short*)_data: + new unsigned short[(size_t)img._width*img._height]; + unsigned char *ptrd = (unsigned char*)ndata; + const unsigned int M = 248; + switch (img._spectrum) { + case 1 : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)*(data1++), G = val>>2; + ptrd[0] = (val&M) | (G>>3); + ptrd[1] = (G<<5) | (G>>1); + ptrd+=2; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)*(data1++), G = val>>2; + ptrd[0] = (G<<5) | (G>>1); + ptrd[1] = (val&M) | (G>>3); + ptrd+=2; + } + break; + case 2 : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char G = (unsigned char)*(data2++)>>2; + ptrd[0] = ((unsigned char)*(data1++)&M) | (G>>3); + ptrd[1] = (G<<5); + ptrd+=2; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char G = (unsigned char)*(data2++)>>2; + ptrd[0] = (G<<5); + ptrd[1] = ((unsigned char)*(data1++)&M) | (G>>3); + ptrd+=2; + } + break; + default : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char G = (unsigned char)*(data2++)>>2; + ptrd[0] = ((unsigned char)*(data1++)&M) | (G>>3); + ptrd[1] = (G<<5) | ((unsigned char)*(data3++)>>3); + ptrd+=2; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char G = (unsigned char)*(data2++)>>2; + ptrd[0] = (G<<5) | ((unsigned char)*(data3++)>>3); + ptrd[1] = ((unsigned char)*(data1++)&M) | (G>>3); + ptrd+=2; + } + } + if (ndata!=_data) { + _render_resize(ndata,img._width,img._height,(unsigned short*)_data,_width,_height); + delete[] ndata; + } + } break; + default : { // 24 bits colors, no normalization + unsigned int *const ndata = (img._width==_width && img._height==_height)?(unsigned int*)_data: + new unsigned int[(size_t)img._width*img._height]; + if (sizeof(int)==4) { // 32 bits int uses optimized version + unsigned int *ptrd = ndata; + switch (img._spectrum) { + case 1 : + if (cimg::X11_attr().byte_order==cimg::endianness()) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)*(data1++); + *(ptrd++) = (val<<16) | (val<<8) | val; + } + else + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)*(data1++); + *(ptrd++) = (val<<16) | (val<<8) | val; + } + break; + case 2 : + if (cimg::X11_attr().byte_order==cimg::endianness()) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + *(ptrd++) = ((unsigned char)*(data1++)<<16) | ((unsigned char)*(data2++)<<8); + else + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + *(ptrd++) = ((unsigned char)*(data2++)<<16) | ((unsigned char)*(data1++)<<8); + break; + default : + if (cimg::X11_attr().byte_order==cimg::endianness()) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + *(ptrd++) = ((unsigned char)*(data1++)<<16) | ((unsigned char)*(data2++)<<8) | + (unsigned char)*(data3++); + else + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + *(ptrd++) = ((unsigned char)*(data3++)<<24) | ((unsigned char)*(data2++)<<16) | + ((unsigned char)*(data1++)<<8); + } + } else { + unsigned char *ptrd = (unsigned char*)ndata; + switch (img._spectrum) { + case 1 : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ptrd[0] = 0; + ptrd[1] = (unsigned char)*(data1++); + ptrd[2] = 0; + ptrd[3] = 0; + ptrd+=4; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ptrd[0] = 0; + ptrd[1] = 0; + ptrd[2] = (unsigned char)*(data1++); + ptrd[3] = 0; + ptrd+=4; + } + break; + case 2 : + if (cimg::X11_attr().byte_order) cimg::swap(data1,data2); + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ptrd[0] = 0; + ptrd[1] = (unsigned char)*(data2++); + ptrd[2] = (unsigned char)*(data1++); + ptrd[3] = 0; + ptrd+=4; + } + break; + default : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ptrd[0] = 0; + ptrd[1] = (unsigned char)*(data1++); + ptrd[2] = (unsigned char)*(data2++); + ptrd[3] = (unsigned char)*(data3++); + ptrd+=4; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ptrd[0] = (unsigned char)*(data3++); + ptrd[1] = (unsigned char)*(data2++); + ptrd[2] = (unsigned char)*(data1++); + ptrd[3] = 0; + ptrd+=4; + } + } + } + if (ndata!=_data) { + _render_resize(ndata,img._width,img._height,(unsigned int*)_data,_width,_height); + delete[] ndata; + } + } + } + } else { + if (_normalization==3) { + if (cimg::type::is_float()) _min = (float)img.min_max(_max); + else { _min = (float)cimg::type::min(); _max = (float)cimg::type::max(); } + } else if ((_min>_max) || _normalization==1) _min = (float)img.min_max(_max); + const float delta = _max - _min, mm = 255/(delta?delta:1.0f); + switch (cimg::X11_attr().nb_bits) { + case 8 : { // 256 colormap, with normalization + _set_colormap(_colormap,img._spectrum); + unsigned char *const ndata = (img._width==_width && img._height==_height)?(unsigned char*)_data: + new unsigned char[(size_t)img._width*img._height]; + unsigned char *ptrd = (unsigned char*)ndata; + switch (img._spectrum) { + case 1 : for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char R = (unsigned char)((*(data1++) - _min)*mm); + *(ptrd++) = R; + } break; + case 2 : for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + R = (unsigned char)((*(data1++) - _min)*mm), + G = (unsigned char)((*(data2++) - _min)*mm); + (*ptrd++) = (R&0xf0) | (G>>4); + } break; + default : + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + R = (unsigned char)((*(data1++) - _min)*mm), + G = (unsigned char)((*(data2++) - _min)*mm), + B = (unsigned char)((*(data3++) - _min)*mm); + *(ptrd++) = (R&0xe0) | ((G>>5)<<2) | (B>>6); + } + } + if (ndata!=_data) { + _render_resize(ndata,img._width,img._height,(unsigned char*)_data,_width,_height); + delete[] ndata; + } + } break; + case 16 : { // 16 bits colors, with normalization + unsigned short *const ndata = (img._width==_width && img._height==_height)?(unsigned short*)_data: + new unsigned short[(size_t)img._width*img._height]; + unsigned char *ptrd = (unsigned char*)ndata; + const unsigned int M = 248; + switch (img._spectrum) { + case 1 : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)((*(data1++) - _min)*mm), G = val>>2; + ptrd[0] = (val&M) | (G>>3); + ptrd[1] = (G<<5) | (val>>3); + ptrd+=2; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)((*(data1++) - _min)*mm), G = val>>2; + ptrd[0] = (G<<5) | (val>>3); + ptrd[1] = (val&M) | (G>>3); + ptrd+=2; + } + break; + case 2 : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char G = (unsigned char)((*(data2++) - _min)*mm)>>2; + ptrd[0] = ((unsigned char)((*(data1++) - _min)*mm)&M) | (G>>3); + ptrd[1] = (G<<5); + ptrd+=2; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char G = (unsigned char)((*(data2++) - _min)*mm)>>2; + ptrd[0] = (G<<5); + ptrd[1] = ((unsigned char)((*(data1++) - _min)*mm)&M) | (G>>3); + ptrd+=2; + } + break; + default : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char G = (unsigned char)((*(data2++) - _min)*mm)>>2; + ptrd[0] = ((unsigned char)((*(data1++) - _min)*mm)&M) | (G>>3); + ptrd[1] = (G<<5) | ((unsigned char)((*(data3++) - _min)*mm)>>3); + ptrd+=2; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char G = (unsigned char)((*(data2++) - _min)*mm)>>2; + ptrd[0] = (G<<5) | ((unsigned char)((*(data3++) - _min)*mm)>>3); + ptrd[1] = ((unsigned char)((*(data1++) - _min)*mm)&M) | (G>>3); + ptrd+=2; + } + } + if (ndata!=_data) { + _render_resize(ndata,img._width,img._height,(unsigned short*)_data,_width,_height); + delete[] ndata; + } + } break; + default : { // 24 bits colors, with normalization + unsigned int *const ndata = (img._width==_width && img._height==_height)?(unsigned int*)_data: + new unsigned int[(size_t)img._width*img._height]; + if (sizeof(int)==4) { // 32 bits int uses optimized version + unsigned int *ptrd = ndata; + switch (img._spectrum) { + case 1 : + if (cimg::X11_attr().byte_order==cimg::endianness()) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)((*(data1++) - _min)*mm); + *(ptrd++) = (val<<16) | (val<<8) | val; + } + else + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)((*(data1++) - _min)*mm); + *(ptrd++) = (val<<24) | (val<<16) | (val<<8); + } + break; + case 2 : + if (cimg::X11_attr().byte_order==cimg::endianness()) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + *(ptrd++) = + ((unsigned char)((*(data1++) - _min)*mm)<<16) | + ((unsigned char)((*(data2++) - _min)*mm)<<8); + else + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + *(ptrd++) = + ((unsigned char)((*(data2++) - _min)*mm)<<16) | + ((unsigned char)((*(data1++) - _min)*mm)<<8); + break; + default : + if (cimg::X11_attr().byte_order==cimg::endianness()) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + *(ptrd++) = + ((unsigned char)((*(data1++) - _min)*mm)<<16) | + ((unsigned char)((*(data2++) - _min)*mm)<<8) | + (unsigned char)((*(data3++) - _min)*mm); + else + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) + *(ptrd++) = + ((unsigned char)((*(data3++) - _min)*mm)<<24) | + ((unsigned char)((*(data2++) - _min)*mm)<<16) | + ((unsigned char)((*(data1++) - _min)*mm)<<8); + } + } else { + unsigned char *ptrd = (unsigned char*)ndata; + switch (img._spectrum) { + case 1 : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)((*(data1++) - _min)*mm); + ptrd[0] = 0; + ptrd[1] = val; + ptrd[2] = val; + ptrd[3] = val; + ptrd+=4; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)((*(data1++) - _min)*mm); + ptrd[0] = val; + ptrd[1] = val; + ptrd[2] = val; + ptrd[3] = 0; + ptrd+=4; + } + break; + case 2 : + if (cimg::X11_attr().byte_order) cimg::swap(data1,data2); + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ptrd[0] = 0; + ptrd[1] = (unsigned char)((*(data2++) - _min)*mm); + ptrd[2] = (unsigned char)((*(data1++) - _min)*mm); + ptrd[3] = 0; + ptrd+=4; + } + break; + default : + if (cimg::X11_attr().byte_order) + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ptrd[0] = 0; + ptrd[1] = (unsigned char)((*(data1++) - _min)*mm); + ptrd[2] = (unsigned char)((*(data2++) - _min)*mm); + ptrd[3] = (unsigned char)((*(data3++) - _min)*mm); + ptrd+=4; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ptrd[0] = (unsigned char)((*(data3++) - _min)*mm); + ptrd[1] = (unsigned char)((*(data2++) - _min)*mm); + ptrd[2] = (unsigned char)((*(data1++) - _min)*mm); + ptrd[3] = 0; + ptrd+=4; + } + } + } + if (ndata!=_data) { + _render_resize(ndata,img._width,img._height,(unsigned int*)_data,_width,_height); + delete[] ndata; + } + } + } + } + cimg_unlock_display(); + return *this; + } + + template + static void screenshot(const int x0, const int y0, const int x1, const int y1, CImg& img) { + img.assign(); + Display *dpy = cimg::X11_attr().display; + cimg_lock_display(); + if (!dpy) { + dpy = XOpenDisplay(0); + if (!dpy) + throw CImgDisplayException("CImgDisplay::screenshot(): Failed to open X11 display."); + } + Window root = DefaultRootWindow(dpy); + XWindowAttributes gwa; + XGetWindowAttributes(dpy,root,&gwa); + const int width = gwa.width, height = gwa.height; + int _x0 = x0, _y0 = y0, _x1 = x1, _y1 = y1; + if (_x0>_x1) cimg::swap(_x0,_x1); + if (_y0>_y1) cimg::swap(_y0,_y1); + + XImage *image = 0; + if (_x1>=0 && _x0=0 && _y0red_mask, + green_mask = image->green_mask, + blue_mask = image->blue_mask; + img.assign(image->width,image->height,1,3); + T *pR = img.data(0,0,0,0), *pG = img.data(0,0,0,1), *pB = img.data(0,0,0,2); + cimg_forXY(img,x,y) { + const unsigned long pixel = XGetPixel(image,x,y); + *(pR++) = (T)((pixel & red_mask)>>16); + *(pG++) = (T)((pixel & green_mask)>>8); + *(pB++) = (T)(pixel & blue_mask); + } + XDestroyImage(image); + } + } + if (!cimg::X11_attr().display) XCloseDisplay(dpy); + cimg_unlock_display(); + if (img.is_empty()) + throw CImgDisplayException("CImgDisplay::screenshot(): Failed to take screenshot " + "with coordinates (%d,%d)-(%d,%d).", + x0,y0,x1,y1); + } + + template + const CImgDisplay& snapshot(CImg& img) const { + if (is_empty()) { img.assign(); return *this; } + const unsigned char *ptrs = (unsigned char*)_data; + img.assign(_width,_height,1,3); + T + *data1 = img.data(0,0,0,0), + *data2 = img.data(0,0,0,1), + *data3 = img.data(0,0,0,2); + if (cimg::X11_attr().is_blue_first) cimg::swap(data1,data3); + switch (cimg::X11_attr().nb_bits) { + case 8 : { + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = *(ptrs++); + *(data1++) = (T)(val&0xe0); + *(data2++) = (T)((val&0x1c)<<3); + *(data3++) = (T)(val<<6); + } + } break; + case 16 : { + if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + val0 = ptrs[0], + val1 = ptrs[1]; + ptrs+=2; + *(data1++) = (T)(val0&0xf8); + *(data2++) = (T)((val0<<5) | ((val1&0xe0)>>5)); + *(data3++) = (T)(val1<<3); + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned short + val0 = ptrs[0], + val1 = ptrs[1]; + ptrs+=2; + *(data1++) = (T)(val1&0xf8); + *(data2++) = (T)((val1<<5) | ((val0&0xe0)>>5)); + *(data3++) = (T)(val0<<3); + } + } break; + default : { + if (cimg::X11_attr().byte_order) for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + ++ptrs; + *(data1++) = (T)ptrs[0]; + *(data2++) = (T)ptrs[1]; + *(data3++) = (T)ptrs[2]; + ptrs+=3; + } else for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + *(data3++) = (T)ptrs[0]; + *(data2++) = (T)ptrs[1]; + *(data1++) = (T)ptrs[2]; + ptrs+=3; + ++ptrs; + } + } + } + return *this; + } + + // Windows-based implementation. + //------------------------------- +#elif cimg_display==2 + + bool _is_mouse_tracked, _is_cursor_visible; + HANDLE _thread, _is_created, _mutex; + HWND _window, _background_window; + CLIENTCREATESTRUCT _ccs; + unsigned int *_data; + DEVMODE _curr_mode; + BITMAPINFO _bmi; + HDC _hdc; + + static int screen_width() { + DEVMODE mode; + mode.dmSize = sizeof(DEVMODE); + mode.dmDriverExtra = 0; + EnumDisplaySettings(0,ENUM_CURRENT_SETTINGS,&mode); + return (int)mode.dmPelsWidth; + } + + static int screen_height() { + DEVMODE mode; + mode.dmSize = sizeof(DEVMODE); + mode.dmDriverExtra = 0; + EnumDisplaySettings(0,ENUM_CURRENT_SETTINGS,&mode); + return (int)mode.dmPelsHeight; + } + + static void wait_all() { + WaitForSingleObject(cimg::Win32_attr().wait_event,INFINITE); + } + + static LRESULT APIENTRY _handle_events(HWND window, UINT msg, WPARAM wParam, LPARAM lParam) { +#ifdef _WIN64 + CImgDisplay *const disp = (CImgDisplay*)GetWindowLongPtr(window,GWLP_USERDATA); +#else + CImgDisplay *const disp = (CImgDisplay*)GetWindowLong(window,GWL_USERDATA); +#endif + MSG st_msg; + switch (msg) { + case WM_CLOSE : + disp->_mouse_x = disp->_mouse_y = -1; + disp->_window_x = disp->_window_y = 0; + disp->set_button().set_key(0).set_key(0,false)._is_closed = true; + ReleaseMutex(disp->_mutex); + ShowWindow(disp->_window,SW_HIDE); + disp->_is_event = true; + SetEvent(cimg::Win32_attr().wait_event); + return 0; + case WM_SIZE : { + while (PeekMessage(&st_msg,window,WM_SIZE,WM_SIZE,PM_REMOVE)) {} + WaitForSingleObject(disp->_mutex,INFINITE); + const unsigned int nw = LOWORD(lParam),nh = HIWORD(lParam); + if (nw && nh && (nw!=disp->_width || nh!=disp->_height)) { + disp->_window_width = nw; + disp->_window_height = nh; + disp->_mouse_x = disp->_mouse_y = -1; + disp->_is_resized = disp->_is_event = true; + SetEvent(cimg::Win32_attr().wait_event); + } + ReleaseMutex(disp->_mutex); + } break; + case WM_MOVE : { + while (PeekMessage(&st_msg,window,WM_SIZE,WM_SIZE,PM_REMOVE)) {} + WaitForSingleObject(disp->_mutex,INFINITE); + const int nx = (int)(short)(LOWORD(lParam)), ny = (int)(short)(HIWORD(lParam)); + if (nx!=disp->_window_x || ny!=disp->_window_y) { + disp->_window_x = nx; + disp->_window_y = ny; + disp->_is_moved = disp->_is_event = true; + SetEvent(cimg::Win32_attr().wait_event); + } + ReleaseMutex(disp->_mutex); + } break; + case WM_PAINT : + disp->paint(); + cimg::mutex(15); + if (disp->_is_cursor_visible) while (ShowCursor(TRUE)<0); else while (ShowCursor(FALSE)>=0); + cimg::mutex(15,0); + break; + case WM_ERASEBKGND : + // return 0; + break; + case WM_KEYDOWN : + disp->set_key((unsigned int)wParam); + SetEvent(cimg::Win32_attr().wait_event); + break; + case WM_KEYUP : + disp->set_key((unsigned int)wParam,false); + SetEvent(cimg::Win32_attr().wait_event); + break; + case WM_MOUSEMOVE : { + while (PeekMessage(&st_msg,window,WM_MOUSEMOVE,WM_MOUSEMOVE,PM_REMOVE)) {} + disp->_mouse_x = LOWORD(lParam); + disp->_mouse_y = HIWORD(lParam); +#if (_WIN32_WINNT>=0x0400) && !defined(NOTRACKMOUSEEVENT) + if (!disp->_is_mouse_tracked) { + TRACKMOUSEEVENT tme; + tme.cbSize = sizeof(TRACKMOUSEEVENT); + tme.dwFlags = TME_LEAVE; + tme.hwndTrack = disp->_window; + if (TrackMouseEvent(&tme)) disp->_is_mouse_tracked = true; + } +#endif + if (disp->_mouse_x<0 || disp->_mouse_y<0 || disp->_mouse_x>=disp->width() || disp->_mouse_y>=disp->height()) + disp->_mouse_x = disp->_mouse_y = -1; + disp->_is_event = true; + SetEvent(cimg::Win32_attr().wait_event); + cimg::mutex(15); + if (disp->_is_cursor_visible) while (ShowCursor(TRUE)<0); else while (ShowCursor(FALSE)>=0); + cimg::mutex(15,0); + } break; + case WM_MOUSELEAVE : { + disp->_mouse_x = disp->_mouse_y = -1; + disp->_is_mouse_tracked = false; + cimg::mutex(15); + while (ShowCursor(TRUE)<0) {} + cimg::mutex(15,0); + } break; + case WM_LBUTTONDOWN : + disp->set_button(1); + SetEvent(cimg::Win32_attr().wait_event); + break; + case WM_RBUTTONDOWN : + disp->set_button(2); + SetEvent(cimg::Win32_attr().wait_event); + break; + case WM_MBUTTONDOWN : + disp->set_button(3); + SetEvent(cimg::Win32_attr().wait_event); + break; + case WM_LBUTTONUP : + disp->set_button(1,false); + SetEvent(cimg::Win32_attr().wait_event); + break; + case WM_RBUTTONUP : + disp->set_button(2,false); + SetEvent(cimg::Win32_attr().wait_event); + break; + case WM_MBUTTONUP : + disp->set_button(3,false); + SetEvent(cimg::Win32_attr().wait_event); + break; + case 0x020A : // WM_MOUSEWHEEL: + disp->set_wheel((int)((short)HIWORD(wParam))/120); + SetEvent(cimg::Win32_attr().wait_event); + } + return DefWindowProc(window,msg,wParam,lParam); + } + + static DWORD WINAPI _events_thread(void* arg) { + CImgDisplay *const disp = (CImgDisplay*)(((void**)arg)[0]); + const char *const title = (const char*)(((void**)arg)[1]); + MSG msg; + delete[] (void**)arg; + disp->_bmi.bmiHeader.biSize = sizeof(BITMAPINFOHEADER); + disp->_bmi.bmiHeader.biWidth = disp->width(); + disp->_bmi.bmiHeader.biHeight = -disp->height(); + disp->_bmi.bmiHeader.biPlanes = 1; + disp->_bmi.bmiHeader.biBitCount = 32; + disp->_bmi.bmiHeader.biCompression = BI_RGB; + disp->_bmi.bmiHeader.biSizeImage = 0; + disp->_bmi.bmiHeader.biXPelsPerMeter = 1; + disp->_bmi.bmiHeader.biYPelsPerMeter = 1; + disp->_bmi.bmiHeader.biClrUsed = 0; + disp->_bmi.bmiHeader.biClrImportant = 0; + disp->_data = new unsigned int[(size_t)disp->_width*disp->_height]; + if (!disp->_is_fullscreen) { // Normal window + RECT rect; + rect.left = rect.top = 0; rect.right = (LONG)disp->_width - 1; rect.bottom = (LONG)disp->_height - 1; + AdjustWindowRect(&rect,WS_CAPTION | WS_SYSMENU | WS_THICKFRAME | WS_MINIMIZEBOX | WS_MAXIMIZEBOX,false); + const int + border1 = (int)((rect.right - rect.left + 1 - disp->_width)/2), + border2 = (int)(rect.bottom - rect.top + 1 - disp->_height - border1); + disp->_window = CreateWindowA("MDICLIENT",title?title:" ", + WS_OVERLAPPEDWINDOW | (disp->_is_closed?0:WS_VISIBLE), CW_USEDEFAULT,CW_USEDEFAULT, + disp->_width + 2*border1, disp->_height + border1 + border2, + 0,0,0,&(disp->_ccs)); + if (!disp->_is_closed) { + GetWindowRect(disp->_window,&rect); + disp->_window_x = rect.left + border1; + disp->_window_y = rect.top + border2; + } else disp->_window_x = disp->_window_y = 0; + } else { // Fullscreen window + const unsigned int + sx = (unsigned int)screen_width(), + sy = (unsigned int)screen_height(); + disp->_window = CreateWindowA("MDICLIENT",title?title:" ", + WS_POPUP | (disp->_is_closed?0:WS_VISIBLE), + (sx - disp->_width)/2, + (sy - disp->_height)/2, + disp->_width,disp->_height,0,0,0,&(disp->_ccs)); + disp->_window_x = disp->_window_y = 0; + } + SetForegroundWindow(disp->_window); + disp->_hdc = GetDC(disp->_window); + disp->_window_width = disp->_width; + disp->_window_height = disp->_height; + disp->flush(); +#ifdef _WIN64 + SetWindowLongPtr(disp->_window,GWLP_USERDATA,(LONG_PTR)disp); + SetWindowLongPtr(disp->_window,GWLP_WNDPROC,(LONG_PTR)_handle_events); +#else + SetWindowLong(disp->_window,GWL_USERDATA,(LONG)disp); + SetWindowLong(disp->_window,GWL_WNDPROC,(LONG)_handle_events); +#endif + SetEvent(disp->_is_created); + while (GetMessage(&msg,0,0,0)) DispatchMessage(&msg); + return 0; + } + + CImgDisplay& _update_window_pos() { + if (_is_closed) _window_x = _window_y = -1; + else { + RECT rect; + rect.left = rect.top = 0; rect.right = (LONG)_width - 1; rect.bottom = (LONG)_height - 1; + AdjustWindowRect(&rect,WS_CAPTION | WS_SYSMENU | WS_THICKFRAME | WS_MINIMIZEBOX | WS_MAXIMIZEBOX,false); + const int + border1 = (int)((rect.right - rect.left + 1 - _width)/2), + border2 = (int)(rect.bottom - rect.top + 1 - _height - border1); + GetWindowRect(_window,&rect); + _window_x = rect.left + border1; + _window_y = rect.top + border2; + } + return *this; + } + + void _init_fullscreen() { + _background_window = 0; + if (!_is_fullscreen || _is_closed) _curr_mode.dmSize = 0; + else { + DEVMODE mode; + unsigned int imode = 0, ibest = 0, bestbpp = 0, bw = ~0U, bh = ~0U; + for (mode.dmSize = sizeof(DEVMODE), mode.dmDriverExtra = 0; EnumDisplaySettings(0,imode,&mode); ++imode) { + const unsigned int nw = mode.dmPelsWidth, nh = mode.dmPelsHeight; + if (nw>=_width && nh>=_height && mode.dmBitsPerPel>=bestbpp && nw<=bw && nh<=bh) { + bestbpp = mode.dmBitsPerPel; + ibest = imode; + bw = nw; bh = nh; + } + } + if (bestbpp) { + _curr_mode.dmSize = sizeof(DEVMODE); _curr_mode.dmDriverExtra = 0; + EnumDisplaySettings(0,ENUM_CURRENT_SETTINGS,&_curr_mode); + EnumDisplaySettings(0,ibest,&mode); + ChangeDisplaySettings(&mode,0); + } else _curr_mode.dmSize = 0; + + const unsigned int + sx = (unsigned int)screen_width(), + sy = (unsigned int)screen_height(); + if (sx!=_width || sy!=_height) { + CLIENTCREATESTRUCT background_ccs; + _background_window = CreateWindowA("MDICLIENT","",WS_POPUP | WS_VISIBLE, 0,0,sx,sy,0,0,0,&background_ccs); + SetForegroundWindow(_background_window); + } + } + } + + void _desinit_fullscreen() { + if (!_is_fullscreen) return; + if (_background_window) DestroyWindow(_background_window); + _background_window = 0; + if (_curr_mode.dmSize) ChangeDisplaySettings(&_curr_mode,0); + _is_fullscreen = false; + } + + CImgDisplay& _assign(const unsigned int dimw, const unsigned int dimh, const char *const ptitle=0, + const unsigned int normalization_type=3, + const bool fullscreen_flag=false, const bool closed_flag=false) { + + // Allocate space for window title + const char *const nptitle = ptitle?ptitle:""; + const unsigned int s = (unsigned int)std::strlen(nptitle) + 1; + char *const tmp_title = s?new char[s]:0; + if (s) std::memcpy(tmp_title,nptitle,s*sizeof(char)); + + // Destroy previous window if existing + if (!is_empty()) assign(); + + // Set display variables + _width = std::min(dimw,(unsigned int)screen_width()); + _height = std::min(dimh,(unsigned int)screen_height()); + _normalization = normalization_type<4?normalization_type:3; + _is_fullscreen = fullscreen_flag; + _window_x = _window_y = 0; + _is_closed = closed_flag; + _is_cursor_visible = true; + _is_mouse_tracked = false; + _title = tmp_title; + flush(); + if (_is_fullscreen) _init_fullscreen(); + + // Create event thread + void *const arg = (void*)(new void*[2]); + ((void**)arg)[0] = (void*)this; + ((void**)arg)[1] = (void*)_title; + _mutex = CreateMutex(0,FALSE,0); + _is_created = CreateEvent(0,FALSE,FALSE,0); + _thread = CreateThread(0,0,_events_thread,arg,0,0); + WaitForSingleObject(_is_created,INFINITE); + return *this; + } + + CImgDisplay& assign() { + if (is_empty()) return flush(); + DestroyWindow(_window); + TerminateThread(_thread,0); + delete[] _data; + delete[] _title; + _data = 0; + _title = 0; + if (_is_fullscreen) _desinit_fullscreen(); + _width = _height = _normalization = _window_width = _window_height = 0; + _window_x = _window_y = 0; + _is_fullscreen = false; + _is_closed = true; + _min = _max = 0; + _title = 0; + flush(); + return *this; + } + + CImgDisplay& assign(const unsigned int dimw, const unsigned int dimh, const char *const title=0, + const unsigned int normalization_type=3, + const bool fullscreen_flag=false, const bool closed_flag=false) { + if (!dimw || !dimh) return assign(); + _assign(dimw,dimh,title,normalization_type,fullscreen_flag,closed_flag); + _min = _max = 0; + std::memset(_data,0,sizeof(unsigned int)*_width*_height); + return paint(); + } + + template + CImgDisplay& assign(const CImg& img, const char *const title=0, + const unsigned int normalization_type=3, + const bool fullscreen_flag=false, const bool closed_flag=false) { + if (!img) return assign(); + CImg tmp; + const CImg& nimg = (img._depth==1)?img:(tmp=img.get_projections2d((img._width - 1)/2, + (img._height - 1)/2, + (img._depth - 1)/2)); + _assign(nimg._width,nimg._height,title,normalization_type,fullscreen_flag,closed_flag); + if (_normalization==2) _min = (float)nimg.min_max(_max); + return display(nimg); + } + + template + CImgDisplay& assign(const CImgList& list, const char *const title=0, + const unsigned int normalization_type=3, + const bool fullscreen_flag=false, const bool closed_flag=false) { + if (!list) return assign(); + CImg tmp; + const CImg img = list>'x', &nimg = (img._depth==1)?img:(tmp=img.get_projections2d((img._width - 1)/2, + (img._height - 1)/2, + (img._depth - 1)/2)); + _assign(nimg._width,nimg._height,title,normalization_type,fullscreen_flag,closed_flag); + if (_normalization==2) _min = (float)nimg.min_max(_max); + return display(nimg); + } + + CImgDisplay& assign(const CImgDisplay& disp) { + if (!disp) return assign(); + _assign(disp._width,disp._height,disp._title,disp._normalization,disp._is_fullscreen,disp._is_closed); + std::memcpy(_data,disp._data,sizeof(unsigned int)*_width*_height); + return paint(); + } + + CImgDisplay& resize(const int nwidth, const int nheight, const bool force_redraw=true) { + if (!nwidth || !nheight || (is_empty() && (nwidth<0 || nheight<0))) return assign(); + if (is_empty()) return assign(nwidth,nheight); + const unsigned int + tmpdimx = (nwidth>0)?nwidth:(-nwidth*_width/100), + tmpdimy = (nheight>0)?nheight:(-nheight*_height/100), + dimx = tmpdimx?tmpdimx:1, + dimy = tmpdimy?tmpdimy:1; + if (_width!=dimx || _height!=dimy || _window_width!=dimx || _window_height!=dimy) { + if (_window_width!=dimx || _window_height!=dimy) { + RECT rect; rect.left = rect.top = 0; rect.right = (LONG)dimx - 1; rect.bottom = (LONG)dimy - 1; + AdjustWindowRect(&rect,WS_CAPTION | WS_SYSMENU | WS_THICKFRAME | WS_MINIMIZEBOX | WS_MAXIMIZEBOX,false); + const int cwidth = rect.right - rect.left + 1, cheight = rect.bottom - rect.top + 1; + SetWindowPos(_window,0,0,0,cwidth,cheight,SWP_NOMOVE | SWP_NOZORDER | SWP_NOCOPYBITS); + } + if (_width!=dimx || _height!=dimy) { + unsigned int *const ndata = new unsigned int[dimx*dimy]; + if (force_redraw) _render_resize(_data,_width,_height,ndata,dimx,dimy); + else std::memset(ndata,0x80,sizeof(unsigned int)*dimx*dimy); + delete[] _data; + _data = ndata; + _bmi.bmiHeader.biWidth = (LONG)dimx; + _bmi.bmiHeader.biHeight = -(int)dimy; + _width = dimx; + _height = dimy; + } + _window_width = dimx; _window_height = dimy; + show(); + } + _is_resized = false; + if (_is_fullscreen) move((screen_width() - width())/2,(screen_height() - height())/2); + if (force_redraw) return paint(); + return *this; + } + + CImgDisplay& toggle_fullscreen(const bool force_redraw=true) { + if (is_empty()) return *this; + if (force_redraw) { + const cimg_ulong buf_size = (cimg_ulong)_width*_height*4; + void *odata = std::malloc(buf_size); + if (odata) { + std::memcpy(odata,_data,buf_size); + assign(_width,_height,_title,_normalization,!_is_fullscreen,false); + std::memcpy(_data,odata,buf_size); + std::free(odata); + } + return paint(); + } + return assign(_width,_height,_title,_normalization,!_is_fullscreen,false); + } + + CImgDisplay& show() { + if (is_empty() || !_is_closed) return *this; + _is_closed = false; + if (_is_fullscreen) _init_fullscreen(); + ShowWindow(_window,SW_SHOW); + _update_window_pos(); + return paint(); + } + + CImgDisplay& close() { + if (is_empty() || _is_closed) return *this; + _is_closed = true; + if (_is_fullscreen) _desinit_fullscreen(); + ShowWindow(_window,SW_HIDE); + _window_x = _window_y = 0; + return *this; + } + + CImgDisplay& move(const int posx, const int posy) { + if (is_empty()) return *this; + if (_window_x!=posx || _window_y!=posy) { + if (!_is_fullscreen) { + RECT rect; + rect.left = rect.top = 0; rect.right = (LONG)_window_width - 1; rect.bottom = (LONG)_window_height - 1; + AdjustWindowRect(&rect,WS_CAPTION | WS_SYSMENU | WS_THICKFRAME | WS_MINIMIZEBOX | WS_MAXIMIZEBOX,false); + const int + border1 = (int)((rect.right - rect.left + 1 -_width)/2), + border2 = (int)(rect.bottom - rect.top + 1 - _height - border1); + SetWindowPos(_window,0,posx - border1,posy - border2,0,0,SWP_NOSIZE | SWP_NOZORDER); + } else SetWindowPos(_window,0,posx,posy,0,0,SWP_NOSIZE | SWP_NOZORDER); + _window_x = posx; + _window_y = posy; + show(); + } + _is_moved = false; + return *this; + } + + CImgDisplay& show_mouse() { + if (is_empty()) return *this; + _is_cursor_visible = true; + return *this; + } + + CImgDisplay& hide_mouse() { + if (is_empty()) return *this; + _is_cursor_visible = false; + return *this; + } + + CImgDisplay& set_mouse(const int posx, const int posy) { + if (is_empty() || _is_closed || posx<0 || posy<0) return *this; + _update_window_pos(); + const int res = (int)SetCursorPos(_window_x + posx,_window_y + posy); + if (res) { _mouse_x = posx; _mouse_y = posy; } + return *this; + } + + CImgDisplay& set_title(const char *const format, ...) { + if (is_empty()) return *this; + char *const tmp = new char[1024]; + va_list ap; + va_start(ap, format); + cimg_vsnprintf(tmp,1024,format,ap); + va_end(ap); + if (!std::strcmp(_title,tmp)) { delete[] tmp; return *this; } + delete[] _title; + const unsigned int s = (unsigned int)std::strlen(tmp) + 1; + _title = new char[s]; + std::memcpy(_title,tmp,s*sizeof(char)); + SetWindowTextA(_window, tmp); + delete[] tmp; + return *this; + } + + template + CImgDisplay& display(const CImg& img) { + if (!img) + throw CImgArgumentException(_cimgdisplay_instance + "display(): Empty specified image.", + cimgdisplay_instance); + if (is_empty()) return assign(img); + return render(img).paint(); + } + + CImgDisplay& paint() { + if (_is_closed) return *this; + WaitForSingleObject(_mutex,INFINITE); + SetDIBitsToDevice(_hdc,0,0,_width,_height,0,0,0,_height,_data,&_bmi,DIB_RGB_COLORS); + ReleaseMutex(_mutex); + return *this; + } + + template + CImgDisplay& render(const CImg& img) { + if (!img) + throw CImgArgumentException(_cimgdisplay_instance + "render(): Empty specified image.", + cimgdisplay_instance); + + if (is_empty()) return *this; + if (img._depth!=1) return render(img.get_projections2d((img._width - 1)/2,(img._height - 1)/2, + (img._depth - 1)/2)); + + const T + *data1 = img._data, + *data2 = (img._spectrum>=2)?img.data(0,0,0,1):data1, + *data3 = (img._spectrum>=3)?img.data(0,0,0,2):data1; + + WaitForSingleObject(_mutex,INFINITE); + unsigned int + *const ndata = (img._width==_width && img._height==_height)?_data: + new unsigned int[(size_t)img._width*img._height], + *ptrd = ndata; + + if (!_normalization || (_normalization==3 && cimg::type::string()==cimg::type::string())) { + _min = _max = 0; + switch (img._spectrum) { + case 1 : { + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)*(data1++); + *(ptrd++) = (unsigned int)((val<<16) | (val<<8) | val); + } + } break; + case 2 : { + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + R = (unsigned char)*(data1++), + G = (unsigned char)*(data2++); + *(ptrd++) = (unsigned int)((R<<16) | (G<<8)); + } + } break; + default : { + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + R = (unsigned char)*(data1++), + G = (unsigned char)*(data2++), + B = (unsigned char)*(data3++); + *(ptrd++) = (unsigned int)((R<<16) | (G<<8) | B); + } + } + } + } else { + if (_normalization==3) { + if (cimg::type::is_float()) _min = (float)img.min_max(_max); + else { _min = (float)cimg::type::min(); _max = (float)cimg::type::max(); } + } else if ((_min>_max) || _normalization==1) _min = (float)img.min_max(_max); + const float delta = _max - _min, mm = 255/(delta?delta:1.0f); + switch (img._spectrum) { + case 1 : { + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char val = (unsigned char)((*(data1++) - _min)*mm); + *(ptrd++) = (unsigned int)((val<<16) | (val<<8) | val); + } + } break; + case 2 : { + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + R = (unsigned char)((*(data1++) - _min)*mm), + G = (unsigned char)((*(data2++) - _min)*mm); + *(ptrd++) = (unsigned int)((R<<16) | (G<<8)); + } + } break; + default : { + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned char + R = (unsigned char)((*(data1++) - _min)*mm), + G = (unsigned char)((*(data2++) - _min)*mm), + B = (unsigned char)((*(data3++) - _min)*mm); + *(ptrd++) = (unsigned int)((R<<16) | (G<<8) | B); + } + } + } + } + if (ndata!=_data) { _render_resize(ndata,img._width,img._height,_data,_width,_height); delete[] ndata; } + ReleaseMutex(_mutex); + return *this; + } + + template + static void screenshot(const int x0, const int y0, const int x1, const int y1, CImg& img) { + img.assign(); + HDC hScreen = GetDC(GetDesktopWindow()); + if (hScreen) { + const int + width = GetDeviceCaps(hScreen,HORZRES), + height = GetDeviceCaps(hScreen,VERTRES); + int _x0 = x0, _y0 = y0, _x1 = x1, _y1 = y1; + if (_x0>_x1) cimg::swap(_x0,_x1); + if (_y0>_y1) cimg::swap(_y0,_y1); + if (_x1>=0 && _x0=0 && _y0 + const CImgDisplay& snapshot(CImg& img) const { + if (is_empty()) { img.assign(); return *this; } + const unsigned int *ptrs = _data; + img.assign(_width,_height,1,3); + T + *data1 = img.data(0,0,0,0), + *data2 = img.data(0,0,0,1), + *data3 = img.data(0,0,0,2); + for (cimg_ulong xy = (cimg_ulong)img._width*img._height; xy>0; --xy) { + const unsigned int val = *(ptrs++); + *(data1++) = (T)(unsigned char)(val>>16); + *(data2++) = (T)(unsigned char)((val>>8)&0xFF); + *(data3++) = (T)(unsigned char)(val&0xFF); + } + return *this; + } +#endif + + //@} + }; + + /* + #-------------------------------------- + # + # + # + # Definition of the CImg structure + # + # + # + #-------------------------------------- + */ + + //! Class representing an image (up to 4 dimensions wide), each pixel being of type \c T. + /** + This is the main class of the %CImg Library. It declares and constructs + an image, allows access to its pixel values, and is able to perform various image operations. + + \par Image representation + + A %CImg image is defined as an instance of the container \c CImg, which contains a regular grid of pixels, + each pixel value being of type \c T. The image grid can have up to 4 dimensions: width, height, depth + and number of channels. + Usually, the three first dimensions are used to describe spatial coordinates (x,y,z), + while the number of channels is rather used as a vector-valued dimension + (it may describe the R,G,B color channels for instance). + If you need a fifth dimension, you can use image lists \c CImgList rather than simple images \c CImg. + + Thus, the \c CImg class is able to represent volumetric images of vector-valued pixels, + as well as images with less dimensions (1d scalar signal, 2d color images, ...). + Most member functions of the class CImg<\c T> are designed to handle this maximum case of (3+1) dimensions. + + Concerning the pixel value type \c T: + fully supported template types are the basic C++ types: unsigned char, char, short, unsigned int, int, + unsigned long, long, float, double, ... . + Typically, fast image display can be done using CImg images, + while complex image processing algorithms may be rather coded using CImg or CImg + images that have floating-point pixel values. The default value for the template T is \c float. + Using your own template types may be possible. However, you will certainly have to define the complete set + of arithmetic and logical operators for your class. + + \par Image structure + + The \c CImg structure contains \e six fields: + - \c _width defines the number of \a columns of the image (size along the X-axis). + - \c _height defines the number of \a rows of the image (size along the Y-axis). + - \c _depth defines the number of \a slices of the image (size along the Z-axis). + - \c _spectrum defines the number of \a channels of the image (size along the C-axis). + - \c _data defines a \a pointer to the \a pixel \a data (of type \c T). + - \c _is_shared is a boolean that tells if the memory buffer \c data is shared with + another image. + + You can access these fields publicly although it is recommended to use the dedicated functions + width(), height(), depth(), spectrum() and ptr() to do so. + Image dimensions are not limited to a specific range (as long as you got enough available memory). + A value of \e 1 usually means that the corresponding dimension is \a flat. + If one of the dimensions is \e 0, or if the data pointer is null, the image is considered as \e empty. + Empty images should not contain any pixel data and thus, will not be processed by CImg member functions + (a CImgInstanceException will be thrown instead). + Pixel data are stored in memory, in a non interlaced mode (See \ref cimg_storage). + + \par Image declaration and construction + + Declaring an image can be done by using one of the several available constructors. + Here is a list of the most used: + + - Construct images from arbitrary dimensions: + - CImg img; declares an empty image. + - CImg img(128,128); declares a 128x128 greyscale image with + \c unsigned \c char pixel values. + - CImg img(3,3); declares a 3x3 matrix with \c double coefficients. + - CImg img(256,256,1,3); declares a 256x256x1x3 (color) image + (colors are stored as an image with three channels). + - CImg img(128,128,128); declares a 128x128x128 volumetric and greyscale image + (with \c double pixel values). + - CImg<> img(128,128,128,3); declares a 128x128x128 volumetric color image + (with \c float pixels, which is the default value of the template parameter \c T). + - \b Note: images pixels are not automatically initialized to 0. You may use the function \c fill() to + do it, or use the specific constructor taking 5 parameters like this: + CImg<> img(128,128,128,3,0); declares a 128x128x128 volumetric color image with all pixel values to 0. + + - Construct images from filenames: + - CImg img("image.jpg"); reads a JPEG color image from the file "image.jpg". + - CImg img("analyze.hdr"); reads a volumetric image (ANALYZE7.5 format) from the + file "analyze.hdr". + - \b Note: You need to install ImageMagick + to be able to read common compressed image formats (JPG,PNG, ...) (See \ref cimg_files_io). + + - Construct images from C-style arrays: + - CImg img(data_buffer,256,256); constructs a 256x256 greyscale image from a \c int* buffer + \c data_buffer (of size 256x256=65536). + - CImg img(data_buffer,256,256,1,3); constructs a 256x256 color image + from a \c unsigned \c char* buffer \c data_buffer (where R,G,B channels follow each others). + + The complete list of constructors can be found here. + + \par Most useful functions + + The \c CImg class contains a lot of functions that operates on images. + Some of the most useful are: + + - operator()(): Read or write pixel values. + - display(): displays the image in a new window. + **/ + template + struct CImg { + + unsigned int _width, _height, _depth, _spectrum; + bool _is_shared; + T *_data; + + //! Simple iterator type, to loop through each pixel value of an image instance. + /** + \note + - The \c CImg::iterator type is defined to be a T*. + - You will seldom have to use iterators in %CImg, most classical operations + being achieved (often in a faster way) using methods of \c CImg. + \par Example + \code + CImg img("reference.jpg"); // Load image from file. + // Set all pixels to '0', with a CImg iterator. + for (CImg::iterator it = img.begin(), it::const_iterator type is defined to be a \c const \c T*. + - You will seldom have to use iterators in %CImg, most classical operations + being achieved (often in a faster way) using methods of \c CImg. + \par Example + \code + const CImg img("reference.jpg"); // Load image from file. + float sum = 0; + // Compute sum of all pixel values, with a CImg iterator. + for (CImg::iterator it = img.begin(), it::value_type type of a \c CImg is defined to be a \c T. + - \c CImg::value_type is actually not used in %CImg methods. It has been mainly defined for + compatibility with STL naming conventions. + **/ + typedef T value_type; + + // Define common types related to template type T. + typedef typename cimg::superset::type Tbool; + typedef typename cimg::superset::type Tuchar; + typedef typename cimg::superset::type Tchar; + typedef typename cimg::superset::type Tushort; + typedef typename cimg::superset::type Tshort; + typedef typename cimg::superset::type Tuint; + typedef typename cimg::superset::type Tint; + typedef typename cimg::superset::type Tulong; + typedef typename cimg::superset::type Tlong; + typedef typename cimg::superset::type Tfloat; + typedef typename cimg::superset::type Tdouble; + typedef typename cimg::last::type boolT; + typedef typename cimg::last::type ucharT; + typedef typename cimg::last::type charT; + typedef typename cimg::last::type ushortT; + typedef typename cimg::last::type shortT; + typedef typename cimg::last::type uintT; + typedef typename cimg::last::type intT; + typedef typename cimg::last::type ulongT; + typedef typename cimg::last::type longT; + typedef typename cimg::last::type uint64T; + typedef typename cimg::last::type int64T; + typedef typename cimg::last::type floatT; + typedef typename cimg::last::type doubleT; + + //@} + //--------------------------- + // + //! \name Plugins + //@{ + //--------------------------- +#ifdef cimg_plugin +#include cimg_plugin +#endif +#ifdef cimg_plugin1 +#include cimg_plugin1 +#endif +#ifdef cimg_plugin2 +#include cimg_plugin2 +#endif +#ifdef cimg_plugin3 +#include cimg_plugin3 +#endif +#ifdef cimg_plugin4 +#include cimg_plugin4 +#endif +#ifdef cimg_plugin5 +#include cimg_plugin5 +#endif +#ifdef cimg_plugin6 +#include cimg_plugin6 +#endif +#ifdef cimg_plugin7 +#include cimg_plugin7 +#endif +#ifdef cimg_plugin8 +#include cimg_plugin8 +#endif + + //@} + //--------------------------------------------------------- + // + //! \name Constructors / Destructor / Instance Management + //@{ + //--------------------------------------------------------- + + //! Destroy image. + /** + \note + - The pixel buffer data() is deallocated if necessary, e.g. for non-empty and non-shared image instances. + - Destroying an empty or shared image does nothing actually. + \warning + - When destroying a non-shared image, make sure that you will \e not operate on a remaining shared image + that shares its buffer with the destroyed instance, in order to avoid further invalid memory access + (to a deallocated buffer). + **/ + ~CImg() { + if (!_is_shared) delete[] _data; + } + + //! Construct empty image. + /** + \note + - An empty image has no pixel data and all of its dimensions width(), height(), depth(), spectrum() + are set to \c 0, as well as its pixel buffer pointer data(). + - An empty image may be re-assigned afterwards, e.g. with the family of + assign(unsigned int,unsigned int,unsigned int,unsigned int) methods, + or by operator=(const CImg&). In all cases, the type of pixels stays \c T. + - An empty image is never shared. + \par Example + \code + CImg img1, img2; // Construct two empty images. + img1.assign(256,256,1,3); // Re-assign 'img1' to be a 256x256x1x3 (color) image. + img2 = img1.get_rand(0,255); // Re-assign 'img2' to be a random-valued version of 'img1'. + img2.assign(); // Re-assign 'img2' to be an empty image again. + \endcode + **/ + CImg():_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) {} + + //! Construct image with specified size. + /** + \param size_x Image width(). + \param size_y Image height(). + \param size_z Image depth(). + \param size_c Image spectrum() (number of channels). + \note + - It is able to create only \e non-shared images, and allocates thus a pixel buffer data() + for each constructed image instance. + - Setting one dimension \c size_x,\c size_y,\c size_z or \c size_c to \c 0 leads to the construction of + an \e empty image. + - A \c CImgInstanceException is thrown when the pixel buffer cannot be allocated + (e.g. when requested size is too big for available memory). + \warning + - The allocated pixel buffer is \e not filled with a default value, and is likely to contain garbage values. + In order to initialize pixel values during construction (e.g. with \c 0), use constructor + CImg(unsigned int,unsigned int,unsigned int,unsigned int,T) instead. + \par Example + \code + CImg img1(256,256,1,3); // Construct a 256x256x1x3 (color) image, filled with garbage values. + CImg img2(256,256,1,3,0); // Construct a 256x256x1x3 (color) image, filled with value '0'. + \endcode + **/ + explicit CImg(const unsigned int size_x, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1): + _is_shared(false) { + size_t siz = (size_t)size_x*size_y*size_z*size_c; + if (siz) { + _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c), + size_x,size_y,size_z,size_c); + } + } else { _width = _height = _depth = _spectrum = 0; _data = 0; } + } + + //! Construct image with specified size and initialize pixel values. + /** + \param size_x Image width(). + \param size_y Image height(). + \param size_z Image depth(). + \param size_c Image spectrum() (number of channels). + \param value Initialization value. + \note + - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), + but it also fills the pixel buffer with the specified \c value. + \warning + - It cannot be used to construct a vector-valued image and initialize it with \e vector-valued pixels + (e.g. RGB vector, for color images). + For this task, you may use fillC() after construction. + **/ + CImg(const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, const T& value): + _is_shared(false) { + const size_t siz = (size_t)size_x*size_y*size_z*size_c; + if (siz) { + _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c), + size_x,size_y,size_z,size_c); + } + fill(value); + } else { _width = _height = _depth = _spectrum = 0; _data = 0; } + } + + //! Construct image with specified size and initialize pixel values from a sequence of integers. + /** + Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, + with pixels of type \c T, and initialize pixel + values from the specified sequence of integers \c value0,\c value1,\c ... + \param size_x Image width(). + \param size_y Image height(). + \param size_z Image depth(). + \param size_c Image spectrum() (number of channels). + \param value0 First value of the initialization sequence (must be an \e integer). + \param value1 Second value of the initialization sequence (must be an \e integer). + \param ... + \note + - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills + the pixel buffer with a sequence of specified integer values. + \warning + - You must specify \e exactly \c size_x*\c size_y*\c size_z*\c size_c integers in the initialization sequence. + Otherwise, the constructor may crash or fill your image pixels with garbage. + \par Example + \code + const CImg img(2,2,1,3, // Construct a 2x2 color (RGB) image. + 0,255,0,255, // Set the 4 values for the red component. + 0,0,255,255, // Set the 4 values for the green component. + 64,64,64,64); // Set the 4 values for the blue component. + img.resize(150,150).display(); + \endcode + \image html ref_constructor1.jpg + **/ + CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, + const int value0, const int value1, ...): + _width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { +#define _CImg_stdarg(img,a0,a1,N,t) { \ + size_t _siz = (size_t)N; \ + if (_siz--) { \ + va_list ap; \ + va_start(ap,a1); \ + T *ptrd = (img)._data; \ + *(ptrd++) = (T)a0; \ + if (_siz--) { \ + *(ptrd++) = (T)a1; \ + for ( ; _siz; --_siz) *(ptrd++) = (T)va_arg(ap,t); \ + } \ + va_end(ap); \ + } \ + } + assign(size_x,size_y,size_z,size_c); + _CImg_stdarg(*this,value0,value1,(size_t)size_x*size_y*size_z*size_c,int); + } + +#if cimg_use_cpp11==1 + //! Construct image with specified size and initialize pixel values from an initializer list of integers. + /** + Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, + with pixels of type \c T, and initialize pixel + values from the specified initializer list of integers { \c value0,\c value1,\c ... } + \param size_x Image width(). + \param size_y Image height(). + \param size_z Image depth(). + \param size_c Image spectrum() (number of channels). + \param { value0, value1, ... } Initialization list + \param repeat_values Tells if the value filling process is repeated over the image. + + \note + - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills + the pixel buffer with a sequence of specified integer values. + \par Example + \code + const CImg img(2,2,1,3, // Construct a 2x2 color (RGB) image. + { 0,255,0,255, // Set the 4 values for the red component. + 0,0,255,255, // Set the 4 values for the green component. + 64,64,64,64 }); // Set the 4 values for the blue component. + img.resize(150,150).display(); + \endcode + \image html ref_constructor1.jpg + **/ + template + CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, + const std::initializer_list values, + const bool repeat_values=true): + _width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { +#define _cimg_constructor_cpp11(repeat_values) \ + auto it = values.begin(); \ + size_t siz = size(); \ + if (repeat_values) for (T *ptrd = _data; siz--; ) { \ + *(ptrd++) = (T)(*(it++)); if (it==values.end()) it = values.begin(); } \ + else { siz = std::min(siz,values.size()); for (T *ptrd = _data; siz--; ) *(ptrd++) = (T)(*(it++)); } + assign(size_x,size_y,size_z,size_c); + _cimg_constructor_cpp11(repeat_values); + } + + template + CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, + std::initializer_list values, + const bool repeat_values=true): + _width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + assign(size_x,size_y,size_z); + _cimg_constructor_cpp11(repeat_values); + } + + template + CImg(const unsigned int size_x, const unsigned int size_y, + std::initializer_list values, + const bool repeat_values=true): + _width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + assign(size_x,size_y); + _cimg_constructor_cpp11(repeat_values); + } + + template + CImg(const unsigned int size_x, + std::initializer_list values, + const bool repeat_values=true):_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + assign(size_x); + _cimg_constructor_cpp11(repeat_values); + } + + //! Construct single channel 1D image with pixel values and width obtained from an initializer list of integers. + /** + Construct a new image instance of size \c width x \c 1 x \c 1 x \c 1, + with pixels of type \c T, and initialize pixel + values from the specified initializer list of integers { \c value0,\c value1,\c ... }. Image width is + given by the size of the initializer list. + \param { value0, value1, ... } Initialization list + \note + - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int) with height=1, depth=1, and spectrum=1, + but it also fills the pixel buffer with a sequence of specified integer values. + \par Example + \code + const CImg img = {10,20,30,20,10 }; // Construct a 5x1 image with one channel, and set its pixel values. + img.resize(150,150).display(); + \endcode + \image html ref_constructor1.jpg + **/ + template + CImg(const std::initializer_list values): + _width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + assign(values.size(),1,1,1); + auto it = values.begin(); + unsigned int siz = _width; + for (T *ptrd = _data; siz--; ) *(ptrd++) = (T)(*(it++)); + } + + template + CImg & operator=(std::initializer_list values) { + _cimg_constructor_cpp11(siz>values.size()); + return *this; + } +#endif + + //! Construct image with specified size and initialize pixel values from a sequence of doubles. + /** + Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, with pixels of type \c T, + and initialize pixel values from the specified sequence of doubles \c value0,\c value1,\c ... + \param size_x Image width(). + \param size_y Image height(). + \param size_z Image depth(). + \param size_c Image spectrum() (number of channels). + \param value0 First value of the initialization sequence (must be a \e double). + \param value1 Second value of the initialization sequence (must be a \e double). + \param ... + \note + - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int,int,int,...), but + takes a sequence of double values instead of integers. + \warning + - You must specify \e exactly \c dx*\c dy*\c dz*\c dc doubles in the initialization sequence. + Otherwise, the constructor may crash or fill your image with garbage. + For instance, the code below will probably crash on most platforms: + \code + const CImg img(2,2,1,1, 0.5,0.5,255,255); // FAIL: The two last arguments are 'int', not 'double'! + \endcode + **/ + CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, + const double value0, const double value1, ...): + _width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + assign(size_x,size_y,size_z,size_c); + _CImg_stdarg(*this,value0,value1,(size_t)size_x*size_y*size_z*size_c,double); + } + + //! Construct image with specified size and initialize pixel values from a value string. + /** + Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, with pixels of type \c T, + and initializes pixel values from the specified string \c values. + \param size_x Image width(). + \param size_y Image height(). + \param size_z Image depth(). + \param size_c Image spectrum() (number of channels). + \param values Value string describing the way pixel values are set. + \param repeat_values Tells if the value filling process is repeated over the image. + \note + - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it also fills + the pixel buffer with values described in the value string \c values. + - Value string \c values may describe two different filling processes: + - Either \c values is a sequences of values assigned to the image pixels, as in "1,2,3,7,8,2". + In this case, set \c repeat_values to \c true to periodically fill the image with the value sequence. + - Either, \c values is a formula, as in "cos(x/10)*sin(y/20)". + In this case, parameter \c repeat_values is pointless. + - For both cases, specifying \c repeat_values is mandatory. + It disambiguates the possible overloading of constructor + CImg(unsigned int,unsigned int,unsigned int,unsigned int,T) with \c T being a const char*. + - A \c CImgArgumentException is thrown when an invalid value string \c values is specified. + \par Example + \code + const CImg img1(129,129,1,3,"0,64,128,192,255",true), // Construct image from a value sequence. + img2(129,129,1,3,"if(c==0,255*abs(cos(x/10)),1.8*y)",false); // Construct image from a formula. + (img1,img2).display(); + \endcode + \image html ref_constructor2.jpg + **/ + CImg(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z, const unsigned int size_c, + const char *const values, const bool repeat_values):_is_shared(false) { + const size_t siz = (size_t)size_x*size_y*size_z*size_c; + if (siz) { + _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c), + size_x,size_y,size_z,size_c); + } + fill(values,repeat_values); + } else { _width = _height = _depth = _spectrum = 0; _data = 0; } + } + + //! Construct image with specified size and initialize pixel values from a memory buffer. + /** + Construct a new image instance of size \c size_x x \c size_y x \c size_z x \c size_c, with pixels of type \c T, + and initializes pixel values from the specified \c t* memory buffer. + \param values Pointer to the input memory buffer. + \param size_x Image width(). + \param size_y Image height(). + \param size_z Image depth(). + \param size_c Image spectrum() (number of channels). + \param is_shared Tells if input memory buffer must be shared by the current instance. + \note + - If \c is_shared is \c false, the image instance allocates its own pixel buffer, + and values from the specified input buffer are copied to the instance buffer. + If buffer types \c T and \c t are different, a regular static cast is performed during buffer copy. + - Otherwise, the image instance does \e not allocate a new buffer, and uses the input memory buffer as its + own pixel buffer. This case requires that types \c T and \c t are the same. Later, destroying such a shared + image will not deallocate the pixel buffer, this task being obviously charged to the initial buffer allocator. + - A \c CImgInstanceException is thrown when the pixel buffer cannot be allocated + (e.g. when requested size is too big for available memory). + \warning + - You must take care when operating on a shared image, since it may have an invalid pixel buffer pointer data() + (e.g. already deallocated). + \par Example + \code + unsigned char tab[256*256] = { 0 }; + CImg img1(tab,256,256,1,1,false), // Construct new non-shared image from buffer 'tab'. + img2(tab,256,256,1,1,true); // Construct new shared-image from buffer 'tab'. + tab[1024] = 255; // Here, 'img2' is indirectly modified, but not 'img1'. + \endcode + **/ + template + CImg(const t *const values, const unsigned int size_x, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1, const bool is_shared=false):_is_shared(false) { + if (is_shared) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgArgumentException(_cimg_instance + "CImg(): Invalid construction request of a (%u,%u,%u,%u) shared instance " + "from a (%s*) buffer (pixel types are different).", + cimg_instance, + size_x,size_y,size_z,size_c,CImg::pixel_type()); + } + const size_t siz = (size_t)size_x*size_y*size_z*size_c; + if (values && siz) { + _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c), + size_x,size_y,size_z,size_c); + + } + const t *ptrs = values; cimg_for(*this,ptrd,T) *ptrd = (T)*(ptrs++); + } else { _width = _height = _depth = _spectrum = 0; _data = 0; } + } + + //! Construct image with specified size and initialize pixel values from a memory buffer \specialization. + CImg(const T *const values, const unsigned int size_x, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1, const bool is_shared=false) { + const size_t siz = (size_t)size_x*size_y*size_z*size_c; + if (values && siz) { + _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; _is_shared = is_shared; + if (_is_shared) _data = const_cast(values); + else { + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c), + size_x,size_y,size_z,size_c); + } + std::memcpy(_data,values,siz*sizeof(T)); + } + } else { _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; } + } + + //! Construct image from reading an image file. + /** + Construct a new image instance with pixels of type \c T, and initialize pixel values with the data read from + an image file. + \param filename Filename, as a C-string. + \note + - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it reads the image + dimensions and pixel values from the specified image file. + - The recognition of the image file format by %CImg higly depends on the tools installed on your system + and on the external libraries you used to link your code against. + - Considered pixel type \c T should better fit the file format specification, or data loss may occur during + file load (e.g. constructing a \c CImg from a float-valued image file). + - A \c CImgIOException is thrown when the specified \c filename cannot be read, or if the file format is not + recognized. + \par Example + \code + const CImg img("reference.jpg"); + img.display(); + \endcode + \image html ref_image.jpg + **/ + explicit CImg(const char *const filename):_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + assign(filename); + } + + //! Construct image copy. + /** + Construct a new image instance with pixels of type \c T, as a copy of an existing \c CImg instance. + \param img Input image to copy. + \note + - Constructed copy has the same size width() x height() x depth() x spectrum() and pixel values as the + input image \c img. + - If input image \c img is \e shared and if types \c T and \c t are the same, the constructed copy is also + \e shared, and shares its pixel buffer with \c img. + Modifying a pixel value in the constructed copy will thus also modifies it in the input image \c img. + This behavior is needful to allow functions to return shared images. + - Otherwise, the constructed copy allocates its own pixel buffer, and copies pixel values from the input + image \c img into its buffer. The copied pixel values may be eventually statically casted if types \c T and + \c t are different. + - Constructing a copy from an image \c img when types \c t and \c T are the same is significantly faster than + with different types. + - A \c CImgInstanceException is thrown when the pixel buffer cannot be allocated + (e.g. not enough available memory). + **/ + template + CImg(const CImg& img):_is_shared(false) { + const size_t siz = (size_t)img.size(); + if (img._data && siz) { + _width = img._width; _height = img._height; _depth = img._depth; _spectrum = img._spectrum; + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*img._width*img._height*img._depth*img._spectrum), + img._width,img._height,img._depth,img._spectrum); + } + const t *ptrs = img._data; cimg_for(*this,ptrd,T) *ptrd = (T)*(ptrs++); + } else { _width = _height = _depth = _spectrum = 0; _data = 0; } + } + + //! Construct image copy \specialization. + CImg(const CImg& img) { + const size_t siz = (size_t)img.size(); + if (img._data && siz) { + _width = img._width; _height = img._height; _depth = img._depth; _spectrum = img._spectrum; + _is_shared = img._is_shared; + if (_is_shared) _data = const_cast(img._data); + else { + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*img._width*img._height*img._depth*img._spectrum), + img._width,img._height,img._depth,img._spectrum); + + } + std::memcpy(_data,img._data,siz*sizeof(T)); + } + } else { _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; } + } + + //! Advanced copy constructor. + /** + Construct a new image instance with pixels of type \c T, as a copy of an existing \c CImg instance, + while forcing the shared state of the constructed copy. + \param img Input image to copy. + \param is_shared Tells about the shared state of the constructed copy. + \note + - Similar to CImg(const CImg&), except that it allows to decide the shared state of + the constructed image, which does not depend anymore on the shared state of the input image \c img: + - If \c is_shared is \c true, the constructed copy will share its pixel buffer with the input image \c img. + For that case, the pixel types \c T and \c t \e must be the same. + - If \c is_shared is \c false, the constructed copy will allocate its own pixel buffer, whether the input + image \c img is shared or not. + - A \c CImgArgumentException is thrown when a shared copy is requested with different pixel types \c T and \c t. + **/ + template + CImg(const CImg& img, const bool is_shared):_is_shared(false) { + if (is_shared) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgArgumentException(_cimg_instance + "CImg(): Invalid construction request of a shared instance from a " + "CImg<%s> image (%u,%u,%u,%u,%p) (pixel types are different).", + cimg_instance, + CImg::pixel_type(),img._width,img._height,img._depth,img._spectrum,img._data); + } + const size_t siz = (size_t)img.size(); + if (img._data && siz) { + _width = img._width; _height = img._height; _depth = img._depth; _spectrum = img._spectrum; + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*img._width*img._height*img._depth*img._spectrum), + img._width,img._height,img._depth,img._spectrum); + } + const t *ptrs = img._data; cimg_for(*this,ptrd,T) *ptrd = (T)*(ptrs++); + } else { _width = _height = _depth = _spectrum = 0; _data = 0; } + } + + //! Advanced copy constructor \specialization. + CImg(const CImg& img, const bool is_shared) { + const size_t siz = (size_t)img.size(); + if (img._data && siz) { + _width = img._width; _height = img._height; _depth = img._depth; _spectrum = img._spectrum; + _is_shared = is_shared; + if (_is_shared) _data = const_cast(img._data); + else { + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "CImg(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*img._width*img._height*img._depth*img._spectrum), + img._width,img._height,img._depth,img._spectrum); + } + std::memcpy(_data,img._data,siz*sizeof(T)); + } + } else { _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; } + } + + //! Construct image with dimensions borrowed from another image. + /** + Construct a new image instance with pixels of type \c T, and size get from some dimensions of an existing + \c CImg instance. + \param img Input image from which dimensions are borrowed. + \param dimensions C-string describing the image size along the X,Y,Z and C-dimensions. + \note + - Similar to CImg(unsigned int,unsigned int,unsigned int,unsigned int), but it takes the image dimensions + (\e not its pixel values) from an existing \c CImg instance. + - The allocated pixel buffer is \e not filled with a default value, and is likely to contain garbage values. + In order to initialize pixel values (e.g. with \c 0), use constructor CImg(const CImg&,const char*,T) + instead. + \par Example + \code + const CImg img1(256,128,1,3), // 'img1' is a 256x128x1x3 image. + img2(img1,"xyzc"), // 'img2' is a 256x128x1x3 image. + img3(img1,"y,x,z,c"), // 'img3' is a 128x256x1x3 image. + img4(img1,"c,x,y,3",0), // 'img4' is a 3x128x256x3 image (with pixels initialized to '0'). + \endcode + **/ + template + CImg(const CImg& img, const char *const dimensions): + _width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + assign(img,dimensions); + } + + //! Construct image with dimensions borrowed from another image and initialize pixel values. + /** + Construct a new image instance with pixels of type \c T, and size get from the dimensions of an existing + \c CImg instance, and set all pixel values to specified \c value. + \param img Input image from which dimensions are borrowed. + \param dimensions String describing the image size along the X,Y,Z and V-dimensions. + \param value Value used for initialization. + \note + - Similar to CImg(const CImg&,const char*), but it also fills the pixel buffer with the specified \c value. + **/ + template + CImg(const CImg& img, const char *const dimensions, const T& value): + _width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + assign(img,dimensions).fill(value); + } + + //! Construct image from a display window. + /** + Construct a new image instance with pixels of type \c T, as a snapshot of an existing \c CImgDisplay instance. + \param disp Input display window. + \note + - The width() and height() of the constructed image instance are the same as the specified \c CImgDisplay. + - The depth() and spectrum() of the constructed image instance are respectively set to \c 1 and \c 3 + (i.e. a 2d color image). + - The image pixels are read as 8-bits RGB values. + **/ + explicit CImg(const CImgDisplay &disp):_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + disp.snapshot(*this); + } + + // Constructor and assignment operator for rvalue references (c++11). + // This avoids an additional image copy for methods returning new images. Can save RAM for big images ! +#if cimg_use_cpp11==1 + CImg(CImg&& img):_width(0),_height(0),_depth(0),_spectrum(0),_is_shared(false),_data(0) { + swap(img); + } + CImg& operator=(CImg&& img) { + if (_is_shared) return assign(img); + return img.swap(*this); + } +#endif + + //! Construct empty image \inplace. + /** + In-place version of the default constructor CImg(). It simply resets the instance to an empty image. + **/ + CImg& assign() { + if (!_is_shared) delete[] _data; + _width = _height = _depth = _spectrum = 0; _is_shared = false; _data = 0; + return *this; + } + + //! Construct image with specified size \inplace. + /** + In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int). + **/ + CImg& assign(const unsigned int size_x, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1) { + const size_t siz = (size_t)size_x*size_y*size_z*size_c; + if (!siz) return assign(); + const size_t curr_siz = (size_t)size(); + if (siz!=curr_siz) { + if (_is_shared) + throw CImgArgumentException(_cimg_instance + "assign(): Invalid assignement request of shared instance from specified " + "image (%u,%u,%u,%u).", + cimg_instance, + size_x,size_y,size_z,size_c); + else { + delete[] _data; + try { _data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "assign(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c), + size_x,size_y,size_z,size_c); + } + } + } + _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; + return *this; + } + + //! Construct image with specified size and initialize pixel values \inplace. + /** + In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,T). + **/ + CImg& assign(const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, const T& value) { + return assign(size_x,size_y,size_z,size_c).fill(value); + } + + //! Construct image with specified size and initialize pixel values from a sequence of integers \inplace. + /** + In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,int,int,...). + **/ + CImg& assign(const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, + const int value0, const int value1, ...) { + assign(size_x,size_y,size_z,size_c); + _CImg_stdarg(*this,value0,value1,(size_t)size_x*size_y*size_z*size_c,int); + return *this; + } + + //! Construct image with specified size and initialize pixel values from a sequence of doubles \inplace. + /** + In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,double,double,...). + **/ + CImg& assign(const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, + const double value0, const double value1, ...) { + assign(size_x,size_y,size_z,size_c); + _CImg_stdarg(*this,value0,value1,(size_t)size_x*size_y*size_z*size_c,double); + return *this; + } + + //! Construct image with specified size and initialize pixel values from a value string \inplace. + /** + In-place version of the constructor CImg(unsigned int,unsigned int,unsigned int,unsigned int,const char*,bool). + **/ + CImg& assign(const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, + const char *const values, const bool repeat_values) { + return assign(size_x,size_y,size_z,size_c).fill(values,repeat_values); + } + + //! Construct image with specified size and initialize pixel values from a memory buffer \inplace. + /** + In-place version of the constructor CImg(const t*,unsigned int,unsigned int,unsigned int,unsigned int). + **/ + template + CImg& assign(const t *const values, const unsigned int size_x, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1) { + const size_t siz = (size_t)size_x*size_y*size_z*size_c; + if (!values || !siz) return assign(); + assign(size_x,size_y,size_z,size_c); + const t *ptrs = values; cimg_for(*this,ptrd,T) *ptrd = (T)*(ptrs++); + return *this; + } + + //! Construct image with specified size and initialize pixel values from a memory buffer \specialization. + CImg& assign(const T *const values, const unsigned int size_x, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1) { + const size_t siz = (size_t)size_x*size_y*size_z*size_c; + if (!values || !siz) return assign(); + const size_t curr_siz = (size_t)size(); + if (values==_data && siz==curr_siz) return assign(size_x,size_y,size_z,size_c); + if (_is_shared || values + siz<_data || values>=_data + size()) { + assign(size_x,size_y,size_z,size_c); + if (_is_shared) std::memmove(_data,values,siz*sizeof(T)); + else std::memcpy(_data,values,siz*sizeof(T)); + } else { + T *new_data = 0; + try { new_data = new T[siz]; } catch (...) { + _width = _height = _depth = _spectrum = 0; _data = 0; + throw CImgInstanceException(_cimg_instance + "assign(): Failed to allocate memory (%s) for image (%u,%u,%u,%u).", + cimg_instance, + cimg::strbuffersize(sizeof(T)*size_x*size_y*size_z*size_c), + size_x,size_y,size_z,size_c); + } + std::memcpy(new_data,values,siz*sizeof(T)); + delete[] _data; _data = new_data; _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; + } + return *this; + } + + //! Construct image with specified size and initialize pixel values from a memory buffer \overloading. + template + CImg& assign(const t *const values, const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, const bool is_shared) { + if (is_shared) + throw CImgArgumentException(_cimg_instance + "assign(): Invalid assignment request of shared instance from (%s*) buffer" + "(pixel types are different).", + cimg_instance, + CImg::pixel_type()); + return assign(values,size_x,size_y,size_z,size_c); + } + + //! Construct image with specified size and initialize pixel values from a memory buffer \overloading. + CImg& assign(const T *const values, const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, const bool is_shared) { + const size_t siz = (size_t)size_x*size_y*size_z*size_c; + if (!values || !siz) return assign(); + if (!is_shared) { if (_is_shared) assign(); assign(values,size_x,size_y,size_z,size_c); } + else { + if (!_is_shared) { + if (values + siz<_data || values>=_data + size()) assign(); + else cimg::warn(_cimg_instance + "assign(): Shared image instance has overlapping memory.", + cimg_instance); + } + _width = size_x; _height = size_y; _depth = size_z; _spectrum = size_c; _is_shared = true; + _data = const_cast(values); + } + return *this; + } + + //! Construct image from reading an image file \inplace. + /** + In-place version of the constructor CImg(const char*). + **/ + CImg& assign(const char *const filename) { + return load(filename); + } + + //! Construct image copy \inplace. + /** + In-place version of the constructor CImg(const CImg&). + **/ + template + CImg& assign(const CImg& img) { + return assign(img._data,img._width,img._height,img._depth,img._spectrum); + } + + //! In-place version of the advanced copy constructor. + /** + In-place version of the constructor CImg(const CImg&,bool). + **/ + template + CImg& assign(const CImg& img, const bool is_shared) { + return assign(img._data,img._width,img._height,img._depth,img._spectrum,is_shared); + } + + //! Construct image with dimensions borrowed from another image \inplace. + /** + In-place version of the constructor CImg(const CImg&,const char*). + **/ + template + CImg& assign(const CImg& img, const char *const dimensions) { + if (!dimensions || !*dimensions) return assign(img._width,img._height,img._depth,img._spectrum); + unsigned int siz[4] = { 0,1,1,1 }, k = 0; + CImg item(256); + for (const char *s = dimensions; *s && k<4; ++k) { + if (cimg_sscanf(s,"%255[^0-9%xyzvwhdcXYZVWHDC]",item._data)>0) s+=std::strlen(item); + if (*s) { + unsigned int val = 0; char sep = 0; + if (cimg_sscanf(s,"%u%c",&val,&sep)>0) { + if (sep=='%') siz[k] = val*(k==0?_width:k==1?_height:k==2?_depth:_spectrum)/100; + else siz[k] = val; + while (*s>='0' && *s<='9') ++s; + if (sep=='%') ++s; + } else switch (cimg::lowercase(*s)) { + case 'x' : case 'w' : siz[k] = img._width; ++s; break; + case 'y' : case 'h' : siz[k] = img._height; ++s; break; + case 'z' : case 'd' : siz[k] = img._depth; ++s; break; + case 'c' : case 's' : siz[k] = img._spectrum; ++s; break; + default : + throw CImgArgumentException(_cimg_instance + "assign(): Invalid character '%c' detected in specified dimension string '%s'.", + cimg_instance, + *s,dimensions); + } + } + } + return assign(siz[0],siz[1],siz[2],siz[3]); + } + + //! Construct image with dimensions borrowed from another image and initialize pixel values \inplace. + /** + In-place version of the constructor CImg(const CImg&,const char*,T). + **/ + template + CImg& assign(const CImg& img, const char *const dimensions, const T& value) { + return assign(img,dimensions).fill(value); + } + + //! Construct image from a display window \inplace. + /** + In-place version of the constructor CImg(const CImgDisplay&). + **/ + CImg& assign(const CImgDisplay &disp) { + disp.snapshot(*this); + return *this; + } + + //! Construct empty image \inplace. + /** + Equivalent to assign(). + \note + - It has been defined for compatibility with STL naming conventions. + **/ + CImg& clear() { + return assign(); + } + + //! Transfer content of an image instance into another one. + /** + Transfer the dimensions and the pixel buffer content of an image instance into another one, + and replace instance by an empty image. It avoids the copy of the pixel buffer + when possible. + \param img Destination image. + \note + - Pixel types \c T and \c t of source and destination images can be different, though the process is + designed to be instantaneous when \c T and \c t are the same. + \par Example + \code + CImg src(256,256,1,3,0), // Construct a 256x256x1x3 (color) image filled with value '0'. + dest(16,16); // Construct a 16x16x1x1 (scalar) image. + src.move_to(dest); // Now, 'src' is empty and 'dest' is the 256x256x1x3 image. + \endcode + **/ + template + CImg& move_to(CImg& img) { + img.assign(*this); + assign(); + return img; + } + + //! Transfer content of an image instance into another one \specialization. + CImg& move_to(CImg& img) { + if (_is_shared || img._is_shared) img.assign(*this); + else swap(img); + assign(); + return img; + } + + //! Transfer content of an image instance into a new image in an image list. + /** + Transfer the dimensions and the pixel buffer content of an image instance + into a newly inserted image at position \c pos in specified \c CImgList instance. + \param list Destination list. + \param pos Position of the newly inserted image in the list. + \note + - When optional parameter \c pos is ommited, the image instance is transfered as a new + image at the end of the specified \c list. + - It is convenient to sequentially insert new images into image lists, with no + additional copies of memory buffer. + \par Example + \code + CImgList list; // Construct an empty image list. + CImg img("reference.jpg"); // Read image from filename. + img.move_to(list); // Transfer image content as a new item in the list (no buffer copy). + \endcode + **/ + template + CImgList& move_to(CImgList& list, const unsigned int pos=~0U) { + const unsigned int npos = pos>list._width?list._width:pos; + move_to(list.insert(1,npos)[npos]); + return list; + } + + //! Swap fields of two image instances. + /** + \param img Image to swap fields with. + \note + - It can be used to interchange the content of two images in a very fast way. Can be convenient when dealing + with algorithms requiring two swapping buffers. + \par Example + \code + CImg img1("lena.jpg"), + img2("milla.jpg"); + img1.swap(img2); // Now, 'img1' is 'milla' and 'img2' is 'lena'. + \endcode + **/ + CImg& swap(CImg& img) { + cimg::swap(_width,img._width,_height,img._height,_depth,img._depth,_spectrum,img._spectrum); + cimg::swap(_data,img._data); + cimg::swap(_is_shared,img._is_shared); + return img; + } + + //! Return a reference to an empty image. + /** + \note + This function is useful mainly to declare optional parameters having type \c CImg in functions prototypes, + e.g. + \code + void f(const int x=0, const int y=0, const CImg& img=CImg::empty()); + \endcode + **/ + static CImg& empty() { + static CImg _empty; + return _empty.assign(); + } + + //! Return a reference to an empty image \const. + static const CImg& const_empty() { + static const CImg _empty; + return _empty; + } + + //@} + //------------------------------------------ + // + //! \name Overloaded Operators + //@{ + //------------------------------------------ + + //! Access to a pixel value. + /** + Return a reference to a located pixel value of the image instance, + being possibly \e const, whether the image instance is \e const or not. + This is the standard method to get/set pixel values in \c CImg images. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note + - Range of pixel coordinates start from (0,0,0,0) to + (width() - 1,height() - 1,depth() - 1,spectrum() - 1). + - Due to the particular arrangement of the pixel buffers defined in %CImg, you can omit one coordinate if the + corresponding dimension is equal to \c 1. + For instance, pixels of a 2d image (depth() equal to \c 1) can be accessed by img(x,y,c) instead of + img(x,y,0,c). + \warning + - There is \e no boundary checking done in this operator, to make it as fast as possible. + You \e must take care of out-of-bounds access by yourself, if necessary. + For debuging purposes, you may want to define macro \c 'cimg_verbosity'>=3 to enable additional boundary + checking operations in this operator. In that case, warning messages will be printed on the error output + when accessing out-of-bounds pixels. + \par Example + \code + CImg img(100,100,1,3,0); // Construct a 100x100x1x3 (color) image with pixels set to '0'. + const float + valR = img(10,10,0,0), // Read red value at coordinates (10,10). + valG = img(10,10,0,1), // Read green value at coordinates (10,10) + valB = img(10,10,2), // Read blue value at coordinates (10,10) (Z-coordinate can be omitted). + avg = (valR + valG + valB)/3; // Compute average pixel value. + img(10,10,0) = img(10,10,1) = img(10,10,2) = avg; // Replace the color pixel (10,10) by the average grey value. + \endcode + **/ +#if cimg_verbosity>=3 + T& operator()(const unsigned int x, const unsigned int y=0, + const unsigned int z=0, const unsigned int c=0) { + const ulongT off = (ulongT)offset(x,y,z,c); + if (!_data || off>=size()) { + cimg::warn(_cimg_instance + "operator(): Invalid pixel request, at coordinates (%d,%d,%d,%d) [offset=%u].", + cimg_instance, + (int)x,(int)y,(int)z,(int)c,off); + return *_data; + } + else return _data[off]; + } + + //! Access to a pixel value \const. + const T& operator()(const unsigned int x, const unsigned int y=0, + const unsigned int z=0, const unsigned int c=0) const { + return const_cast*>(this)->operator()(x,y,z,c); + } + + //! Access to a pixel value. + /** + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param wh Precomputed offset, must be equal to width()*\ref height(). + \param whd Precomputed offset, must be equal to width()*\ref height()*\ref depth(). + \note + - Similar to (but faster than) operator()(). + It uses precomputed offsets to optimize memory access. You may use it to optimize + the reading/writing of several pixel values in the same image (e.g. in a loop). + **/ + T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, + const ulongT wh, const ulongT whd=0) { + cimg::unused(wh,whd); + return (*this)(x,y,z,c); + } + + //! Access to a pixel value \const. + const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, + const ulongT wh, const ulongT whd=0) const { + cimg::unused(wh,whd); + return (*this)(x,y,z,c); + } +#else + T& operator()(const unsigned int x) { + return _data[x]; + } + + const T& operator()(const unsigned int x) const { + return _data[x]; + } + + T& operator()(const unsigned int x, const unsigned int y) { + return _data[x + y*_width]; + } + + const T& operator()(const unsigned int x, const unsigned int y) const { + return _data[x + y*_width]; + } + + T& operator()(const unsigned int x, const unsigned int y, const unsigned int z) { + return _data[x + y*(ulongT)_width + z*(ulongT)_width*_height]; + } + + const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z) const { + return _data[x + y*(ulongT)_width + z*(ulongT)_width*_height]; + } + + T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c) { + return _data[x + y*(ulongT)_width + z*(ulongT)_width*_height + c*(ulongT)_width*_height*_depth]; + } + + const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c) const { + return _data[x + y*(ulongT)_width + z*(ulongT)_width*_height + c*(ulongT)_width*_height*_depth]; + } + + T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int, + const ulongT wh) { + return _data[x + y*_width + z*wh]; + } + + const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int, + const ulongT wh) const { + return _data[x + y*_width + z*wh]; + } + + T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, + const ulongT wh, const ulongT whd) { + return _data[x + y*_width + z*wh + c*whd]; + } + + const T& operator()(const unsigned int x, const unsigned int y, const unsigned int z, const unsigned int c, + const ulongT wh, const ulongT whd) const { + return _data[x + y*_width + z*wh + c*whd]; + } +#endif + + //! Implicitely cast an image into a \c T*. + /** + Implicitely cast a \c CImg instance into a \c T* or \c const \c T* pointer, whether the image instance + is \e const or not. The returned pointer points on the first value of the image pixel buffer. + \note + - It simply returns the pointer data() to the pixel buffer. + - This implicit conversion is convenient to test the empty state of images (data() being \c 0 in this case), e.g. + \code + CImg img1(100,100), img2; // 'img1' is a 100x100 image, 'img2' is an empty image. + if (img1) { // Test succeeds, 'img1' is not an empty image. + if (!img2) { // Test succeeds, 'img2' is an empty image. + std::printf("'img1' is not empty, 'img2' is empty."); + } + } + \endcode + - It also allows to use brackets to access pixel values, without need for a \c CImg::operator[](), e.g. + \code + CImg img(100,100); + const float value = img[99]; // Access to value of the last pixel on the first row. + img[510] = 255; // Set pixel value at (10,5). + \endcode + **/ + operator T*() { + return _data; + } + + //! Implicitely cast an image into a \c T* \const. + operator const T*() const { + return _data; + } + + //! Assign a value to all image pixels. + /** + Assign specified \c value to each pixel value of the image instance. + \param value Value that will be assigned to image pixels. + \note + - The image size is never modified. + - The \c value may be casted to pixel type \c T if necessary. + \par Example + \code + CImg img(100,100); // Declare image (with garbage values). + img = 0; // Set all pixel values to '0'. + img = 1.2; // Set all pixel values to '1' (cast of '1.2' as a 'char'). + \endcode + **/ + CImg& operator=(const T& value) { + return fill(value); + } + + //! Assign pixels values from a specified expression. + /** + Initialize all pixel values from the specified string \c expression. + \param expression Value string describing the way pixel values are set. + \note + - String parameter \c expression may describe different things: + - If \c expression is a list of values (as in \c "1,2,3,8,3,2"), or a formula (as in \c "(x*y)%255"), + the pixel values are set from specified \c expression and the image size is not modified. + - If \c expression is a filename (as in \c "reference.jpg"), the corresponding image file is loaded and + replace the image instance. The image size is modified if necessary. + \par Example + \code + CImg img1(100,100), img2(img1), img3(img1); // Declare 3 scalar images 100x100 with unitialized values. + img1 = "0,50,100,150,200,250,200,150,100,50"; // Set pixel values of 'img1' from a value sequence. + img2 = "10*((x*y)%25)"; // Set pixel values of 'img2' from a formula. + img3 = "reference.jpg"; // Set pixel values of 'img3' from a file (image size is modified). + (img1,img2,img3).display(); + \endcode + \image html ref_operator_eq.jpg + **/ + CImg& operator=(const char *const expression) { + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + try { + _fill(expression,true,true,0,0,"operator=",0); + } catch (CImgException&) { + cimg::exception_mode(omode); + load(expression); + } + cimg::exception_mode(omode); + return *this; + } + + //! Copy an image into the current image instance. + /** + Similar to the in-place copy constructor assign(const CImg&). + **/ + template + CImg& operator=(const CImg& img) { + return assign(img); + } + + //! Copy an image into the current image instance \specialization. + CImg& operator=(const CImg& img) { + return assign(img); + } + + //! Copy the content of a display window to the current image instance. + /** + Similar to assign(const CImgDisplay&). + **/ + CImg& operator=(const CImgDisplay& disp) { + disp.snapshot(*this); + return *this; + } + + //! In-place addition operator. + /** + Add specified \c value to all pixels of an image instance. + \param value Value to add. + \note + - Resulting pixel values are casted to fit the pixel type \c T. + For instance, adding \c 0.2 to a \c CImg is possible but does nothing indeed. + - Overflow values are treated as with standard C++ numeric types. For instance, + \code + CImg img(100,100,1,1,255); // Construct a 100x100 image with pixel values '255'. + img+=1; // Add '1' to each pixels -> Overflow. + // here all pixels of image 'img' are equal to '0'. + \endcode + - To prevent value overflow, you may want to consider pixel type \c T as \c float or \c double, + and use cut() after addition. + \par Example + \code + CImg img1("reference.jpg"); // Load a 8-bits RGB image (values in [0,255]). + CImg img2(img1); // Construct a float-valued copy of 'img1'. + img2+=100; // Add '100' to pixel values -> goes out of [0,255] but no problems with floats. + img2.cut(0,255); // Cut values in [0,255] to fit the 'unsigned char' constraint. + img1 = img2; // Rewrite safe result in 'unsigned char' version 'img1'. + const CImg img3 = (img1 + 100).cut(0,255); // Do the same in a more simple and elegant way. + (img1,img2,img3).display(); + \endcode + \image html ref_operator_plus.jpg + **/ + template + CImg& operator+=(const t value) { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=524288)) + cimg_rof(*this,ptrd,T) *ptrd = (T)(*ptrd + value); + return *this; + } + + //! In-place addition operator. + /** + Add values to image pixels, according to the specified string \c expression. + \param expression Value string describing the way pixel values are added. + \note + - Similar to operator=(const char*), except that it adds values to the pixels of the current image instance, + instead of assigning them. + **/ + CImg& operator+=(const char *const expression) { + return *this+=(+*this)._fill(expression,true,true,0,0,"operator+=",this); + } + + //! In-place addition operator. + /** + Add values to image pixels, according to the values of the input image \c img. + \param img Input image to add. + \note + - The size of the image instance is never modified. + - It is not mandatory that input image \c img has the same size as the image instance. + If less values are available in \c img, then the values are added periodically. For instance, adding one + WxH scalar image (spectrum() equal to \c 1) to one WxH color image (spectrum() equal to \c 3) + means each color channel will be incremented with the same values at the same locations. + \par Example + \code + CImg img1("reference.jpg"); // Load a RGB color image (img1.spectrum()==3) + // Construct a scalar shading (img2.spectrum()==1). + const CImg img2(img1.width(),img.height(),1,1,"255*(x/w)^2"); + img1+=img2; // Add shading to each channel of 'img1'. + img1.cut(0,255); // Prevent [0,255] overflow. + (img2,img1).display(); + \endcode + \image html ref_operator_plus1.jpg + **/ + template + CImg& operator+=(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return *this+=+img; + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs& operator++() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=524288)) + cimg_rof(*this,ptrd,T) ++*ptrd; + return *this; + } + + //! In-place increment operator (postfix). + /** + Add \c 1 to all image pixels, and return a new copy of the initial (pre-incremented) image instance. + \note + - Use the prefixed version operator++() if you don't need a copy of the initial + (pre-incremented) image instance, since a useless image copy may be expensive in terms of memory usage. + **/ + CImg operator++(int) { + const CImg copy(*this,false); + ++*this; + return copy; + } + + //! Return a non-shared copy of the image instance. + /** + \note + - Use this operator to ensure you get a non-shared copy of an image instance with same pixel type \c T. + Indeed, the usual copy constructor CImg(const CImg&) returns a shared copy of a shared input image, + and it may be not desirable to work on a regular copy (e.g. for a resize operation) if you have no + information about the shared state of the input image. + - Writing \c (+img) is equivalent to \c CImg(img,false). + **/ + CImg operator+() const { + return CImg(*this,false); + } + + //! Addition operator. + /** + Similar to operator+=(const t), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator+(const t value) const { + return CImg<_cimg_Tt>(*this,false)+=value; + } + + //! Addition operator. + /** + Similar to operator+=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + CImg operator+(const char *const expression) const { + return CImg(*this,false)+=expression; + } + + //! Addition operator. + /** + Similar to operator+=(const CImg&), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator+(const CImg& img) const { + return CImg<_cimg_Tt>(*this,false)+=img; + } + + //! In-place substraction operator. + /** + Similar to operator+=(const t), except that it performs a substraction instead of an addition. + **/ + template + CImg& operator-=(const t value) { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=524288)) + cimg_rof(*this,ptrd,T) *ptrd = (T)(*ptrd - value); + return *this; + } + + //! In-place substraction operator. + /** + Similar to operator+=(const char*), except that it performs a substraction instead of an addition. + **/ + CImg& operator-=(const char *const expression) { + return *this-=(+*this)._fill(expression,true,true,0,0,"operator-=",this); + } + + //! In-place substraction operator. + /** + Similar to operator+=(const CImg&), except that it performs a substraction instead of an addition. + **/ + template + CImg& operator-=(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return *this-=+img; + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs& operator--() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=524288)) + cimg_rof(*this,ptrd,T) *ptrd = *ptrd - (T)1; + return *this; + } + + //! In-place decrement operator (postfix). + /** + Similar to operator++(int), except that it performs a decrement instead of an increment. + **/ + CImg operator--(int) { + const CImg copy(*this,false); + --*this; + return copy; + } + + //! Replace each pixel by its opposite value. + /** + \note + - If the computed opposite values are out-of-range, they are treated as with standard C++ numeric types. + For instance, the \c unsigned \c char opposite of \c 1 is \c 255. + \par Example + \code + const CImg + img1("reference.jpg"), // Load a RGB color image. + img2 = -img1; // Compute its opposite (in 'unsigned char'). + (img1,img2).display(); + \endcode + \image html ref_operator_minus.jpg + **/ + CImg operator-() const { + return CImg(_width,_height,_depth,_spectrum,(T)0)-=*this; + } + + //! Substraction operator. + /** + Similar to operator-=(const t), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator-(const t value) const { + return CImg<_cimg_Tt>(*this,false)-=value; + } + + //! Substraction operator. + /** + Similar to operator-=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + CImg operator-(const char *const expression) const { + return CImg(*this,false)-=expression; + } + + //! Substraction operator. + /** + Similar to operator-=(const CImg&), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator-(const CImg& img) const { + return CImg<_cimg_Tt>(*this,false)-=img; + } + + //! In-place multiplication operator. + /** + Similar to operator+=(const t), except that it performs a multiplication instead of an addition. + **/ + template + CImg& operator*=(const t value) { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=262144)) + cimg_rof(*this,ptrd,T) *ptrd = (T)(*ptrd * value); + return *this; + } + + //! In-place multiplication operator. + /** + Similar to operator+=(const char*), except that it performs a multiplication instead of an addition. + **/ + CImg& operator*=(const char *const expression) { + return mul((+*this)._fill(expression,true,true,0,0,"operator*=",this)); + } + + //! In-place multiplication operator. + /** + Replace the image instance by the matrix multiplication between the image instance and the specified matrix + \c img. + \param img Second operand of the matrix multiplication. + \note + - It does \e not compute a pointwise multiplication between two images. For this purpose, use + mul(const CImg&) instead. + - The size of the image instance can be modified by this operator. + \par Example + \code + CImg A(2,2,1,1, 1,2,3,4); // Construct 2x2 matrix A = [1,2;3,4]. + const CImg X(1,2,1,1, 1,2); // Construct 1x2 vector X = [1;2]. + A*=X; // Assign matrix multiplication A*X to 'A'. + // 'A' is now a 1x2 vector whose values are [5;11]. + \endcode + **/ + template + CImg& operator*=(const CImg& img) { + return ((*this)*img).move_to(*this); + } + + //! Multiplication operator. + /** + Similar to operator*=(const t), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator*(const t value) const { + return CImg<_cimg_Tt>(*this,false)*=value; + } + + //! Multiplication operator. + /** + Similar to operator*=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + CImg operator*(const char *const expression) const { + return CImg(*this,false)*=expression; + } + + //! Multiplication operator. + /** + Similar to operator*=(const CImg&), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator*(const CImg& img) const { + if (_width!=img._height || _depth!=1 || _spectrum!=1) + throw CImgArgumentException(_cimg_instance + "operator*(): Invalid multiplication of instance by specified " + "matrix (%u,%u,%u,%u,%p)", + cimg_instance, + img._width,img._height,img._depth,img._spectrum,img._data); + CImg<_cimg_Tt> res(img._width,_height); +#ifdef cimg_use_openmp + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(size()>1024 && img.size()>1024)) + cimg_forXY(res,i,j) { + _cimg_Ttdouble value = 0; cimg_forX(*this,k) value+=(*this)(k,j)*img(i,k); res(i,j) = (_cimg_Tt)value; + } +#else + _cimg_Tt *ptrd = res._data; + cimg_forXY(res,i,j) { + _cimg_Ttdouble value = 0; cimg_forX(*this,k) value+=(*this)(k,j)*img(i,k); *(ptrd++) = (_cimg_Tt)value; + } +#endif + return res; + } + + //! In-place division operator. + /** + Similar to operator+=(const t), except that it performs a division instead of an addition. + **/ + template + CImg& operator/=(const t value) { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=32768)) + cimg_rof(*this,ptrd,T) *ptrd = (T)(*ptrd / value); + return *this; + } + + //! In-place division operator. + /** + Similar to operator+=(const char*), except that it performs a division instead of an addition. + **/ + CImg& operator/=(const char *const expression) { + return div((+*this)._fill(expression,true,true,0,0,"operator/=",this)); + } + + //! In-place division operator. + /** + Replace the image instance by the (right) matrix division between the image instance and the specified + matrix \c img. + \param img Second operand of the matrix division. + \note + - It does \e not compute a pointwise division between two images. For this purpose, use + div(const CImg&) instead. + - It returns the matrix operation \c A*inverse(img). + - The size of the image instance can be modified by this operator. + **/ + template + CImg& operator/=(const CImg& img) { + return (*this*img.get_invert()).move_to(*this); + } + + //! Division operator. + /** + Similar to operator/=(const t), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator/(const t value) const { + return CImg<_cimg_Tt>(*this,false)/=value; + } + + //! Division operator. + /** + Similar to operator/=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + CImg operator/(const char *const expression) const { + return CImg(*this,false)/=expression; + } + + //! Division operator. + /** + Similar to operator/=(const CImg&), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator/(const CImg& img) const { + return (*this)*img.get_invert(); + } + + //! In-place modulo operator. + /** + Similar to operator+=(const t), except that it performs a modulo operation instead of an addition. + **/ + template + CImg& operator%=(const t value) { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=16384)) + cimg_rof(*this,ptrd,T) *ptrd = (T)cimg::mod(*ptrd,(T)value); + return *this; + } + + //! In-place modulo operator. + /** + Similar to operator+=(const char*), except that it performs a modulo operation instead of an addition. + **/ + CImg& operator%=(const char *const expression) { + return *this%=(+*this)._fill(expression,true,true,0,0,"operator%=",this); + } + + //! In-place modulo operator. + /** + Similar to operator+=(const CImg&), except that it performs a modulo operation instead of an addition. + **/ + template + CImg& operator%=(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return *this%=+img; + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg<_cimg_Tt> operator%(const t value) const { + return CImg<_cimg_Tt>(*this,false)%=value; + } + + //! Modulo operator. + /** + Similar to operator%=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + CImg operator%(const char *const expression) const { + return CImg(*this,false)%=expression; + } + + //! Modulo operator. + /** + Similar to operator%=(const CImg&), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image may be a superset of the initial pixel type \c T, if necessary. + **/ + template + CImg<_cimg_Tt> operator%(const CImg& img) const { + return CImg<_cimg_Tt>(*this,false)%=img; + } + + //! In-place bitwise AND operator. + /** + Similar to operator+=(const t), except that it performs a bitwise AND operation instead of an addition. + **/ + template + CImg& operator&=(const t value) { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=32768)) + cimg_rof(*this,ptrd,T) *ptrd = (T)((ulongT)*ptrd & (ulongT)value); + return *this; + } + + //! In-place bitwise AND operator. + /** + Similar to operator+=(const char*), except that it performs a bitwise AND operation instead of an addition. + **/ + CImg& operator&=(const char *const expression) { + return *this&=(+*this)._fill(expression,true,true,0,0,"operator&=",this); + } + + //! In-place bitwise AND operator. + /** + Similar to operator+=(const CImg&), except that it performs a bitwise AND operation instead of an addition. + **/ + template + CImg& operator&=(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return *this&=+img; + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg operator&(const t value) const { + return (+*this)&=value; + } + + //! Bitwise AND operator. + /** + Similar to operator&=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + CImg operator&(const char *const expression) const { + return (+*this)&=expression; + } + + //! Bitwise AND operator. + /** + Similar to operator&=(const CImg&), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + template + CImg operator&(const CImg& img) const { + return (+*this)&=img; + } + + //! In-place bitwise OR operator. + /** + Similar to operator+=(const t), except that it performs a bitwise OR operation instead of an addition. + **/ + template + CImg& operator|=(const t value) { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=32768)) + cimg_rof(*this,ptrd,T) *ptrd = (T)((ulongT)*ptrd | (ulongT)value); + return *this; + } + + //! In-place bitwise OR operator. + /** + Similar to operator+=(const char*), except that it performs a bitwise OR operation instead of an addition. + **/ + CImg& operator|=(const char *const expression) { + return *this|=(+*this)._fill(expression,true,true,0,0,"operator|=",this); + } + + //! In-place bitwise OR operator. + /** + Similar to operator+=(const CImg&), except that it performs a bitwise OR operation instead of an addition. + **/ + template + CImg& operator|=(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return *this|=+img; + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg operator|(const t value) const { + return (+*this)|=value; + } + + //! Bitwise OR operator. + /** + Similar to operator|=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + CImg operator|(const char *const expression) const { + return (+*this)|=expression; + } + + //! Bitwise OR operator. + /** + Similar to operator|=(const CImg&), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + template + CImg operator|(const CImg& img) const { + return (+*this)|=img; + } + + //! In-place bitwise XOR operator. + /** + Similar to operator+=(const t), except that it performs a bitwise XOR operation instead of an addition. + \warning + - It does \e not compute the \e power of pixel values. For this purpose, use pow(const t) instead. + **/ + template + CImg& operator^=(const t value) { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=32768)) + cimg_rof(*this,ptrd,T) *ptrd = (T)((ulongT)*ptrd ^ (ulongT)value); + return *this; + } + + //! In-place bitwise XOR operator. + /** + Similar to operator+=(const char*), except that it performs a bitwise XOR operation instead of an addition. + \warning + - It does \e not compute the \e power of pixel values. For this purpose, use pow(const char*) instead. + **/ + CImg& operator^=(const char *const expression) { + return *this^=(+*this)._fill(expression,true,true,0,0,"operator^=",this); + } + + //! In-place bitwise XOR operator. + /** + Similar to operator+=(const CImg&), except that it performs a bitwise XOR operation instead of an addition. + \warning + - It does \e not compute the \e power of pixel values. For this purpose, use pow(const CImg&) instead. + **/ + template + CImg& operator^=(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return *this^=+img; + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg operator^(const t value) const { + return (+*this)^=value; + } + + //! Bitwise XOR operator. + /** + Similar to operator^=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + CImg operator^(const char *const expression) const { + return (+*this)^=expression; + } + + //! Bitwise XOR operator. + /** + Similar to operator^=(const CImg&), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + template + CImg operator^(const CImg& img) const { + return (+*this)^=img; + } + + //! In-place bitwise left shift operator. + /** + Similar to operator+=(const t), except that it performs a bitwise left shift instead of an addition. + **/ + template + CImg& operator<<=(const t value) { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=65536)) + cimg_rof(*this,ptrd,T) *ptrd = (T)(((longT)*ptrd) << (int)value); + return *this; + } + + //! In-place bitwise left shift operator. + /** + Similar to operator+=(const char*), except that it performs a bitwise left shift instead of an addition. + **/ + CImg& operator<<=(const char *const expression) { + return *this<<=(+*this)._fill(expression,true,true,0,0,"operator<<=",this); + } + + //! In-place bitwise left shift operator. + /** + Similar to operator+=(const CImg&), except that it performs a bitwise left shift instead of an addition. + **/ + template + CImg& operator<<=(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return *this^=+img; + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg operator<<(const t value) const { + return (+*this)<<=value; + } + + //! Bitwise left shift operator. + /** + Similar to operator<<=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + CImg operator<<(const char *const expression) const { + return (+*this)<<=expression; + } + + //! Bitwise left shift operator. + /** + Similar to operator<<=(const CImg&), except that it returns a new image instance instead of + operating in-place. + The pixel type of the returned image is \c T. + **/ + template + CImg operator<<(const CImg& img) const { + return (+*this)<<=img; + } + + //! In-place bitwise right shift operator. + /** + Similar to operator+=(const t), except that it performs a bitwise right shift instead of an addition. + **/ + template + CImg& operator>>=(const t value) { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=65536)) + cimg_rof(*this,ptrd,T) *ptrd = (T)(((longT)*ptrd) >> (int)value); + return *this; + } + + //! In-place bitwise right shift operator. + /** + Similar to operator+=(const char*), except that it performs a bitwise right shift instead of an addition. + **/ + CImg& operator>>=(const char *const expression) { + return *this>>=(+*this)._fill(expression,true,true,0,0,"operator>>=",this); + } + + //! In-place bitwise right shift operator. + /** + Similar to operator+=(const CImg&), except that it performs a bitwise right shift instead of an addition. + **/ + template + CImg& operator>>=(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return *this^=+img; + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs> (int)*(ptrs++)); + for (const t *ptrs = img._data; ptrd> (int)*(ptrs++)); + } + return *this; + } + + //! Bitwise right shift operator. + /** + Similar to operator>>=(const t), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + template + CImg operator>>(const t value) const { + return (+*this)>>=value; + } + + //! Bitwise right shift operator. + /** + Similar to operator>>=(const char*), except that it returns a new image instance instead of operating in-place. + The pixel type of the returned image is \c T. + **/ + CImg operator>>(const char *const expression) const { + return (+*this)>>=expression; + } + + //! Bitwise right shift operator. + /** + Similar to operator>>=(const CImg&), except that it returns a new image instance instead of + operating in-place. + The pixel type of the returned image is \c T. + **/ + template + CImg operator>>(const CImg& img) const { + return (+*this)>>=img; + } + + //! Bitwise inversion operator. + /** + Similar to operator-(), except that it compute the bitwise inverse instead of the opposite value. + **/ + CImg operator~() const { + CImg res(_width,_height,_depth,_spectrum); + const T *ptrs = _data; + cimg_for(res,ptrd,T) { const ulongT value = (ulongT)*(ptrs++); *ptrd = (T)~value; } + return res; + } + + //! Test if all pixels of an image have the same value. + /** + Return \c true is all pixels of the image instance are equal to the specified \c value. + \param value Reference value to compare with. + **/ + template + bool operator==(const t value) const { + if (is_empty()) return false; + typedef _cimg_Tt Tt; + bool is_equal = true; + for (T *ptrd = _data + size(); is_equal && ptrd>_data; is_equal = ((Tt)*(--ptrd)==(Tt)value)) {} + return is_equal; + } + + //! Test if all pixel values of an image follow a specified expression. + /** + Return \c true is all pixels of the image instance are equal to the specified \c expression. + \param expression Value string describing the way pixel values are compared. + **/ + bool operator==(const char *const expression) const { + return *this==(+*this)._fill(expression,true,true,0,0,"operator==",this); + } + + //! Test if two images have the same size and values. + /** + Return \c true if the image instance and the input image \c img have the same dimensions and pixel values, + and \c false otherwise. + \param img Input image to compare with. + \note + - The pixel buffer pointers data() of the two compared images do not have to be the same for operator==() + to return \c true. + Only the dimensions and the pixel values matter. Thus, the comparison can be \c true even for different + pixel types \c T and \c t. + \par Example + \code + const CImg img1(1,3,1,1, 0,1,2); // Construct a 1x3 vector [0;1;2] (with 'float' pixel values). + const CImg img2(1,3,1,1, 0,1,2); // Construct a 1x3 vector [0;1;2] (with 'char' pixel values). + if (img1==img2) { // Test succeeds, image dimensions and values are the same. + std::printf("'img1' and 'img2' have same dimensions and values."); + } + \endcode + **/ + template + bool operator==(const CImg& img) const { + typedef _cimg_Tt Tt; + const ulongT siz = size(); + bool is_equal = true; + if (siz!=img.size()) return false; + t *ptrs = img._data + siz; + for (T *ptrd = _data + siz; is_equal && ptrd>_data; is_equal = ((Tt)*(--ptrd)==(Tt)*(--ptrs))) {} + return is_equal; + } + + //! Test if pixels of an image are all different from a value. + /** + Return \c true is all pixels of the image instance are different than the specified \c value. + \param value Reference value to compare with. + **/ + template + bool operator!=(const t value) const { + return !((*this)==value); + } + + //! Test if all pixel values of an image are different from a specified expression. + /** + Return \c true is all pixels of the image instance are different to the specified \c expression. + \param expression Value string describing the way pixel values are compared. + **/ + bool operator!=(const char *const expression) const { + return !((*this)==expression); + } + + //! Test if two images have different sizes or values. + /** + Return \c true if the image instance and the input image \c img have different dimensions or pixel values, + and \c false otherwise. + \param img Input image to compare with. + \note + - Writing \c img1!=img2 is equivalent to \c !(img1==img2). + **/ + template + bool operator!=(const CImg& img) const { + return !((*this)==img); + } + + //! Construct an image list from two images. + /** + Return a new list of image (\c CImgList instance) containing exactly two elements: + - A copy of the image instance, at position [\c 0]. + - A copy of the specified image \c img, at position [\c 1]. + + \param img Input image that will be the second image of the resulting list. + \note + - The family of operator,() is convenient to easily create list of images, but it is also \e quite \e slow + in practice (see warning below). + - Constructed lists contain no shared images. If image instance or input image \c img are shared, they are + inserted as new non-shared copies in the resulting list. + - The pixel type of the returned list may be a superset of the initial pixel type \c T, if necessary. + \warning + - Pipelining operator,() \c N times will perform \c N copies of the entire content of a (growing) image list. + This may become very expensive in terms of speed and used memory. You should avoid using this technique to + build a new CImgList instance from several images, if you are seeking for performance. + Fast insertions of images in an image list are possible with + CImgList::insert(const CImg&,unsigned int,bool) or move_to(CImgList&,unsigned int). + \par Example + \code + const CImg + img1("reference.jpg"), + img2 = img1.get_mirror('x'), + img3 = img2.get_blur(5); + const CImgList list = (img1,img2); // Create list of two elements from 'img1' and 'img2'. + (list,img3).display(); // Display image list containing copies of 'img1','img2' and 'img3'. + \endcode + \image html ref_operator_comma.jpg + **/ + template + CImgList<_cimg_Tt> operator,(const CImg& img) const { + return CImgList<_cimg_Tt>(*this,img); + } + + //! Construct an image list from image instance and an input image list. + /** + Return a new list of images (\c CImgList instance) containing exactly \c list.size() \c + \c 1 elements: + - A copy of the image instance, at position [\c 0]. + - A copy of the specified image list \c list, from positions [\c 1] to [\c list.size()]. + + \param list Input image list that will be appended to the image instance. + \note + - Similar to operator,(const CImg&) const, except that it takes an image list as an argument. + **/ + template + CImgList<_cimg_Tt> operator,(const CImgList& list) const { + return CImgList<_cimg_Tt>(list,false).insert(*this,0); + } + + //! Split image along specified axis. + /** + Return a new list of images (\c CImgList instance) containing the splitted components + of the instance image along the specified axis. + \param axis Splitting axis (can be '\c x','\c y','\c z' or '\c c') + \note + - Similar to get_split(char,int) const, with default second argument. + \par Example + \code + const CImg img("reference.jpg"); // Load a RGB color image. + const CImgList list = (img<'c'); // Get a list of its three R,G,B channels. + (img,list).display(); + \endcode + \image html ref_operator_less.jpg + **/ + CImgList operator<(const char axis) const { + return get_split(axis); + } + + //@} + //------------------------------------- + // + //! \name Instance Characteristics + //@{ + //------------------------------------- + + //! Return the type of image pixel values as a C string. + /** + Return a \c char* string containing the usual type name of the image pixel values + (i.e. a stringified version of the template parameter \c T). + \note + - The returned string may contain spaces (as in \c "unsigned char"). + - If the pixel type \c T does not correspond to a registered type, the string "unknown" is returned. + **/ + static const char* pixel_type() { + return cimg::type::string(); + } + + //! Return the number of image columns. + /** + Return the image width, i.e. the image dimension along the X-axis. + \note + - The width() of an empty image is equal to \c 0. + - width() is typically equal to \c 1 when considering images as \e vectors for matrix calculations. + - width() returns an \c int, although the image width is internally stored as an \c unsigned \c int. + Using an \c int is safer and prevents arithmetic traps possibly encountered when doing calculations involving + \c unsigned \c int variables. + Access to the initial \c unsigned \c int variable is possible (though not recommended) by + (*this)._width. + **/ + int width() const { + return (int)_width; + } + + //! Return the number of image rows. + /** + Return the image height, i.e. the image dimension along the Y-axis. + \note + - The height() of an empty image is equal to \c 0. + - height() returns an \c int, although the image height is internally stored as an \c unsigned \c int. + Using an \c int is safer and prevents arithmetic traps possibly encountered when doing calculations involving + \c unsigned \c int variables. + Access to the initial \c unsigned \c int variable is possible (though not recommended) by + (*this)._height. + **/ + int height() const { + return (int)_height; + } + + //! Return the number of image slices. + /** + Return the image depth, i.e. the image dimension along the Z-axis. + \note + - The depth() of an empty image is equal to \c 0. + - depth() is typically equal to \c 1 when considering usual 2d images. When depth()\c > \c 1, the image + is said to be \e volumetric. + - depth() returns an \c int, although the image depth is internally stored as an \c unsigned \c int. + Using an \c int is safer and prevents arithmetic traps possibly encountered when doing calculations involving + \c unsigned \c int variables. + Access to the initial \c unsigned \c int variable is possible (though not recommended) by + (*this)._depth. + **/ + int depth() const { + return (int)_depth; + } + + //! Return the number of image channels. + /** + Return the number of image channels, i.e. the image dimension along the C-axis. + \note + - The spectrum() of an empty image is equal to \c 0. + - spectrum() is typically equal to \c 1 when considering scalar-valued images, to \c 3 + for RGB-coded color images, and to \c 4 for RGBA-coded color images (with alpha-channel). + The number of channels of an image instance is not limited. The meaning of the pixel values is not linked + up to the number of channels (e.g. a 4-channel image may indifferently stands for a RGBA or CMYK color image). + - spectrum() returns an \c int, although the image spectrum is internally stored as an \c unsigned \c int. + Using an \c int is safer and prevents arithmetic traps possibly encountered when doing calculations involving + \c unsigned \c int variables. + Access to the initial \c unsigned \c int variable is possible (though not recommended) by + (*this)._spectrum. + **/ + int spectrum() const { + return (int)_spectrum; + } + + //! Return the total number of pixel values. + /** + Return width()*\ref height()*\ref depth()*\ref spectrum(), + i.e. the total number of values of type \c T in the pixel buffer of the image instance. + \note + - The size() of an empty image is equal to \c 0. + - The allocated memory size for a pixel buffer of a non-shared \c CImg instance is equal to + size()*sizeof(T). + \par Example + \code + const CImg img(100,100,1,3); // Construct new 100x100 color image. + if (img.size()==30000) // Test succeeds. + std::printf("Pixel buffer uses %lu bytes", + img.size()*sizeof(float)); + \endcode + **/ + ulongT size() const { + return (ulongT)_width*_height*_depth*_spectrum; + } + + //! Return a pointer to the first pixel value. + /** + Return a \c T*, or a \c const \c T* pointer to the first value in the pixel buffer of the image instance, + whether the instance is \c const or not. + \note + - The data() of an empty image is equal to \c 0 (null pointer). + - The allocated pixel buffer for the image instance starts from \c data() + and goes to data()+\ref size() - 1 (included). + - To get the pointer to one particular location of the pixel buffer, use + data(unsigned int,unsigned int,unsigned int,unsigned int) instead. + **/ + T* data() { + return _data; + } + + //! Return a pointer to the first pixel value \const. + const T* data() const { + return _data; + } + + //! Return a pointer to a located pixel value. + /** + Return a \c T*, or a \c const \c T* pointer to the value located at (\c x,\c y,\c z,\c c) in the pixel buffer + of the image instance, + whether the instance is \c const or not. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note + - Writing \c img.data(x,y,z,c) is equivalent to &(img(x,y,z,c)). Thus, this method has the same + properties as operator()(unsigned int,unsigned int,unsigned int,unsigned int). + **/ +#if cimg_verbosity>=3 + T *data(const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0) { + const ulongT off = (ulongT)offset(x,y,z,c); + if (off>=size()) + cimg::warn(_cimg_instance + "data(): Invalid pointer request, at coordinates (%u,%u,%u,%u) [offset=%u].", + cimg_instance, + x,y,z,c,off); + return _data + off; + } + + //! Return a pointer to a located pixel value \const. + const T* data(const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0) const { + return const_cast*>(this)->data(x,y,z,c); + } +#else + T* data(const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0) { + return _data + x + (ulongT)y*_width + (ulongT)z*_width*_height + (ulongT)c*_width*_height*_depth; + } + + const T* data(const unsigned int x, const unsigned int y=0, const unsigned int z=0, const unsigned int c=0) const { + return _data + x + (ulongT)y*_width + (ulongT)z*_width*_height + (ulongT)c*_width*_height*_depth; + } +#endif + + //! Return the offset to a located pixel value, with respect to the beginning of the pixel buffer. + /** + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note + - Writing \c img.data(x,y,z,c) is equivalent to &(img(x,y,z,c)) - img.data(). + Thus, this method has the same properties as operator()(unsigned int,unsigned int,unsigned int,unsigned int). + \par Example + \code + const CImg img(100,100,1,3); // Define a 100x100 RGB-color image. + const long off = img.offset(10,10,0,2); // Get the offset of the blue value of the pixel located at (10,10). + const float val = img[off]; // Get the blue value of this pixel. + \endcode + **/ + longT offset(const int x, const int y=0, const int z=0, const int c=0) const { + return x + (longT)y*_width + (longT)z*_width*_height + (longT)c*_width*_height*_depth; + } + + //! Return a CImg::iterator pointing to the first pixel value. + /** + \note + - Equivalent to data(). + - It has been mainly defined for compatibility with STL naming conventions. + **/ + iterator begin() { + return _data; + } + + //! Return a CImg::iterator pointing to the first value of the pixel buffer \const. + const_iterator begin() const { + return _data; + } + + //! Return a CImg::iterator pointing next to the last pixel value. + /** + \note + - Writing \c img.end() is equivalent to img.data() + img.size(). + - It has been mainly defined for compatibility with STL naming conventions. + \warning + - The returned iterator actually points to a value located \e outside the acceptable bounds of the pixel buffer. + Trying to read or write the content of the returned iterator will probably result in a crash. + Use it mainly as a strict upper bound for a CImg::iterator. + \par Example + \code + CImg img(100,100,1,3); // Define a 100x100 RGB color image. + // 'img.end()' used below as an upper bound for the iterator. + for (CImg::iterator it = img.begin(); it::iterator pointing next to the last pixel value \const. + const_iterator end() const { + return _data + size(); + } + + //! Return a reference to the first pixel value. + /** + \note + - Writing \c img.front() is equivalent to img[0], or img(0,0,0,0). + - It has been mainly defined for compatibility with STL naming conventions. + **/ + T& front() { + return *_data; + } + + //! Return a reference to the first pixel value \const. + const T& front() const { + return *_data; + } + + //! Return a reference to the last pixel value. + /** + \note + - Writing \c img.end() is equivalent to img[img.size() - 1], or + img(img.width() - 1,img.height() - 1,img.depth() - 1,img.spectrum() - 1). + - It has been mainly defined for compatibility with STL naming conventions. + **/ + T& back() { + return *(_data + size() - 1); + } + + //! Return a reference to the last pixel value \const. + const T& back() const { + return *(_data + size() - 1); + } + + //! Access to a pixel value at a specified offset, using Dirichlet boundary conditions. + /** + Return a reference to the pixel value of the image instance located at a specified \c offset, + or to a specified default value in case of out-of-bounds access. + \param offset Offset to the desired pixel value. + \param out_value Default value returned if \c offset is outside image bounds. + \note + - Writing \c img.at(offset,out_value) is similar to img[offset], except that if \c offset + is outside bounds (e.g. \c offset<0 or \c offset>=img.size()), a reference to a value \c out_value + is safely returned instead. + - Due to the additional boundary checking operation, this method is slower than operator()(). Use it when + you are \e not sure about the validity of the specified pixel offset. + **/ + T& at(const int offset, const T& out_value) { + return (offset<0 || offset>=(int)size())?(cimg::temporary(out_value)=out_value):(*this)[offset]; + } + + //! Access to a pixel value at a specified offset, using Dirichlet boundary conditions \const. + T at(const int offset, const T& out_value) const { + return (offset<0 || offset>=(int)size())?out_value:(*this)[offset]; + } + + //! Access to a pixel value at a specified offset, using Neumann boundary conditions. + /** + Return a reference to the pixel value of the image instance located at a specified \c offset, + or to the nearest pixel location in the image instance in case of out-of-bounds access. + \param offset Offset to the desired pixel value. + \note + - Similar to at(int,const T), except that an out-of-bounds access returns the value of the + nearest pixel in the image instance, regarding the specified offset, i.e. + - If \c offset<0, then \c img[0] is returned. + - If \c offset>=img.size(), then \c img[img.size() - 1] is returned. + - Due to the additional boundary checking operation, this method is slower than operator()(). Use it when + you are \e not sure about the validity of the specified pixel offset. + - If you know your image instance is \e not empty, you may rather use the slightly faster method \c _at(int). + **/ + T& at(const int offset) { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "at(): Empty instance.", + cimg_instance); + return _at(offset); + } + + T& _at(const int offset) { + const unsigned int siz = (unsigned int)size(); + return (*this)[offset<0?0:(unsigned int)offset>=siz?siz - 1:offset]; + } + + //! Access to a pixel value at a specified offset, using Neumann boundary conditions \const. + const T& at(const int offset) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "at(): Empty instance.", + cimg_instance); + return _at(offset); + } + + const T& _at(const int offset) const { + const unsigned int siz = (unsigned int)size(); + return (*this)[offset<0?0:(unsigned int)offset>=siz?siz - 1:offset]; + } + + //! Access to a pixel value, using Dirichlet boundary conditions for the X-coordinate. + /** + Return a reference to the pixel value of the image instance located at (\c x,\c y,\c z,\c c), + or to a specified default value in case of out-of-bounds access along the X-axis. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param out_value Default value returned if \c (\c x,\c y,\c z,\c c) is outside image bounds. + \note + - Similar to operator()(), except that an out-of-bounds access along the X-axis returns the specified value + \c out_value. + - Due to the additional boundary checking operation, this method is slower than operator()(). Use it when + you are \e not sure about the validity of the specified pixel coordinates. + \warning + - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. + **/ + T& atX(const int x, const int y, const int z, const int c, const T& out_value) { + return (x<0 || x>=width())?(cimg::temporary(out_value)=out_value):(*this)(x,y,z,c); + } + + //! Access to a pixel value, using Dirichlet boundary conditions for the X-coordinate \const. + T atX(const int x, const int y, const int z, const int c, const T& out_value) const { + return (x<0 || x>=width())?out_value:(*this)(x,y,z,c); + } + + //! Access to a pixel value, using Neumann boundary conditions for the X-coordinate. + /** + Return a reference to the pixel value of the image instance located at (\c x,\c y,\c z,\c c), + or to the nearest pixel location in the image instance in case of out-of-bounds access along the X-axis. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note + - Similar to at(int,int,int,int,const T), except that an out-of-bounds access returns the value of the + nearest pixel in the image instance, regarding the specified X-coordinate. + - Due to the additional boundary checking operation, this method is slower than operator()(). Use it when + you are \e not sure about the validity of the specified pixel coordinates. + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _at(int,int,int,int). + \warning + - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. + **/ + T& atX(const int x, const int y=0, const int z=0, const int c=0) { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "atX(): Empty instance.", + cimg_instance); + return _atX(x,y,z,c); + } + + T& _atX(const int x, const int y=0, const int z=0, const int c=0) { + return (*this)(x<0?0:(x>=width()?width() - 1:x),y,z,c); + } + + //! Access to a pixel value, using Neumann boundary conditions for the X-coordinate \const. + const T& atX(const int x, const int y=0, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "atX(): Empty instance.", + cimg_instance); + return _atX(x,y,z,c); + } + + const T& _atX(const int x, const int y=0, const int z=0, const int c=0) const { + return (*this)(x<0?0:(x>=width()?width() - 1:x),y,z,c); + } + + //! Access to a pixel value, using Dirichlet boundary conditions for the X and Y-coordinates. + /** + Similar to atX(int,int,int,int,const T), except that boundary checking is performed both on X and Y-coordinates. + **/ + T& atXY(const int x, const int y, const int z, const int c, const T& out_value) { + return (x<0 || y<0 || x>=width() || y>=height())?(cimg::temporary(out_value)=out_value):(*this)(x,y,z,c); + } + + //! Access to a pixel value, using Dirichlet boundary conditions for the X and Y coordinates \const. + T atXY(const int x, const int y, const int z, const int c, const T& out_value) const { + return (x<0 || y<0 || x>=width() || y>=height())?out_value:(*this)(x,y,z,c); + } + + //! Access to a pixel value, using Neumann boundary conditions for the X and Y-coordinates. + /** + Similar to atX(int,int,int,int), except that boundary checking is performed both on X and Y-coordinates. + \note + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _atXY(int,int,int,int). + **/ + T& atXY(const int x, const int y, const int z=0, const int c=0) { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "atXY(): Empty instance.", + cimg_instance); + return _atXY(x,y,z,c); + } + + T& _atXY(const int x, const int y, const int z=0, const int c=0) { + return (*this)(cimg::cut(x,0,width() - 1), + cimg::cut(y,0,height() - 1),z,c); + } + + //! Access to a pixel value, using Neumann boundary conditions for the X and Y-coordinates \const. + const T& atXY(const int x, const int y, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "atXY(): Empty instance.", + cimg_instance); + return _atXY(x,y,z,c); + } + + const T& _atXY(const int x, const int y, const int z=0, const int c=0) const { + return (*this)(cimg::cut(x,0,width() - 1), + cimg::cut(y,0,height() - 1),z,c); + } + + //! Access to a pixel value, using Dirichlet boundary conditions for the X,Y and Z-coordinates. + /** + Similar to atX(int,int,int,int,const T), except that boundary checking is performed both on + X,Y and Z-coordinates. + **/ + T& atXYZ(const int x, const int y, const int z, const int c, const T& out_value) { + return (x<0 || y<0 || z<0 || x>=width() || y>=height() || z>=depth())? + (cimg::temporary(out_value)=out_value):(*this)(x,y,z,c); + } + + //! Access to a pixel value, using Dirichlet boundary conditions for the X,Y and Z-coordinates \const. + T atXYZ(const int x, const int y, const int z, const int c, const T& out_value) const { + return (x<0 || y<0 || z<0 || x>=width() || y>=height() || z>=depth())?out_value:(*this)(x,y,z,c); + } + + //! Access to a pixel value, using Neumann boundary conditions for the X,Y and Z-coordinates. + /** + Similar to atX(int,int,int,int), except that boundary checking is performed both on X,Y and Z-coordinates. + \note + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _atXYZ(int,int,int,int). + **/ + T& atXYZ(const int x, const int y, const int z, const int c=0) { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "atXYZ(): Empty instance.", + cimg_instance); + return _atXYZ(x,y,z,c); + } + + T& _atXYZ(const int x, const int y, const int z, const int c=0) { + return (*this)(cimg::cut(x,0,width() - 1), + cimg::cut(y,0,height() - 1), + cimg::cut(z,0,depth() - 1),c); + } + + //! Access to a pixel value, using Neumann boundary conditions for the X,Y and Z-coordinates \const. + const T& atXYZ(const int x, const int y, const int z, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "atXYZ(): Empty instance.", + cimg_instance); + return _atXYZ(x,y,z,c); + } + + const T& _atXYZ(const int x, const int y, const int z, const int c=0) const { + return (*this)(cimg::cut(x,0,width() - 1), + cimg::cut(y,0,height() - 1), + cimg::cut(z,0,depth() - 1),c); + } + + //! Access to a pixel value, using Dirichlet boundary conditions. + /** + Similar to atX(int,int,int,int,const T), except that boundary checking is performed on all + X,Y,Z and C-coordinates. + **/ + T& atXYZC(const int x, const int y, const int z, const int c, const T& out_value) { + return (x<0 || y<0 || z<0 || c<0 || x>=width() || y>=height() || z>=depth() || c>=spectrum())? + (cimg::temporary(out_value)=out_value):(*this)(x,y,z,c); + } + + //! Access to a pixel value, using Dirichlet boundary conditions \const. + T atXYZC(const int x, const int y, const int z, const int c, const T& out_value) const { + return (x<0 || y<0 || z<0 || c<0 || x>=width() || y>=height() || z>=depth() || c>=spectrum())?out_value: + (*this)(x,y,z,c); + } + + //! Access to a pixel value, using Neumann boundary conditions. + /** + Similar to atX(int,int,int,int), except that boundary checking is performed on all X,Y,Z and C-coordinates. + \note + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _atXYZC(int,int,int,int). + **/ + T& atXYZC(const int x, const int y, const int z, const int c) { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "atXYZC(): Empty instance.", + cimg_instance); + return _atXYZC(x,y,z,c); + } + + T& _atXYZC(const int x, const int y, const int z, const int c) { + return (*this)(cimg::cut(x,0,width() - 1), + cimg::cut(y,0,height() - 1), + cimg::cut(z,0,depth() - 1), + cimg::cut(c,0,spectrum() - 1)); + } + + //! Access to a pixel value, using Neumann boundary conditions \const. + const T& atXYZC(const int x, const int y, const int z, const int c) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "atXYZC(): Empty instance.", + cimg_instance); + return _atXYZC(x,y,z,c); + } + + const T& _atXYZC(const int x, const int y, const int z, const int c) const { + return (*this)(cimg::cut(x,0,width() - 1), + cimg::cut(y,0,height() - 1), + cimg::cut(z,0,depth() - 1), + cimg::cut(c,0,spectrum() - 1)); + } + + //! Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X-coordinate. + /** + Return a linearly-interpolated pixel value of the image instance located at (\c fx,\c y,\c z,\c c), + or a specified default value in case of out-of-bounds access along the X-axis. + \param fx X-coordinate of the pixel value (float-valued). + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param out_value Default value returned if \c (\c fx,\c y,\c z,\c c) is outside image bounds. + \note + - Similar to atX(int,int,int,int,const T), except that the returned pixel value is approximated by + a linear interpolation along the X-axis, if corresponding coordinates are not integers. + - The type of the returned pixel value is extended to \c float, if the pixel type \c T is not float-valued. + \warning + - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. + **/ + Tfloat linear_atX(const float fx, const int y, const int z, const int c, const T& out_value) const { + const int + x = (int)fx - (fx>=0?0:1), nx = x + 1; + const float + dx = fx - x; + const Tfloat + Ic = (Tfloat)atX(x,y,z,c,out_value), In = (Tfloat)atXY(nx,y,z,c,out_value); + return Ic + dx*(In - Ic); + } + + //! Return pixel value, using linear interpolation and Neumann boundary conditions for the X-coordinate. + /** + Return a linearly-interpolated pixel value of the image instance located at (\c fx,\c y,\c z,\c c), + or the value of the nearest pixel location in the image instance in case of out-of-bounds access along + the X-axis. + \param fx X-coordinate of the pixel value (float-valued). + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note + - Similar to linear_atX(float,int,int,int,const T) const, except that an out-of-bounds access returns + the value of the nearest pixel in the image instance, regarding the specified X-coordinate. + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _linear_atX(float,int,int,int). + \warning + - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. + **/ + Tfloat linear_atX(const float fx, const int y=0, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "linear_atX(): Empty instance.", + cimg_instance); + + return _linear_atX(fx,y,z,c); + } + + Tfloat _linear_atX(const float fx, const int y=0, const int z=0, const int c=0) const { + const float + nfx = cimg::cut(fx,0,width() - 1); + const unsigned int + x = (unsigned int)nfx; + const float + dx = nfx - x; + const unsigned int + nx = dx>0?x + 1:x; + const Tfloat + Ic = (Tfloat)(*this)(x,y,z,c), In = (Tfloat)(*this)(nx,y,z,c); + return Ic + dx*(In - Ic); + } + + //! Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X and Y-coordinates. + /** + Similar to linear_atX(float,int,int,int,const T) const, except that the linear interpolation and the + boundary checking are achieved both for X and Y-coordinates. + **/ + Tfloat linear_atXY(const float fx, const float fy, const int z, const int c, const T& out_value) const { + const int + x = (int)fx - (fx>=0?0:1), nx = x + 1, + y = (int)fy - (fy>=0?0:1), ny = y + 1; + const float + dx = fx - x, + dy = fy - y; + const Tfloat + Icc = (Tfloat)atXY(x,y,z,c,out_value), Inc = (Tfloat)atXY(nx,y,z,c,out_value), + Icn = (Tfloat)atXY(x,ny,z,c,out_value), Inn = (Tfloat)atXY(nx,ny,z,c,out_value); + return Icc + dx*(Inc - Icc + dy*(Icc + Inn - Icn - Inc)) + dy*(Icn - Icc); + } + + //! Return pixel value, using linear interpolation and Neumann boundary conditions for the X and Y-coordinates. + /** + Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking + are achieved both for X and Y-coordinates. + \note + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _linear_atXY(float,float,int,int). + **/ + Tfloat linear_atXY(const float fx, const float fy, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "linear_atXY(): Empty instance.", + cimg_instance); + + return _linear_atXY(fx,fy,z,c); + } + + Tfloat _linear_atXY(const float fx, const float fy, const int z=0, const int c=0) const { + const float + nfx = cimg::cut(fx,0,width() - 1), + nfy = cimg::cut(fy,0,height() - 1); + const unsigned int + x = (unsigned int)nfx, + y = (unsigned int)nfy; + const float + dx = nfx - x, + dy = nfy - y; + const unsigned int + nx = dx>0?x + 1:x, + ny = dy>0?y + 1:y; + const Tfloat + Icc = (Tfloat)(*this)(x,y,z,c), Inc = (Tfloat)(*this)(nx,y,z,c), + Icn = (Tfloat)(*this)(x,ny,z,c), Inn = (Tfloat)(*this)(nx,ny,z,c); + return Icc + dx*(Inc - Icc + dy*(Icc + Inn - Icn - Inc)) + dy*(Icn - Icc); + } + + //! Return pixel value, using linear interpolation and Dirichlet boundary conditions for the X,Y and Z-coordinates. + /** + Similar to linear_atX(float,int,int,int,const T) const, except that the linear interpolation and the + boundary checking are achieved both for X,Y and Z-coordinates. + **/ + Tfloat linear_atXYZ(const float fx, const float fy, const float fz, const int c, const T& out_value) const { + const int + x = (int)fx - (fx>=0?0:1), nx = x + 1, + y = (int)fy - (fy>=0?0:1), ny = y + 1, + z = (int)fz - (fz>=0?0:1), nz = z + 1; + const float + dx = fx - x, + dy = fy - y, + dz = fz - z; + const Tfloat + Iccc = (Tfloat)atXYZ(x,y,z,c,out_value), Incc = (Tfloat)atXYZ(nx,y,z,c,out_value), + Icnc = (Tfloat)atXYZ(x,ny,z,c,out_value), Innc = (Tfloat)atXYZ(nx,ny,z,c,out_value), + Iccn = (Tfloat)atXYZ(x,y,nz,c,out_value), Incn = (Tfloat)atXYZ(nx,y,nz,c,out_value), + Icnn = (Tfloat)atXYZ(x,ny,nz,c,out_value), Innn = (Tfloat)atXYZ(nx,ny,nz,c,out_value); + return Iccc + + dx*(Incc - Iccc + + dy*(Iccc + Innc - Icnc - Incc + + dz*(Iccn + Innn + Icnc + Incc - Icnn - Incn - Iccc - Innc)) + + dz*(Iccc + Incn - Iccn - Incc)) + + dy*(Icnc - Iccc + + dz*(Iccc + Icnn - Iccn - Icnc)) + + dz*(Iccn - Iccc); + } + + //! Return pixel value, using linear interpolation and Neumann boundary conditions for the X,Y and Z-coordinates. + /** + Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking + are achieved both for X,Y and Z-coordinates. + \note + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _linear_atXYZ(float,float,float,int). + **/ + Tfloat linear_atXYZ(const float fx, const float fy=0, const float fz=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "linear_atXYZ(): Empty instance.", + cimg_instance); + + return _linear_atXYZ(fx,fy,fz,c); + } + + Tfloat _linear_atXYZ(const float fx, const float fy=0, const float fz=0, const int c=0) const { + const float + nfx = cimg::cut(fx,0,width() - 1), + nfy = cimg::cut(fy,0,height() - 1), + nfz = cimg::cut(fz,0,depth() - 1); + const unsigned int + x = (unsigned int)nfx, + y = (unsigned int)nfy, + z = (unsigned int)nfz; + const float + dx = nfx - x, + dy = nfy - y, + dz = nfz - z; + const unsigned int + nx = dx>0?x + 1:x, + ny = dy>0?y + 1:y, + nz = dz>0?z + 1:z; + const Tfloat + Iccc = (Tfloat)(*this)(x,y,z,c), Incc = (Tfloat)(*this)(nx,y,z,c), + Icnc = (Tfloat)(*this)(x,ny,z,c), Innc = (Tfloat)(*this)(nx,ny,z,c), + Iccn = (Tfloat)(*this)(x,y,nz,c), Incn = (Tfloat)(*this)(nx,y,nz,c), + Icnn = (Tfloat)(*this)(x,ny,nz,c), Innn = (Tfloat)(*this)(nx,ny,nz,c); + return Iccc + + dx*(Incc - Iccc + + dy*(Iccc + Innc - Icnc - Incc + + dz*(Iccn + Innn + Icnc + Incc - Icnn - Incn - Iccc - Innc)) + + dz*(Iccc + Incn - Iccn - Incc)) + + dy*(Icnc - Iccc + + dz*(Iccc + Icnn - Iccn - Icnc)) + + dz*(Iccn - Iccc); + } + + //! Return pixel value, using linear interpolation and Dirichlet boundary conditions for all X,Y,Z,C-coordinates. + /** + Similar to linear_atX(float,int,int,int,const T) const, except that the linear interpolation and the + boundary checking are achieved for all X,Y,Z and C-coordinates. + **/ + Tfloat linear_atXYZC(const float fx, const float fy, const float fz, const float fc, const T& out_value) const { + const int + x = (int)fx - (fx>=0?0:1), nx = x + 1, + y = (int)fy - (fy>=0?0:1), ny = y + 1, + z = (int)fz - (fz>=0?0:1), nz = z + 1, + c = (int)fc - (fc>=0?0:1), nc = c + 1; + const float + dx = fx - x, + dy = fy - y, + dz = fz - z, + dc = fc - c; + const Tfloat + Icccc = (Tfloat)atXYZC(x,y,z,c,out_value), Inccc = (Tfloat)atXYZC(nx,y,z,c,out_value), + Icncc = (Tfloat)atXYZC(x,ny,z,c,out_value), Inncc = (Tfloat)atXYZC(nx,ny,z,c,out_value), + Iccnc = (Tfloat)atXYZC(x,y,nz,c,out_value), Incnc = (Tfloat)atXYZC(nx,y,nz,c,out_value), + Icnnc = (Tfloat)atXYZC(x,ny,nz,c,out_value), Innnc = (Tfloat)atXYZC(nx,ny,nz,c,out_value), + Icccn = (Tfloat)atXYZC(x,y,z,nc,out_value), Inccn = (Tfloat)atXYZC(nx,y,z,nc,out_value), + Icncn = (Tfloat)atXYZC(x,ny,z,nc,out_value), Inncn = (Tfloat)atXYZC(nx,ny,z,nc,out_value), + Iccnn = (Tfloat)atXYZC(x,y,nz,nc,out_value), Incnn = (Tfloat)atXYZC(nx,y,nz,nc,out_value), + Icnnn = (Tfloat)atXYZC(x,ny,nz,nc,out_value), Innnn = (Tfloat)atXYZC(nx,ny,nz,nc,out_value); + return Icccc + + dx*(Inccc - Icccc + + dy*(Icccc + Inncc - Icncc - Inccc + + dz*(Iccnc + Innnc + Icncc + Inccc - Icnnc - Incnc - Icccc - Inncc + + dc*(Iccnn + Innnn + Icncn + Inccn + Icnnc + Incnc + Icccc + Inncc - + Icnnn - Incnn - Icccn - Inncn - Iccnc - Innnc - Icncc - Inccc)) + + dc*(Icccn + Inncn + Icncc + Inccc - Icncn - Inccn - Icccc - Inncc)) + + dz*(Icccc + Incnc - Iccnc - Inccc + + dc*(Icccn + Incnn + Iccnc + Inccc - Iccnn - Inccn - Icccc - Incnc)) + + dc*(Icccc + Inccn - Inccc - Icccn)) + + dy*(Icncc - Icccc + + dz*(Icccc + Icnnc - Iccnc - Icncc + + dc*(Icccn + Icnnn + Iccnc + Icncc - Iccnn - Icncn - Icccc - Icnnc)) + + dc*(Icccc + Icncn - Icncc - Icccn)) + + dz*(Iccnc - Icccc + + dc*(Icccc + Iccnn - Iccnc - Icccn)) + + dc*(Icccn -Icccc); + } + + //! Return pixel value, using linear interpolation and Neumann boundary conditions for all X,Y,Z and C-coordinates. + /** + Similar to linear_atX(float,int,int,int) const, except that the linear interpolation and the boundary checking + are achieved for all X,Y,Z and C-coordinates. + \note + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _linear_atXYZC(float,float,float,float). + **/ + Tfloat linear_atXYZC(const float fx, const float fy=0, const float fz=0, const float fc=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "linear_atXYZC(): Empty instance.", + cimg_instance); + + return _linear_atXYZC(fx,fy,fz,fc); + } + + Tfloat _linear_atXYZC(const float fx, const float fy=0, const float fz=0, const float fc=0) const { + const float + nfx = cimg::cut(fx,0,width() - 1), + nfy = cimg::cut(fy,0,height() - 1), + nfz = cimg::cut(fz,0,depth() - 1), + nfc = cimg::cut(fc,0,spectrum() - 1); + const unsigned int + x = (unsigned int)nfx, + y = (unsigned int)nfy, + z = (unsigned int)nfz, + c = (unsigned int)nfc; + const float + dx = nfx - x, + dy = nfy - y, + dz = nfz - z, + dc = nfc - c; + const unsigned int + nx = dx>0?x + 1:x, + ny = dy>0?y + 1:y, + nz = dz>0?z + 1:z, + nc = dc>0?c + 1:c; + const Tfloat + Icccc = (Tfloat)(*this)(x,y,z,c), Inccc = (Tfloat)(*this)(nx,y,z,c), + Icncc = (Tfloat)(*this)(x,ny,z,c), Inncc = (Tfloat)(*this)(nx,ny,z,c), + Iccnc = (Tfloat)(*this)(x,y,nz,c), Incnc = (Tfloat)(*this)(nx,y,nz,c), + Icnnc = (Tfloat)(*this)(x,ny,nz,c), Innnc = (Tfloat)(*this)(nx,ny,nz,c), + Icccn = (Tfloat)(*this)(x,y,z,nc), Inccn = (Tfloat)(*this)(nx,y,z,nc), + Icncn = (Tfloat)(*this)(x,ny,z,nc), Inncn = (Tfloat)(*this)(nx,ny,z,nc), + Iccnn = (Tfloat)(*this)(x,y,nz,nc), Incnn = (Tfloat)(*this)(nx,y,nz,nc), + Icnnn = (Tfloat)(*this)(x,ny,nz,nc), Innnn = (Tfloat)(*this)(nx,ny,nz,nc); + return Icccc + + dx*(Inccc - Icccc + + dy*(Icccc + Inncc - Icncc - Inccc + + dz*(Iccnc + Innnc + Icncc + Inccc - Icnnc - Incnc - Icccc - Inncc + + dc*(Iccnn + Innnn + Icncn + Inccn + Icnnc + Incnc + Icccc + Inncc - + Icnnn - Incnn - Icccn - Inncn - Iccnc - Innnc - Icncc - Inccc)) + + dc*(Icccn + Inncn + Icncc + Inccc - Icncn - Inccn - Icccc - Inncc)) + + dz*(Icccc + Incnc - Iccnc - Inccc + + dc*(Icccn + Incnn + Iccnc + Inccc - Iccnn - Inccn - Icccc - Incnc)) + + dc*(Icccc + Inccn - Inccc - Icccn)) + + dy*(Icncc - Icccc + + dz*(Icccc + Icnnc - Iccnc - Icncc + + dc*(Icccn + Icnnn + Iccnc + Icncc - Iccnn - Icncn - Icccc - Icnnc)) + + dc*(Icccc + Icncn - Icncc - Icccn)) + + dz*(Iccnc - Icccc + + dc*(Icccc + Iccnn - Iccnc - Icccn)) + + dc*(Icccn - Icccc); + } + + //! Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X-coordinate. + /** + Return a cubicly-interpolated pixel value of the image instance located at (\c fx,\c y,\c z,\c c), + or a specified default value in case of out-of-bounds access along the X-axis. + The cubic interpolation uses Hermite splines. + \param fx d X-coordinate of the pixel value (float-valued). + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param out_value Default value returned if \c (\c fx,\c y,\c z,\c c) is outside image bounds. + \note + - Similar to linear_atX(float,int,int,int,const T) const, except that the returned pixel value is + approximated by a \e cubic interpolation along the X-axis. + - The type of the returned pixel value is extended to \c float, if the pixel type \c T is not float-valued. + \warning + - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. + **/ + Tfloat cubic_atX(const float fx, const int y, const int z, const int c, const T& out_value) const { + const int + x = (int)fx - (fx>=0?0:1), px = x - 1, nx = x + 1, ax = x + 2; + const float + dx = fx - x; + const Tfloat + Ip = (Tfloat)atX(px,y,z,c,out_value), Ic = (Tfloat)atX(x,y,z,c,out_value), + In = (Tfloat)atX(nx,y,z,c,out_value), Ia = (Tfloat)atX(ax,y,z,c,out_value); + return Ic + 0.5f*(dx*(-Ip + In) + dx*dx*(2*Ip - 5*Ic + 4*In - Ia) + dx*dx*dx*(-Ip + 3*Ic - 3*In + Ia)); + } + + //! Return damped pixel value, using cubic interpolation and Dirichlet boundary conditions for the X-coordinate. + /** + Similar to cubic_atX(float,int,int,int,const T) const, except that you can specify the authorized minimum + and maximum of the returned value. + **/ + Tfloat cubic_atX(const float fx, const int y, const int z, const int c, const T& out_value, + const Tfloat min_value, const Tfloat max_value) const { + const Tfloat val = cubic_atX(fx,y,z,c,out_value); + return valmax_value?max_value:val; + } + + //! Return pixel value, using cubic interpolation and Neumann boundary conditions for the X-coordinate. + /** + Return a cubicly-interpolated pixel value of the image instance located at (\c fx,\c y,\c z,\c c), + or the value of the nearest pixel location in the image instance in case of out-of-bounds access + along the X-axis. The cubic interpolation uses Hermite splines. + \param fx X-coordinate of the pixel value (float-valued). + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note + - Similar to cubic_atX(float,int,int,int,const T) const, except that the returned pixel value is + approximated by a cubic interpolation along the X-axis. + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _cubic_atX(float,int,int,int). + \warning + - There is \e no boundary checking performed for the Y,Z and C-coordinates, so they must be inside image bounds. + **/ + Tfloat cubic_atX(const float fx, const int y=0, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "cubic_atX(): Empty instance.", + cimg_instance); + return _cubic_atX(fx,y,z,c); + } + + Tfloat _cubic_atX(const float fx, const int y=0, const int z=0, const int c=0) const { + const float + nfx = cimg::cut(fx,0,width() - 1); + const int + x = (int)nfx; + const float + dx = nfx - x; + const int + px = x - 1<0?0:x - 1, nx = dx>0?x + 1:x, ax = x + 2>=width()?width() - 1:x + 2; + const Tfloat + Ip = (Tfloat)(*this)(px,y,z,c), Ic = (Tfloat)(*this)(x,y,z,c), + In = (Tfloat)(*this)(nx,y,z,c), Ia = (Tfloat)(*this)(ax,y,z,c); + return Ic + 0.5f*(dx*(-Ip + In) + dx*dx*(2*Ip - 5*Ic + 4*In - Ia) + dx*dx*dx*(-Ip + 3*Ic - 3*In + Ia)); + } + + //! Return damped pixel value, using cubic interpolation and Neumann boundary conditions for the X-coordinate. + /** + Similar to cubic_atX(float,int,int,int) const, except that you can specify the authorized minimum and maximum + of the returned value. + **/ + Tfloat cubic_atX(const float fx, const int y, const int z, const int c, + const Tfloat min_value, const Tfloat max_value) const { + const Tfloat val = cubic_atX(fx,y,z,c); + return valmax_value?max_value:val; + } + + Tfloat _cubic_atX(const float fx, const int y, const int z, const int c, + const Tfloat min_value, const Tfloat max_value) const { + const Tfloat val = _cubic_atX(fx,y,z,c); + return valmax_value?max_value:val; + } + + //! Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X and Y-coordinates. + /** + Similar to cubic_atX(float,int,int,int,const T) const, except that the cubic interpolation and boundary checking + are achieved both for X and Y-coordinates. + **/ + Tfloat cubic_atXY(const float fx, const float fy, const int z, const int c, const T& out_value) const { + const int + x = (int)fx - (fx>=0?0:1), px = x - 1, nx = x + 1, ax = x + 2, + y = (int)fy - (fy>=0?0:1), py = y - 1, ny = y + 1, ay = y + 2; + const float dx = fx - x, dy = fy - y; + const Tfloat + Ipp = (Tfloat)atXY(px,py,z,c,out_value), Icp = (Tfloat)atXY(x,py,z,c,out_value), + Inp = (Tfloat)atXY(nx,py,z,c,out_value), Iap = (Tfloat)atXY(ax,py,z,c,out_value), + Ip = Icp + 0.5f*(dx*(-Ipp + Inp) + dx*dx*(2*Ipp - 5*Icp + 4*Inp - Iap) + dx*dx*dx*(-Ipp + 3*Icp - 3*Inp + Iap)), + Ipc = (Tfloat)atXY(px,y,z,c,out_value), Icc = (Tfloat)atXY(x, y,z,c,out_value), + Inc = (Tfloat)atXY(nx,y,z,c,out_value), Iac = (Tfloat)atXY(ax,y,z,c,out_value), + Ic = Icc + 0.5f*(dx*(-Ipc + Inc) + dx*dx*(2*Ipc - 5*Icc + 4*Inc - Iac) + dx*dx*dx*(-Ipc + 3*Icc - 3*Inc + Iac)), + Ipn = (Tfloat)atXY(px,ny,z,c,out_value), Icn = (Tfloat)atXY(x,ny,z,c,out_value), + Inn = (Tfloat)atXY(nx,ny,z,c,out_value), Ian = (Tfloat)atXY(ax,ny,z,c,out_value), + In = Icn + 0.5f*(dx*(-Ipn + Inn) + dx*dx*(2*Ipn - 5*Icn + 4*Inn - Ian) + dx*dx*dx*(-Ipn + 3*Icn - 3*Inn + Ian)), + Ipa = (Tfloat)atXY(px,ay,z,c,out_value), Ica = (Tfloat)atXY(x,ay,z,c,out_value), + Ina = (Tfloat)atXY(nx,ay,z,c,out_value), Iaa = (Tfloat)atXY(ax,ay,z,c,out_value), + Ia = Ica + 0.5f*(dx*(-Ipa + Ina) + dx*dx*(2*Ipa - 5*Ica + 4*Ina - Iaa) + dx*dx*dx*(-Ipa + 3*Ica - 3*Ina + Iaa)); + return Ic + 0.5f*(dy*(-Ip + In) + dy*dy*(2*Ip - 5*Ic + 4*In - Ia) + dy*dy*dy*(-Ip + 3*Ic - 3*In + Ia)); + } + + //! Return damped pixel value, using cubic interpolation and Dirichlet boundary conditions for the X,Y-coordinates. + /** + Similar to cubic_atXY(float,float,int,int,const T) const, except that you can specify the authorized + minimum and maximum of the returned value. + **/ + Tfloat cubic_atXY(const float fx, const float fy, const int z, const int c, const T& out_value, + const Tfloat min_value, const Tfloat max_value) const { + const Tfloat val = cubic_atXY(fx,fy,z,c,out_value); + return valmax_value?max_value:val; + } + + //! Return pixel value, using cubic interpolation and Neumann boundary conditions for the X and Y-coordinates. + /** + Similar to cubic_atX(float,int,int,int) const, except that the cubic interpolation and boundary checking + are achieved for both X and Y-coordinates. + \note + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _cubic_atXY(float,float,int,int). + **/ + Tfloat cubic_atXY(const float fx, const float fy, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "cubic_atXY(): Empty instance.", + cimg_instance); + return _cubic_atXY(fx,fy,z,c); + } + + Tfloat _cubic_atXY(const float fx, const float fy, const int z=0, const int c=0) const { + const float + nfx = cimg::cut(fx,0,width() - 1), + nfy = cimg::cut(fy,0,height() - 1); + const int x = (int)nfx, y = (int)nfy; + const float dx = nfx - x, dy = nfy - y; + const int + px = x - 1<0?0:x - 1, nx = dx>0?x + 1:x, ax = x + 2>=width()?width() - 1:x + 2, + py = y - 1<0?0:y - 1, ny = dy>0?y + 1:y, ay = y + 2>=height()?height() - 1:y + 2; + const Tfloat + Ipp = (Tfloat)(*this)(px,py,z,c), Icp = (Tfloat)(*this)(x,py,z,c), Inp = (Tfloat)(*this)(nx,py,z,c), + Iap = (Tfloat)(*this)(ax,py,z,c), + Ip = Icp + 0.5f*(dx*(-Ipp + Inp) + dx*dx*(2*Ipp - 5*Icp + 4*Inp - Iap) + dx*dx*dx*(-Ipp + 3*Icp - 3*Inp + Iap)), + Ipc = (Tfloat)(*this)(px,y,z,c), Icc = (Tfloat)(*this)(x, y,z,c), Inc = (Tfloat)(*this)(nx,y,z,c), + Iac = (Tfloat)(*this)(ax,y,z,c), + Ic = Icc + 0.5f*(dx*(-Ipc + Inc) + dx*dx*(2*Ipc - 5*Icc + 4*Inc - Iac) + dx*dx*dx*(-Ipc + 3*Icc - 3*Inc + Iac)), + Ipn = (Tfloat)(*this)(px,ny,z,c), Icn = (Tfloat)(*this)(x,ny,z,c), Inn = (Tfloat)(*this)(nx,ny,z,c), + Ian = (Tfloat)(*this)(ax,ny,z,c), + In = Icn + 0.5f*(dx*(-Ipn + Inn) + dx*dx*(2*Ipn - 5*Icn + 4*Inn - Ian) + dx*dx*dx*(-Ipn + 3*Icn - 3*Inn + Ian)), + Ipa = (Tfloat)(*this)(px,ay,z,c), Ica = (Tfloat)(*this)(x,ay,z,c), Ina = (Tfloat)(*this)(nx,ay,z,c), + Iaa = (Tfloat)(*this)(ax,ay,z,c), + Ia = Ica + 0.5f*(dx*(-Ipa + Ina) + dx*dx*(2*Ipa - 5*Ica + 4*Ina - Iaa) + dx*dx*dx*(-Ipa + 3*Ica - 3*Ina + Iaa)); + return Ic + 0.5f*(dy*(-Ip + In) + dy*dy*(2*Ip - 5*Ic + 4*In - Ia) + dy*dy*dy*(-Ip + 3*Ic - 3*In + Ia)); + } + + //! Return damped pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y-coordinates. + /** + Similar to cubic_atXY(float,float,int,int) const, except that you can specify the authorized minimum and + maximum of the returned value. + **/ + Tfloat cubic_atXY(const float fx, const float fy, const int z, const int c, + const Tfloat min_value, const Tfloat max_value) const { + const Tfloat val = cubic_atXY(fx,fy,z,c); + return valmax_value?max_value:val; + } + + Tfloat _cubic_atXY(const float fx, const float fy, const int z, const int c, + const Tfloat min_value, const Tfloat max_value) const { + const Tfloat val = _cubic_atXY(fx,fy,z,c); + return valmax_value?max_value:val; + } + + //! Return pixel value, using cubic interpolation and Dirichlet boundary conditions for the X,Y and Z-coordinates. + /** + Similar to cubic_atX(float,int,int,int,const T) const, except that the cubic interpolation and boundary checking + are achieved both for X,Y and Z-coordinates. + **/ + Tfloat cubic_atXYZ(const float fx, const float fy, const float fz, const int c, const T& out_value) const { + const int + x = (int)fx - (fx>=0?0:1), px = x - 1, nx = x + 1, ax = x + 2, + y = (int)fy - (fy>=0?0:1), py = y - 1, ny = y + 1, ay = y + 2, + z = (int)fz - (fz>=0?0:1), pz = z - 1, nz = z + 1, az = z + 2; + const float dx = fx - x, dy = fy - y, dz = fz - z; + const Tfloat + Ippp = (Tfloat)atXYZ(px,py,pz,c,out_value), Icpp = (Tfloat)atXYZ(x,py,pz,c,out_value), + Inpp = (Tfloat)atXYZ(nx,py,pz,c,out_value), Iapp = (Tfloat)atXYZ(ax,py,pz,c,out_value), + Ipp = Icpp + 0.5f*(dx*(-Ippp + Inpp) + dx*dx*(2*Ippp - 5*Icpp + 4*Inpp - Iapp) + + dx*dx*dx*(-Ippp + 3*Icpp - 3*Inpp + Iapp)), + Ipcp = (Tfloat)atXYZ(px,y,pz,c,out_value), Iccp = (Tfloat)atXYZ(x, y,pz,c,out_value), + Incp = (Tfloat)atXYZ(nx,y,pz,c,out_value), Iacp = (Tfloat)atXYZ(ax,y,pz,c,out_value), + Icp = Iccp + 0.5f*(dx*(-Ipcp + Incp) + dx*dx*(2*Ipcp - 5*Iccp + 4*Incp - Iacp) + + dx*dx*dx*(-Ipcp + 3*Iccp - 3*Incp + Iacp)), + Ipnp = (Tfloat)atXYZ(px,ny,pz,c,out_value), Icnp = (Tfloat)atXYZ(x,ny,pz,c,out_value), + Innp = (Tfloat)atXYZ(nx,ny,pz,c,out_value), Ianp = (Tfloat)atXYZ(ax,ny,pz,c,out_value), + Inp = Icnp + 0.5f*(dx*(-Ipnp + Innp) + dx*dx*(2*Ipnp - 5*Icnp + 4*Innp - Ianp) + + dx*dx*dx*(-Ipnp + 3*Icnp - 3*Innp + Ianp)), + Ipap = (Tfloat)atXYZ(px,ay,pz,c,out_value), Icap = (Tfloat)atXYZ(x,ay,pz,c,out_value), + Inap = (Tfloat)atXYZ(nx,ay,pz,c,out_value), Iaap = (Tfloat)atXYZ(ax,ay,pz,c,out_value), + Iap = Icap + 0.5f*(dx*(-Ipap + Inap) + dx*dx*(2*Ipap - 5*Icap + 4*Inap - Iaap) + + dx*dx*dx*(-Ipap + 3*Icap - 3*Inap + Iaap)), + Ip = Icp + 0.5f*(dy*(-Ipp + Inp) + dy*dy*(2*Ipp - 5*Icp + 4*Inp - Iap) + + dy*dy*dy*(-Ipp + 3*Icp - 3*Inp + Iap)), + Ippc = (Tfloat)atXYZ(px,py,z,c,out_value), Icpc = (Tfloat)atXYZ(x,py,z,c,out_value), + Inpc = (Tfloat)atXYZ(nx,py,z,c,out_value), Iapc = (Tfloat)atXYZ(ax,py,z,c,out_value), + Ipc = Icpc + 0.5f*(dx*(-Ippc + Inpc) + dx*dx*(2*Ippc - 5*Icpc + 4*Inpc - Iapc) + + dx*dx*dx*(-Ippc + 3*Icpc - 3*Inpc + Iapc)), + Ipcc = (Tfloat)atXYZ(px,y,z,c,out_value), Iccc = (Tfloat)atXYZ(x, y,z,c,out_value), + Incc = (Tfloat)atXYZ(nx,y,z,c,out_value), Iacc = (Tfloat)atXYZ(ax,y,z,c,out_value), + Icc = Iccc + 0.5f*(dx*(-Ipcc + Incc) + dx*dx*(2*Ipcc - 5*Iccc + 4*Incc - Iacc) + + dx*dx*dx*(-Ipcc + 3*Iccc - 3*Incc + Iacc)), + Ipnc = (Tfloat)atXYZ(px,ny,z,c,out_value), Icnc = (Tfloat)atXYZ(x,ny,z,c,out_value), + Innc = (Tfloat)atXYZ(nx,ny,z,c,out_value), Ianc = (Tfloat)atXYZ(ax,ny,z,c,out_value), + Inc = Icnc + 0.5f*(dx*(-Ipnc + Innc) + dx*dx*(2*Ipnc - 5*Icnc + 4*Innc - Ianc) + + dx*dx*dx*(-Ipnc + 3*Icnc - 3*Innc + Ianc)), + Ipac = (Tfloat)atXYZ(px,ay,z,c,out_value), Icac = (Tfloat)atXYZ(x,ay,z,c,out_value), + Inac = (Tfloat)atXYZ(nx,ay,z,c,out_value), Iaac = (Tfloat)atXYZ(ax,ay,z,c,out_value), + Iac = Icac + 0.5f*(dx*(-Ipac + Inac) + dx*dx*(2*Ipac - 5*Icac + 4*Inac - Iaac) + + dx*dx*dx*(-Ipac + 3*Icac - 3*Inac + Iaac)), + Ic = Icc + 0.5f*(dy*(-Ipc + Inc) + dy*dy*(2*Ipc - 5*Icc + 4*Inc - Iac) + + dy*dy*dy*(-Ipc + 3*Icc - 3*Inc + Iac)), + Ippn = (Tfloat)atXYZ(px,py,nz,c,out_value), Icpn = (Tfloat)atXYZ(x,py,nz,c,out_value), + Inpn = (Tfloat)atXYZ(nx,py,nz,c,out_value), Iapn = (Tfloat)atXYZ(ax,py,nz,c,out_value), + Ipn = Icpn + 0.5f*(dx*(-Ippn + Inpn) + dx*dx*(2*Ippn - 5*Icpn + 4*Inpn - Iapn) + + dx*dx*dx*(-Ippn + 3*Icpn - 3*Inpn + Iapn)), + Ipcn = (Tfloat)atXYZ(px,y,nz,c,out_value), Iccn = (Tfloat)atXYZ(x, y,nz,c,out_value), + Incn = (Tfloat)atXYZ(nx,y,nz,c,out_value), Iacn = (Tfloat)atXYZ(ax,y,nz,c,out_value), + Icn = Iccn + 0.5f*(dx*(-Ipcn + Incn) + dx*dx*(2*Ipcn - 5*Iccn + 4*Incn - Iacn) + + dx*dx*dx*(-Ipcn + 3*Iccn - 3*Incn + Iacn)), + Ipnn = (Tfloat)atXYZ(px,ny,nz,c,out_value), Icnn = (Tfloat)atXYZ(x,ny,nz,c,out_value), + Innn = (Tfloat)atXYZ(nx,ny,nz,c,out_value), Iann = (Tfloat)atXYZ(ax,ny,nz,c,out_value), + Inn = Icnn + 0.5f*(dx*(-Ipnn + Innn) + dx*dx*(2*Ipnn - 5*Icnn + 4*Innn - Iann) + + dx*dx*dx*(-Ipnn + 3*Icnn - 3*Innn + Iann)), + Ipan = (Tfloat)atXYZ(px,ay,nz,c,out_value), Ican = (Tfloat)atXYZ(x,ay,nz,c,out_value), + Inan = (Tfloat)atXYZ(nx,ay,nz,c,out_value), Iaan = (Tfloat)atXYZ(ax,ay,nz,c,out_value), + Ian = Ican + 0.5f*(dx*(-Ipan + Inan) + dx*dx*(2*Ipan - 5*Ican + 4*Inan - Iaan) + + dx*dx*dx*(-Ipan + 3*Ican - 3*Inan + Iaan)), + In = Icn + 0.5f*(dy*(-Ipn + Inn) + dy*dy*(2*Ipn - 5*Icn + 4*Inn - Ian) + + dy*dy*dy*(-Ipn + 3*Icn - 3*Inn + Ian)), + Ippa = (Tfloat)atXYZ(px,py,az,c,out_value), Icpa = (Tfloat)atXYZ(x,py,az,c,out_value), + Inpa = (Tfloat)atXYZ(nx,py,az,c,out_value), Iapa = (Tfloat)atXYZ(ax,py,az,c,out_value), + Ipa = Icpa + 0.5f*(dx*(-Ippa + Inpa) + dx*dx*(2*Ippa - 5*Icpa + 4*Inpa - Iapa) + + dx*dx*dx*(-Ippa + 3*Icpa - 3*Inpa + Iapa)), + Ipca = (Tfloat)atXYZ(px,y,az,c,out_value), Icca = (Tfloat)atXYZ(x, y,az,c,out_value), + Inca = (Tfloat)atXYZ(nx,y,az,c,out_value), Iaca = (Tfloat)atXYZ(ax,y,az,c,out_value), + Ica = Icca + 0.5f*(dx*(-Ipca + Inca) + dx*dx*(2*Ipca - 5*Icca + 4*Inca - Iaca) + + dx*dx*dx*(-Ipca + 3*Icca - 3*Inca + Iaca)), + Ipna = (Tfloat)atXYZ(px,ny,az,c,out_value), Icna = (Tfloat)atXYZ(x,ny,az,c,out_value), + Inna = (Tfloat)atXYZ(nx,ny,az,c,out_value), Iana = (Tfloat)atXYZ(ax,ny,az,c,out_value), + Ina = Icna + 0.5f*(dx*(-Ipna + Inna) + dx*dx*(2*Ipna - 5*Icna + 4*Inna - Iana) + + dx*dx*dx*(-Ipna + 3*Icna - 3*Inna + Iana)), + Ipaa = (Tfloat)atXYZ(px,ay,az,c,out_value), Icaa = (Tfloat)atXYZ(x,ay,az,c,out_value), + Inaa = (Tfloat)atXYZ(nx,ay,az,c,out_value), Iaaa = (Tfloat)atXYZ(ax,ay,az,c,out_value), + Iaa = Icaa + 0.5f*(dx*(-Ipaa + Inaa) + dx*dx*(2*Ipaa - 5*Icaa + 4*Inaa - Iaaa) + + dx*dx*dx*(-Ipaa + 3*Icaa - 3*Inaa + Iaaa)), + Ia = Ica + 0.5f*(dy*(-Ipa + Ina) + dy*dy*(2*Ipa - 5*Ica + 4*Ina - Iaa) + + dy*dy*dy*(-Ipa + 3*Ica - 3*Ina + Iaa)); + return Ic + 0.5f*(dz*(-Ip + In) + dz*dz*(2*Ip - 5*Ic + 4*In - Ia) + dz*dz*dz*(-Ip + 3*Ic - 3*In + Ia)); + } + + //! Return damped pixel value, using cubic interpolation and Dirichlet boundary conditions for the XYZ-coordinates. + /** + Similar to cubic_atXYZ(float,float,float,int,const T) const, except that you can specify the authorized + minimum and maximum of the returned value. + **/ + Tfloat cubic_atXYZ(const float fx, const float fy, const float fz, const int c, const T& out_value, + const Tfloat min_value, const Tfloat max_value) const { + const Tfloat val = cubic_atXYZ(fx,fy,fz,c,out_value); + return valmax_value?max_value:val; + } + + //! Return pixel value, using cubic interpolation and Neumann boundary conditions for the X,Y and Z-coordinates. + /** + Similar to cubic_atX(float,int,int,int) const, except that the cubic interpolation and boundary checking + are achieved both for X,Y and Z-coordinates. + \note + - If you know your image instance is \e not empty, you may rather use the slightly faster method + \c _cubic_atXYZ(float,float,float,int). + **/ + Tfloat cubic_atXYZ(const float fx, const float fy, const float fz, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "cubic_atXYZ(): Empty instance.", + cimg_instance); + return _cubic_atXYZ(fx,fy,fz,c); + } + + Tfloat _cubic_atXYZ(const float fx, const float fy, const float fz, const int c=0) const { + const float + nfx = cimg::cut(fx,0,width() - 1), + nfy = cimg::cut(fy,0,height() - 1), + nfz = cimg::cut(fz,0,depth() - 1); + const int x = (int)nfx, y = (int)nfy, z = (int)nfz; + const float dx = nfx - x, dy = nfy - y, dz = nfz - z; + const int + px = x - 1<0?0:x - 1, nx = dx>0?x + 1:x, ax = x + 2>=width()?width() - 1:x + 2, + py = y - 1<0?0:y - 1, ny = dy>0?y + 1:y, ay = y + 2>=height()?height() - 1:y + 2, + pz = z - 1<0?0:z - 1, nz = dz>0?z + 1:z, az = z + 2>=depth()?depth() - 1:z + 2; + const Tfloat + Ippp = (Tfloat)(*this)(px,py,pz,c), Icpp = (Tfloat)(*this)(x,py,pz,c), + Inpp = (Tfloat)(*this)(nx,py,pz,c), Iapp = (Tfloat)(*this)(ax,py,pz,c), + Ipp = Icpp + 0.5f*(dx*(-Ippp + Inpp) + dx*dx*(2*Ippp - 5*Icpp + 4*Inpp - Iapp) + + dx*dx*dx*(-Ippp + 3*Icpp - 3*Inpp + Iapp)), + Ipcp = (Tfloat)(*this)(px,y,pz,c), Iccp = (Tfloat)(*this)(x, y,pz,c), + Incp = (Tfloat)(*this)(nx,y,pz,c), Iacp = (Tfloat)(*this)(ax,y,pz,c), + Icp = Iccp + 0.5f*(dx*(-Ipcp + Incp) + dx*dx*(2*Ipcp - 5*Iccp + 4*Incp - Iacp) + + dx*dx*dx*(-Ipcp + 3*Iccp - 3*Incp + Iacp)), + Ipnp = (Tfloat)(*this)(px,ny,pz,c), Icnp = (Tfloat)(*this)(x,ny,pz,c), + Innp = (Tfloat)(*this)(nx,ny,pz,c), Ianp = (Tfloat)(*this)(ax,ny,pz,c), + Inp = Icnp + 0.5f*(dx*(-Ipnp + Innp) + dx*dx*(2*Ipnp - 5*Icnp + 4*Innp - Ianp) + + dx*dx*dx*(-Ipnp + 3*Icnp - 3*Innp + Ianp)), + Ipap = (Tfloat)(*this)(px,ay,pz,c), Icap = (Tfloat)(*this)(x,ay,pz,c), + Inap = (Tfloat)(*this)(nx,ay,pz,c), Iaap = (Tfloat)(*this)(ax,ay,pz,c), + Iap = Icap + 0.5f*(dx*(-Ipap + Inap) + dx*dx*(2*Ipap - 5*Icap + 4*Inap - Iaap) + + dx*dx*dx*(-Ipap + 3*Icap - 3*Inap + Iaap)), + Ip = Icp + 0.5f*(dy*(-Ipp + Inp) + dy*dy*(2*Ipp - 5*Icp + 4*Inp - Iap) + + dy*dy*dy*(-Ipp + 3*Icp - 3*Inp + Iap)), + Ippc = (Tfloat)(*this)(px,py,z,c), Icpc = (Tfloat)(*this)(x,py,z,c), + Inpc = (Tfloat)(*this)(nx,py,z,c), Iapc = (Tfloat)(*this)(ax,py,z,c), + Ipc = Icpc + 0.5f*(dx*(-Ippc + Inpc) + dx*dx*(2*Ippc - 5*Icpc + 4*Inpc - Iapc) + + dx*dx*dx*(-Ippc + 3*Icpc - 3*Inpc + Iapc)), + Ipcc = (Tfloat)(*this)(px,y,z,c), Iccc = (Tfloat)(*this)(x, y,z,c), + Incc = (Tfloat)(*this)(nx,y,z,c), Iacc = (Tfloat)(*this)(ax,y,z,c), + Icc = Iccc + 0.5f*(dx*(-Ipcc + Incc) + dx*dx*(2*Ipcc - 5*Iccc + 4*Incc - Iacc) + + dx*dx*dx*(-Ipcc + 3*Iccc - 3*Incc + Iacc)), + Ipnc = (Tfloat)(*this)(px,ny,z,c), Icnc = (Tfloat)(*this)(x,ny,z,c), + Innc = (Tfloat)(*this)(nx,ny,z,c), Ianc = (Tfloat)(*this)(ax,ny,z,c), + Inc = Icnc + 0.5f*(dx*(-Ipnc + Innc) + dx*dx*(2*Ipnc - 5*Icnc + 4*Innc - Ianc) + + dx*dx*dx*(-Ipnc + 3*Icnc - 3*Innc + Ianc)), + Ipac = (Tfloat)(*this)(px,ay,z,c), Icac = (Tfloat)(*this)(x,ay,z,c), + Inac = (Tfloat)(*this)(nx,ay,z,c), Iaac = (Tfloat)(*this)(ax,ay,z,c), + Iac = Icac + 0.5f*(dx*(-Ipac + Inac) + dx*dx*(2*Ipac - 5*Icac + 4*Inac - Iaac) + + dx*dx*dx*(-Ipac + 3*Icac - 3*Inac + Iaac)), + Ic = Icc + 0.5f*(dy*(-Ipc + Inc) + dy*dy*(2*Ipc - 5*Icc + 4*Inc - Iac) + + dy*dy*dy*(-Ipc + 3*Icc - 3*Inc + Iac)), + Ippn = (Tfloat)(*this)(px,py,nz,c), Icpn = (Tfloat)(*this)(x,py,nz,c), + Inpn = (Tfloat)(*this)(nx,py,nz,c), Iapn = (Tfloat)(*this)(ax,py,nz,c), + Ipn = Icpn + 0.5f*(dx*(-Ippn + Inpn) + dx*dx*(2*Ippn - 5*Icpn + 4*Inpn - Iapn) + + dx*dx*dx*(-Ippn + 3*Icpn - 3*Inpn + Iapn)), + Ipcn = (Tfloat)(*this)(px,y,nz,c), Iccn = (Tfloat)(*this)(x, y,nz,c), + Incn = (Tfloat)(*this)(nx,y,nz,c), Iacn = (Tfloat)(*this)(ax,y,nz,c), + Icn = Iccn + 0.5f*(dx*(-Ipcn + Incn) + dx*dx*(2*Ipcn - 5*Iccn + 4*Incn - Iacn) + + dx*dx*dx*(-Ipcn + 3*Iccn - 3*Incn + Iacn)), + Ipnn = (Tfloat)(*this)(px,ny,nz,c), Icnn = (Tfloat)(*this)(x,ny,nz,c), + Innn = (Tfloat)(*this)(nx,ny,nz,c), Iann = (Tfloat)(*this)(ax,ny,nz,c), + Inn = Icnn + 0.5f*(dx*(-Ipnn + Innn) + dx*dx*(2*Ipnn - 5*Icnn + 4*Innn - Iann) + + dx*dx*dx*(-Ipnn + 3*Icnn - 3*Innn + Iann)), + Ipan = (Tfloat)(*this)(px,ay,nz,c), Ican = (Tfloat)(*this)(x,ay,nz,c), + Inan = (Tfloat)(*this)(nx,ay,nz,c), Iaan = (Tfloat)(*this)(ax,ay,nz,c), + Ian = Ican + 0.5f*(dx*(-Ipan + Inan) + dx*dx*(2*Ipan - 5*Ican + 4*Inan - Iaan) + + dx*dx*dx*(-Ipan + 3*Ican - 3*Inan + Iaan)), + In = Icn + 0.5f*(dy*(-Ipn + Inn) + dy*dy*(2*Ipn - 5*Icn + 4*Inn - Ian) + + dy*dy*dy*(-Ipn + 3*Icn - 3*Inn + Ian)), + Ippa = (Tfloat)(*this)(px,py,az,c), Icpa = (Tfloat)(*this)(x,py,az,c), + Inpa = (Tfloat)(*this)(nx,py,az,c), Iapa = (Tfloat)(*this)(ax,py,az,c), + Ipa = Icpa + 0.5f*(dx*(-Ippa + Inpa) + dx*dx*(2*Ippa - 5*Icpa + 4*Inpa - Iapa) + + dx*dx*dx*(-Ippa + 3*Icpa - 3*Inpa + Iapa)), + Ipca = (Tfloat)(*this)(px,y,az,c), Icca = (Tfloat)(*this)(x, y,az,c), + Inca = (Tfloat)(*this)(nx,y,az,c), Iaca = (Tfloat)(*this)(ax,y,az,c), + Ica = Icca + 0.5f*(dx*(-Ipca + Inca) + dx*dx*(2*Ipca - 5*Icca + 4*Inca - Iaca) + + dx*dx*dx*(-Ipca + 3*Icca - 3*Inca + Iaca)), + Ipna = (Tfloat)(*this)(px,ny,az,c), Icna = (Tfloat)(*this)(x,ny,az,c), + Inna = (Tfloat)(*this)(nx,ny,az,c), Iana = (Tfloat)(*this)(ax,ny,az,c), + Ina = Icna + 0.5f*(dx*(-Ipna + Inna) + dx*dx*(2*Ipna - 5*Icna + 4*Inna - Iana) + + dx*dx*dx*(-Ipna + 3*Icna - 3*Inna + Iana)), + Ipaa = (Tfloat)(*this)(px,ay,az,c), Icaa = (Tfloat)(*this)(x,ay,az,c), + Inaa = (Tfloat)(*this)(nx,ay,az,c), Iaaa = (Tfloat)(*this)(ax,ay,az,c), + Iaa = Icaa + 0.5f*(dx*(-Ipaa + Inaa) + dx*dx*(2*Ipaa - 5*Icaa + 4*Inaa - Iaaa) + + dx*dx*dx*(-Ipaa + 3*Icaa - 3*Inaa + Iaaa)), + Ia = Ica + 0.5f*(dy*(-Ipa + Ina) + dy*dy*(2*Ipa - 5*Ica + 4*Ina - Iaa) + + dy*dy*dy*(-Ipa + 3*Ica - 3*Ina + Iaa)); + return Ic + 0.5f*(dz*(-Ip + In) + dz*dz*(2*Ip - 5*Ic + 4*In - Ia) + dz*dz*dz*(-Ip + 3*Ic - 3*In + Ia)); + } + + //! Return damped pixel value, using cubic interpolation and Neumann boundary conditions for the XYZ-coordinates. + /** + Similar to cubic_atXYZ(float,float,float,int) const, except that you can specify the authorized minimum and + maximum of the returned value. + **/ + Tfloat cubic_atXYZ(const float fx, const float fy, const float fz, const int c, + const Tfloat min_value, const Tfloat max_value) const { + const Tfloat val = cubic_atXYZ(fx,fy,fz,c); + return valmax_value?max_value:val; + } + + Tfloat _cubic_atXYZ(const float fx, const float fy, const float fz, const int c, + const Tfloat min_value, const Tfloat max_value) const { + const Tfloat val = _cubic_atXYZ(fx,fy,fz,c); + return valmax_value?max_value:val; + } + + //! Set pixel value, using linear interpolation for the X-coordinates. + /** + Set pixel value at specified coordinates (\c fx,\c y,\c z,\c c) in the image instance, in a way that + the value is spread amongst several neighbors if the pixel coordinates are float-valued. + \param value Pixel value to set. + \param fx X-coordinate of the pixel value (float-valued). + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param is_added Tells if the pixel value is added to (\c true), or simply replace (\c false) the current image + pixel(s). + \return A reference to the current image instance. + \note + - Calling this method with out-of-bounds coordinates does nothing. + **/ + CImg& set_linear_atX(const T& value, const float fx, const int y=0, const int z=0, const int c=0, + const bool is_added=false) { + const int + x = (int)fx - (fx>=0?0:1), nx = x + 1; + const float + dx = fx - x; + if (y>=0 && y=0 && z=0 && c=0 && x=0 && nx& set_linear_atXY(const T& value, const float fx, const float fy=0, const int z=0, const int c=0, + const bool is_added=false) { + const int + x = (int)fx - (fx>=0?0:1), nx = x + 1, + y = (int)fy - (fy>=0?0:1), ny = y + 1; + const float + dx = fx - x, + dy = fy - y; + if (z>=0 && z=0 && c=0 && y=0 && x=0 && nx=0 && ny=0 && x=0 && nx& set_linear_atXYZ(const T& value, const float fx, const float fy=0, const float fz=0, const int c=0, + const bool is_added=false) { + const int + x = (int)fx - (fx>=0?0:1), nx = x + 1, + y = (int)fy - (fy>=0?0:1), ny = y + 1, + z = (int)fz - (fz>=0?0:1), nz = z + 1; + const float + dx = fx - x, + dy = fy - y, + dz = fz - z; + if (c>=0 && c=0 && z=0 && y=0 && x=0 && nx=0 && ny=0 && x=0 && nx=0 && nz=0 && y=0 && x=0 && nx=0 && ny=0 && x=0 && nx image whose buffer data() is a \c char* string describing the list of all pixel values + of the image instance (written in base 10), separated by specified \c separator character. + \param separator A \c char character which specifies the separator between values in the returned C-string. + \param max_size Maximum size of the returned image. + \param format For float-values, tell the printf format used to generate the ascii representation of the numbers. + (or \c 0 for default representation). + \note + - The returned image is never empty. + - For an empty image instance, the returned string is "". + - If \c max_size is equal to \c 0, there are no limits on the size of the returned string. + - Otherwise, if the maximum number of string characters is exceeded, the value string is cut off + and terminated by character \c '\0'. In that case, the returned image size is max_size + 1. + **/ + CImg value_string(const char separator=',', const unsigned int max_size=0, + const char *const format=0) const { + if (is_empty()) return CImg::string(""); + CImgList items; + CImg s_item(256); *s_item = 0; + const T *ptrs = _data; + unsigned int string_size = 0; + const char *const _format = format?format:cimg::type::format(); + for (ulongT off = 0, siz = size(); off::format(*(ptrs++))); + CImg item(s_item._data,printed_size); + item[printed_size - 1] = separator; + item.move_to(items); + if (max_size) string_size+=printed_size; + } + CImg res; + (items>'x').move_to(res); + if (max_size && res._width>max_size) res.crop(0,max_size); + res.back() = 0; + return res; + } + + //@} + //------------------------------------- + // + //! \name Instance Checking + //@{ + //------------------------------------- + + //! Test shared state of the pixel buffer. + /** + Return \c true if image instance has a shared memory buffer, and \c false otherwise. + \note + - A shared image do not own his pixel buffer data() and will not deallocate it on destruction. + - Most of the time, a \c CImg image instance will \e not be shared. + - A shared image can only be obtained by a limited set of constructors and methods (see list below). + **/ + bool is_shared() const { + return _is_shared; + } + + //! Test if image instance is empty. + /** + Return \c true, if image instance is empty, i.e. does \e not contain any pixel values, has dimensions + \c 0 x \c 0 x \c 0 x \c 0 and a pixel buffer pointer set to \c 0 (null pointer), and \c false otherwise. + **/ + bool is_empty() const { + return !(_data && _width && _height && _depth && _spectrum); + } + + //! Test if image instance contains a 'inf' value. + /** + Return \c true, if image instance contains a 'inf' value, and \c false otherwise. + **/ + bool is_inf() const { + if (cimg::type::is_float()) cimg_for(*this,p,T) if (cimg::type::is_inf((float)*p)) return true; + return false; + } + + //! Test if image instance contains a NaN value. + /** + Return \c true, if image instance contains a NaN value, and \c false otherwise. + **/ + bool is_nan() const { + if (cimg::type::is_float()) cimg_for(*this,p,T) if (cimg::type::is_nan((float)*p)) return true; + return false; + } + + //! Test if image width is equal to specified value. + bool is_sameX(const unsigned int size_x) const { + return _width==size_x; + } + + //! Test if image width is equal to specified value. + template + bool is_sameX(const CImg& img) const { + return is_sameX(img._width); + } + + //! Test if image width is equal to specified value. + bool is_sameX(const CImgDisplay& disp) const { + return is_sameX(disp._width); + } + + //! Test if image height is equal to specified value. + bool is_sameY(const unsigned int size_y) const { + return _height==size_y; + } + + //! Test if image height is equal to specified value. + template + bool is_sameY(const CImg& img) const { + return is_sameY(img._height); + } + + //! Test if image height is equal to specified value. + bool is_sameY(const CImgDisplay& disp) const { + return is_sameY(disp._height); + } + + //! Test if image depth is equal to specified value. + bool is_sameZ(const unsigned int size_z) const { + return _depth==size_z; + } + + //! Test if image depth is equal to specified value. + template + bool is_sameZ(const CImg& img) const { + return is_sameZ(img._depth); + } + + //! Test if image spectrum is equal to specified value. + bool is_sameC(const unsigned int size_c) const { + return _spectrum==size_c; + } + + //! Test if image spectrum is equal to specified value. + template + bool is_sameC(const CImg& img) const { + return is_sameC(img._spectrum); + } + + //! Test if image width and height are equal to specified values. + /** + Test if is_sameX(unsigned int) const and is_sameY(unsigned int) const are both verified. + **/ + bool is_sameXY(const unsigned int size_x, const unsigned int size_y) const { + return _width==size_x && _height==size_y; + } + + //! Test if image width and height are the same as that of another image. + /** + Test if is_sameX(const CImg&) const and is_sameY(const CImg&) const are both verified. + **/ + template + bool is_sameXY(const CImg& img) const { + return is_sameXY(img._width,img._height); + } + + //! Test if image width and height are the same as that of an existing display window. + /** + Test if is_sameX(const CImgDisplay&) const and is_sameY(const CImgDisplay&) const are both verified. + **/ + bool is_sameXY(const CImgDisplay& disp) const { + return is_sameXY(disp._width,disp._height); + } + + //! Test if image width and depth are equal to specified values. + /** + Test if is_sameX(unsigned int) const and is_sameZ(unsigned int) const are both verified. + **/ + bool is_sameXZ(const unsigned int size_x, const unsigned int size_z) const { + return _width==size_x && _depth==size_z; + } + + //! Test if image width and depth are the same as that of another image. + /** + Test if is_sameX(const CImg&) const and is_sameZ(const CImg&) const are both verified. + **/ + template + bool is_sameXZ(const CImg& img) const { + return is_sameXZ(img._width,img._depth); + } + + //! Test if image width and spectrum are equal to specified values. + /** + Test if is_sameX(unsigned int) const and is_sameC(unsigned int) const are both verified. + **/ + bool is_sameXC(const unsigned int size_x, const unsigned int size_c) const { + return _width==size_x && _spectrum==size_c; + } + + //! Test if image width and spectrum are the same as that of another image. + /** + Test if is_sameX(const CImg&) const and is_sameC(const CImg&) const are both verified. + **/ + template + bool is_sameXC(const CImg& img) const { + return is_sameXC(img._width,img._spectrum); + } + + //! Test if image height and depth are equal to specified values. + /** + Test if is_sameY(unsigned int) const and is_sameZ(unsigned int) const are both verified. + **/ + bool is_sameYZ(const unsigned int size_y, const unsigned int size_z) const { + return _height==size_y && _depth==size_z; + } + + //! Test if image height and depth are the same as that of another image. + /** + Test if is_sameY(const CImg&) const and is_sameZ(const CImg&) const are both verified. + **/ + template + bool is_sameYZ(const CImg& img) const { + return is_sameYZ(img._height,img._depth); + } + + //! Test if image height and spectrum are equal to specified values. + /** + Test if is_sameY(unsigned int) const and is_sameC(unsigned int) const are both verified. + **/ + bool is_sameYC(const unsigned int size_y, const unsigned int size_c) const { + return _height==size_y && _spectrum==size_c; + } + + //! Test if image height and spectrum are the same as that of another image. + /** + Test if is_sameY(const CImg&) const and is_sameC(const CImg&) const are both verified. + **/ + template + bool is_sameYC(const CImg& img) const { + return is_sameYC(img._height,img._spectrum); + } + + //! Test if image depth and spectrum are equal to specified values. + /** + Test if is_sameZ(unsigned int) const and is_sameC(unsigned int) const are both verified. + **/ + bool is_sameZC(const unsigned int size_z, const unsigned int size_c) const { + return _depth==size_z && _spectrum==size_c; + } + + //! Test if image depth and spectrum are the same as that of another image. + /** + Test if is_sameZ(const CImg&) const and is_sameC(const CImg&) const are both verified. + **/ + template + bool is_sameZC(const CImg& img) const { + return is_sameZC(img._depth,img._spectrum); + } + + //! Test if image width, height and depth are equal to specified values. + /** + Test if is_sameXY(unsigned int,unsigned int) const and is_sameZ(unsigned int) const are both verified. + **/ + bool is_sameXYZ(const unsigned int size_x, const unsigned int size_y, const unsigned int size_z) const { + return is_sameXY(size_x,size_y) && _depth==size_z; + } + + //! Test if image width, height and depth are the same as that of another image. + /** + Test if is_sameXY(const CImg&) const and is_sameZ(const CImg&) const are both verified. + **/ + template + bool is_sameXYZ(const CImg& img) const { + return is_sameXYZ(img._width,img._height,img._depth); + } + + //! Test if image width, height and spectrum are equal to specified values. + /** + Test if is_sameXY(unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified. + **/ + bool is_sameXYC(const unsigned int size_x, const unsigned int size_y, const unsigned int size_c) const { + return is_sameXY(size_x,size_y) && _spectrum==size_c; + } + + //! Test if image width, height and spectrum are the same as that of another image. + /** + Test if is_sameXY(const CImg&) const and is_sameC(const CImg&) const are both verified. + **/ + template + bool is_sameXYC(const CImg& img) const { + return is_sameXYC(img._width,img._height,img._spectrum); + } + + //! Test if image width, depth and spectrum are equal to specified values. + /** + Test if is_sameXZ(unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified. + **/ + bool is_sameXZC(const unsigned int size_x, const unsigned int size_z, const unsigned int size_c) const { + return is_sameXZ(size_x,size_z) && _spectrum==size_c; + } + + //! Test if image width, depth and spectrum are the same as that of another image. + /** + Test if is_sameXZ(const CImg&) const and is_sameC(const CImg&) const are both verified. + **/ + template + bool is_sameXZC(const CImg& img) const { + return is_sameXZC(img._width,img._depth,img._spectrum); + } + + //! Test if image height, depth and spectrum are equal to specified values. + /** + Test if is_sameYZ(unsigned int,unsigned int) const and is_sameC(unsigned int) const are both verified. + **/ + bool is_sameYZC(const unsigned int size_y, const unsigned int size_z, const unsigned int size_c) const { + return is_sameYZ(size_y,size_z) && _spectrum==size_c; + } + + //! Test if image height, depth and spectrum are the same as that of another image. + /** + Test if is_sameYZ(const CImg&) const and is_sameC(const CImg&) const are both verified. + **/ + template + bool is_sameYZC(const CImg& img) const { + return is_sameYZC(img._height,img._depth,img._spectrum); + } + + //! Test if image width, height, depth and spectrum are equal to specified values. + /** + Test if is_sameXYZ(unsigned int,unsigned int,unsigned int) const and is_sameC(unsigned int) const are both + verified. + **/ + bool is_sameXYZC(const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c) const { + return is_sameXYZ(size_x,size_y,size_z) && _spectrum==size_c; + } + + //! Test if image width, height, depth and spectrum are the same as that of another image. + /** + Test if is_sameXYZ(const CImg&) const and is_sameC(const CImg&) const are both verified. + **/ + template + bool is_sameXYZC(const CImg& img) const { + return is_sameXYZC(img._width,img._height,img._depth,img._spectrum); + } + + //! Test if specified coordinates are inside image bounds. + /** + Return \c true if pixel located at (\c x,\c y,\c z,\c c) is inside bounds of the image instance, + and \c false otherwise. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note + - Return \c true only if all these conditions are verified: + - The image instance is \e not empty. + - 0<=x<=\ref width() - 1. + - 0<=y<=\ref height() - 1. + - 0<=z<=\ref depth() - 1. + - 0<=c<=\ref spectrum() - 1. + **/ + bool containsXYZC(const int x, const int y=0, const int z=0, const int c=0) const { + return !is_empty() && x>=0 && x=0 && y=0 && z=0 && c img(100,100,1,3); // Construct a 100x100 RGB color image. + const unsigned long offset = 1249; // Offset to the pixel (49,12,0,0). + unsigned int x,y,z,c; + if (img.contains(img[offset],x,y,z,c)) { // Convert offset to (x,y,z,c) coordinates. + std::printf("Offset %u refers to pixel located at (%u,%u,%u,%u).\n", + offset,x,y,z,c); + } + \endcode + **/ + template + bool contains(const T& pixel, t& x, t& y, t& z, t& c) const { + const ulongT wh = (ulongT)_width*_height, whd = wh*_depth, siz = whd*_spectrum; + const T *const ppixel = &pixel; + if (is_empty() || ppixel<_data || ppixel>=_data + siz) return false; + ulongT off = (ulongT)(ppixel - _data); + const ulongT nc = off/whd; + off%=whd; + const ulongT nz = off/wh; + off%=wh; + const ulongT ny = off/_width, nx = off%_width; + x = (t)nx; y = (t)ny; z = (t)nz; c = (t)nc; + return true; + } + + //! Test if pixel value is inside image bounds and get its X,Y and Z-coordinates. + /** + Similar to contains(const T&,t&,t&,t&,t&) const, except that only the X,Y and Z-coordinates are set. + **/ + template + bool contains(const T& pixel, t& x, t& y, t& z) const { + const ulongT wh = (ulongT)_width*_height, whd = wh*_depth, siz = whd*_spectrum; + const T *const ppixel = &pixel; + if (is_empty() || ppixel<_data || ppixel>=_data + siz) return false; + ulongT off = ((ulongT)(ppixel - _data))%whd; + const ulongT nz = off/wh; + off%=wh; + const ulongT ny = off/_width, nx = off%_width; + x = (t)nx; y = (t)ny; z = (t)nz; + return true; + } + + //! Test if pixel value is inside image bounds and get its X and Y-coordinates. + /** + Similar to contains(const T&,t&,t&,t&,t&) const, except that only the X and Y-coordinates are set. + **/ + template + bool contains(const T& pixel, t& x, t& y) const { + const ulongT wh = (ulongT)_width*_height, siz = wh*_depth*_spectrum; + const T *const ppixel = &pixel; + if (is_empty() || ppixel<_data || ppixel>=_data + siz) return false; + ulongT off = ((unsigned int)(ppixel - _data))%wh; + const ulongT ny = off/_width, nx = off%_width; + x = (t)nx; y = (t)ny; + return true; + } + + //! Test if pixel value is inside image bounds and get its X-coordinate. + /** + Similar to contains(const T&,t&,t&,t&,t&) const, except that only the X-coordinate is set. + **/ + template + bool contains(const T& pixel, t& x) const { + const T *const ppixel = &pixel; + if (is_empty() || ppixel<_data || ppixel>=_data + size()) return false; + x = (t)(((ulongT)(ppixel - _data))%_width); + return true; + } + + //! Test if pixel value is inside image bounds. + /** + Similar to contains(const T&,t&,t&,t&,t&) const, except that no pixel coordinates are set. + **/ + bool contains(const T& pixel) const { + const T *const ppixel = &pixel; + return !is_empty() && ppixel>=_data && ppixel<_data + size(); + } + + //! Test if pixel buffers of instance and input images overlap. + /** + Return \c true, if pixel buffers attached to image instance and input image \c img overlap, + and \c false otherwise. + \param img Input image to compare with. + \note + - Buffer overlapping may happen when manipulating \e shared images. + - If two image buffers overlap, operating on one of the image will probably modify the other one. + - Most of the time, \c CImg instances are \e non-shared and do not overlap between each others. + \par Example + \code + const CImg + img1("reference.jpg"), // Load RGB-color image. + img2 = img1.get_shared_channel(1); // Get shared version of the green channel. + if (img1.is_overlapped(img2)) { // Test succeeds, 'img1' and 'img2' overlaps. + std::printf("Buffers overlap!\n"); + } + \endcode + **/ + template + bool is_overlapped(const CImg& img) const { + const ulongT csiz = size(), isiz = img.size(); + return !((void*)(_data + csiz)<=(void*)img._data || (void*)_data>=(void*)(img._data + isiz)); + } + + //! Test if the set {\c *this,\c primitives,\c colors,\c opacities} defines a valid 3d object. + /** + Return \c true is the 3d object represented by the set {\c *this,\c primitives,\c colors,\c opacities} defines a + valid 3d object, and \c false otherwise. The vertex coordinates are defined by the instance image. + \param primitives List of primitives of the 3d object. + \param colors List of colors of the 3d object. + \param opacities List (or image) of opacities of the 3d object. + \param full_check Tells if full checking of the 3d object must be performed. + \param[out] error_message C-string to contain the error message, if the test does not succeed. + \note + - Set \c full_checking to \c false to speed-up the 3d object checking. In this case, only the size of + each 3d object component is checked. + - Size of the string \c error_message should be at least 128-bytes long, to be able to contain the error message. + **/ + template + bool is_object3d(const CImgList& primitives, + const CImgList& colors, + const to& opacities, + const bool full_check=true, + char *const error_message=0) const { + if (error_message) *error_message = 0; + + // Check consistency for the particular case of an empty 3d object. + if (is_empty()) { + if (primitives || colors || opacities) { + if (error_message) cimg_sprintf(error_message, + "3d object (%u,%u) defines no vertices but %u primitives, " + "%u colors and %lu opacities", + _width,primitives._width,primitives._width, + colors._width,(unsigned long)opacities.size()); + return false; + } + return true; + } + + // Check consistency of vertices. + if (_height!=3 || _depth>1 || _spectrum>1) { // Check vertices dimensions. + if (error_message) cimg_sprintf(error_message, + "3d object (%u,%u) has invalid vertex dimensions (%u,%u,%u,%u)", + _width,primitives._width,_width,_height,_depth,_spectrum); + return false; + } + if (colors._width>primitives._width + 1) { + if (error_message) cimg_sprintf(error_message, + "3d object (%u,%u) defines %u colors", + _width,primitives._width,colors._width); + return false; + } + if (opacities.size()>primitives._width) { + if (error_message) cimg_sprintf(error_message, + "3d object (%u,%u) defines %lu opacities", + _width,primitives._width,(unsigned long)opacities.size()); + return false; + } + if (!full_check) return true; + + // Check consistency of primitives. + cimglist_for(primitives,l) { + const CImg& primitive = primitives[l]; + const unsigned int psiz = (unsigned int)primitive.size(); + switch (psiz) { + case 1 : { // Point. + const unsigned int i0 = (unsigned int)primitive(0); + if (i0>=_width) { + if (error_message) cimg_sprintf(error_message, + "3d object (%u,%u) refers to invalid vertex indice %u in " + "point primitive [%u]", + _width,primitives._width,i0,l); + return false; + } + } break; + case 5 : { // Sphere. + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1); + if (i0>=_width || i1>=_width) { + if (error_message) cimg_sprintf(error_message, + "3d object (%u,%u) refers to invalid vertex indices (%u,%u) in " + "sphere primitive [%u]", + _width,primitives._width,i0,i1,l); + return false; + } + } break; + case 2 : // Segment. + case 6 : { + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1); + if (i0>=_width || i1>=_width) { + if (error_message) cimg_sprintf(error_message, + "3d object (%u,%u) refers to invalid vertex indices (%u,%u) in " + "segment primitive [%u]", + _width,primitives._width,i0,i1,l); + return false; + } + } break; + case 3 : // Triangle. + case 9 : { + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1), + i2 = (unsigned int)primitive(2); + if (i0>=_width || i1>=_width || i2>=_width) { + if (error_message) cimg_sprintf(error_message, + "3d object (%u,%u) refers to invalid vertex indices (%u,%u,%u) in " + "triangle primitive [%u]", + _width,primitives._width,i0,i1,i2,l); + return false; + } + } break; + case 4 : // Quadrangle. + case 12 : { + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1), + i2 = (unsigned int)primitive(2), + i3 = (unsigned int)primitive(3); + if (i0>=_width || i1>=_width || i2>=_width || i3>=_width) { + if (error_message) cimg_sprintf(error_message, + "3d object (%u,%u) refers to invalid vertex indices (%u,%u,%u,%u) in " + "quadrangle primitive [%u]", + _width,primitives._width,i0,i1,i2,i3,l); + return false; + } + } break; + default : + if (error_message) cimg_sprintf(error_message, + "3d object (%u,%u) defines an invalid primitive [%u] of size %u", + _width,primitives._width,l,(unsigned int)psiz); + return false; + } + } + + // Check consistency of colors. + cimglist_for(colors,c) { + const CImg& color = colors[c]; + if (!color) { + if (error_message) cimg_sprintf(error_message, + "3d object (%u,%u) defines no color for primitive [%u]", + _width,primitives._width,c); + return false; + } + } + + // Check consistency of light texture. + if (colors._width>primitives._width) { + const CImg &light = colors.back(); + if (!light || light._depth>1) { + if (error_message) cimg_sprintf(error_message, + "3d object (%u,%u) defines an invalid light texture (%u,%u,%u,%u)", + _width,primitives._width,light._width, + light._height,light._depth,light._spectrum); + return false; + } + } + + return true; + } + + //! Test if image instance represents a valid serialization of a 3d object. + /** + Return \c true if the image instance represents a valid serialization of a 3d object, and \c false otherwise. + \param full_check Tells if full checking of the instance must be performed. + \param[out] error_message C-string to contain the error message, if the test does not succeed. + \note + - Set \c full_check to \c false to speed-up the 3d object checking. In this case, only the size of + each 3d object component is checked. + - Size of the string \c error_message should be at least 128-bytes long, to be able to contain the error message. + **/ + bool is_CImg3d(const bool full_check=true, char *const error_message=0) const { + if (error_message) *error_message = 0; + + // Check instance dimension and header. + if (_width!=1 || _height<8 || _depth!=1 || _spectrum!=1) { + if (error_message) cimg_sprintf(error_message, + "CImg3d has invalid dimensions (%u,%u,%u,%u)", + _width,_height,_depth,_spectrum); + return false; + } + const T *ptrs = _data, *const ptre = end(); + if (!_is_CImg3d(*(ptrs++),'C') || !_is_CImg3d(*(ptrs++),'I') || !_is_CImg3d(*(ptrs++),'m') || + !_is_CImg3d(*(ptrs++),'g') || !_is_CImg3d(*(ptrs++),'3') || !_is_CImg3d(*(ptrs++),'d')) { + if (error_message) cimg_sprintf(error_message, + "CImg3d header not found"); + return false; + } + const unsigned int + nb_points = cimg::float2uint((float)*(ptrs++)), + nb_primitives = cimg::float2uint((float)*(ptrs++)); + + // Check consistency of number of vertices / primitives. + if (!full_check) { + const ulongT minimal_size = 8UL + 3*nb_points + 6*nb_primitives; + if (_data + minimal_size>ptre) { + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) has only %lu values, while at least %lu values were expected", + nb_points,nb_primitives,(unsigned long)size(),(unsigned long)minimal_size); + return false; + } + } + + // Check consistency of vertex data. + if (!nb_points) { + if (nb_primitives) { + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) defines no vertices but %u primitives", + nb_points,nb_primitives,nb_primitives); + return false; + } + if (ptrs!=ptre) { + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) is an empty object but contains %u value%s " + "more than expected", + nb_points,nb_primitives,(unsigned int)(ptre - ptrs),(ptre - ptrs)>1?"s":""); + return false; + } + return true; + } + if (ptrs + 3*nb_points>ptre) { + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) defines only %u vertices data", + nb_points,nb_primitives,(unsigned int)(ptre - ptrs)/3); + return false; + } + ptrs+=3*nb_points; + + // Check consistency of primitive data. + if (ptrs==ptre) { + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) defines %u vertices but no primitive", + nb_points,nb_primitives,nb_points); + return false; + } + + if (!full_check) return true; + + for (unsigned int p = 0; p=nb_points) { + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) refers to invalid vertex indice %u in point primitive [%u]", + nb_points,nb_primitives,i0,p); + return false; + } + } break; + case 5 : { // Sphere. + const unsigned int + i0 = cimg::float2uint((float)*(ptrs++)), + i1 = cimg::float2uint((float)*(ptrs++)); + ptrs+=3; + if (i0>=nb_points || i1>=nb_points) { + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) refers to invalid vertex indices (%u,%u) in " + "sphere primitive [%u]", + nb_points,nb_primitives,i0,i1,p); + return false; + } + } break; + case 2 : case 6 : { // Segment. + const unsigned int + i0 = cimg::float2uint((float)*(ptrs++)), + i1 = cimg::float2uint((float)*(ptrs++)); + if (nb_inds==6) ptrs+=4; + if (i0>=nb_points || i1>=nb_points) { + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) refers to invalid vertex indices (%u,%u) in " + "segment primitive [%u]", + nb_points,nb_primitives,i0,i1,p); + return false; + } + } break; + case 3 : case 9 : { // Triangle. + const unsigned int + i0 = cimg::float2uint((float)*(ptrs++)), + i1 = cimg::float2uint((float)*(ptrs++)), + i2 = cimg::float2uint((float)*(ptrs++)); + if (nb_inds==9) ptrs+=6; + if (i0>=nb_points || i1>=nb_points || i2>=nb_points) { + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) refers to invalid vertex indices (%u,%u,%u) in " + "triangle primitive [%u]", + nb_points,nb_primitives,i0,i1,i2,p); + return false; + } + } break; + case 4 : case 12 : { // Quadrangle. + const unsigned int + i0 = cimg::float2uint((float)*(ptrs++)), + i1 = cimg::float2uint((float)*(ptrs++)), + i2 = cimg::float2uint((float)*(ptrs++)), + i3 = cimg::float2uint((float)*(ptrs++)); + if (nb_inds==12) ptrs+=8; + if (i0>=nb_points || i1>=nb_points || i2>=nb_points || i3>=nb_points) { + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) refers to invalid vertex indices (%u,%u,%u,%u) in " + "quadrangle primitive [%u]", + nb_points,nb_primitives,i0,i1,i2,i3,p); + return false; + } + } break; + default : + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) defines an invalid primitive [%u] of size %u", + nb_points,nb_primitives,p,nb_inds); + return false; + } + if (ptrs>ptre) { + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) has incomplete primitive data for primitive [%u], " + "%u values missing", + nb_points,nb_primitives,p,(unsigned int)(ptrs - ptre)); + return false; + } + } + + // Check consistency of color data. + if (ptrs==ptre) { + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) defines no color/texture data", + nb_points,nb_primitives); + return false; + } + for (unsigned int c = 0; c=c) { + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) refers to invalid shared sprite/texture indice %u " + "for primitive [%u]", + nb_points,nb_primitives,w,c); + return false; + } + } else ptrs+=w*h*s; + } + if (ptrs>ptre) { + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) has incomplete color/texture data for primitive [%u], " + "%u values missing", + nb_points,nb_primitives,c,(unsigned int)(ptrs - ptre)); + return false; + } + } + + // Check consistency of opacity data. + if (ptrs==ptre) { + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) defines no opacity data", + nb_points,nb_primitives); + return false; + } + for (unsigned int o = 0; o=o) { + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) refers to invalid shared opacity indice %u " + "for primitive [%u]", + nb_points,nb_primitives,w,o); + return false; + } + } else ptrs+=w*h*s; + } + if (ptrs>ptre) { + if (error_message) cimg_sprintf(error_message, + "CImg3d (%u,%u) has incomplete opacity data for primitive [%u]", + nb_points,nb_primitives,o); + return false; + } + } + + // Check end of data. + if (ptrs1?"s":""); + return false; + } + return true; + } + + static bool _is_CImg3d(const T val, const char c) { + return val>=(T)c && val<(T)(c + 1); + } + + //@} + //------------------------------------- + // + //! \name Mathematical Functions + //@{ + //------------------------------------- + + // Define the math formula parser/compiler and expression evaluator. + struct _cimg_math_parser { + CImg mem; + CImg memtype; + CImgList _code, &code, code_init, code_end; + CImg opcode; + const CImg *p_code_end, *p_code; + const CImg *const p_break; + + CImg expr, pexpr; + const CImg& imgin; + const CImgList& listin; + CImg &imgout; + CImgList& listout; + + CImg _img_stats, &img_stats, constcache_vals; + CImgList _list_stats, &list_stats, _list_median, &list_median; + CImg mem_img_stats, constcache_inds; + + CImg level, variable_pos, reserved_label; + CImgList variable_def, macro_def, macro_body; + CImgList macro_body_is_string; + char *user_macro; + + unsigned int mempos, mem_img_median, debug_indent, result_dim, break_type, constcache_size; + bool is_parallelizable, is_fill, need_input_copy; + double *result; + const char *const calling_function, *s_op, *ss_op; + typedef double (*mp_func)(_cimg_math_parser&); + +#define _cimg_mp_is_constant(arg) (memtype[arg]==1) // Is constant value? +#define _cimg_mp_is_scalar(arg) (memtype[arg]<2) // Is scalar value? +#define _cimg_mp_is_comp(arg) (!memtype[arg]) // Is computation value? +#define _cimg_mp_is_variable(arg) (memtype[arg]==-1) // Is scalar variable? +#define _cimg_mp_is_vector(arg) (memtype[arg]>1) // Is vector? +#define _cimg_mp_vector_size(arg) (_cimg_mp_is_scalar(arg)?0U:(unsigned int)memtype[arg] - 1) // Vector size +#define _cimg_mp_calling_function calling_function_s()._data +#define _cimg_mp_op(s) s_op = s; ss_op = ss +#define _cimg_mp_check_type(arg,n_arg,mode,N) check_type(arg,n_arg,mode,N,ss,se,saved_char) +#define _cimg_mp_check_constant(arg,n_arg,mode) check_constant(arg,n_arg,mode,ss,se,saved_char) +#define _cimg_mp_check_matrix_square(arg,n_arg) check_matrix_square(arg,n_arg,ss,se,saved_char) +#define _cimg_mp_check_vector0(dim) check_vector0(dim,ss,se,saved_char) +#define _cimg_mp_check_list(is_out) check_list(is_out,ss,se,saved_char) +#define _cimg_mp_defunc(mp) (*(mp_func)(*(mp).opcode))(mp) +#define _cimg_mp_return(x) { *se = saved_char; s_op = previous_s_op; ss_op = previous_ss_op; return x; } +#define _cimg_mp_constant(val) _cimg_mp_return(constant((double)(val))) +#define _cimg_mp_scalar0(op) _cimg_mp_return(scalar0(op)) +#define _cimg_mp_scalar1(op,i1) _cimg_mp_return(scalar1(op,i1)) +#define _cimg_mp_scalar2(op,i1,i2) _cimg_mp_return(scalar2(op,i1,i2)) +#define _cimg_mp_scalar3(op,i1,i2,i3) _cimg_mp_return(scalar3(op,i1,i2,i3)) +#define _cimg_mp_scalar4(op,i1,i2,i3,i4) _cimg_mp_return(scalar4(op,i1,i2,i3,i4)) +#define _cimg_mp_scalar5(op,i1,i2,i3,i4,i5) _cimg_mp_return(scalar5(op,i1,i2,i3,i4,i5)) +#define _cimg_mp_scalar6(op,i1,i2,i3,i4,i5,i6) _cimg_mp_return(scalar6(op,i1,i2,i3,i4,i5,i6)) +#define _cimg_mp_scalar7(op,i1,i2,i3,i4,i5,i6,i7) _cimg_mp_return(scalar7(op,i1,i2,i3,i4,i5,i6,i7)) +#define _cimg_mp_vector1_v(op,i1) _cimg_mp_return(vector1_v(op,i1)) +#define _cimg_mp_vector2_sv(op,i1,i2) _cimg_mp_return(vector2_sv(op,i1,i2)) +#define _cimg_mp_vector2_vs(op,i1,i2) _cimg_mp_return(vector2_vs(op,i1,i2)) +#define _cimg_mp_vector2_vv(op,i1,i2) _cimg_mp_return(vector2_vv(op,i1,i2)) +#define _cimg_mp_vector3_vss(op,i1,i2,i3) _cimg_mp_return(vector3_vss(op,i1,i2,i3)) + + // Constructors. + _cimg_math_parser(const char *const expression, const char *const funcname=0, + const CImg& img_input=CImg::const_empty(), CImg *const img_output=0, + const CImgList *const list_input=0, CImgList *const list_output=0, + const bool _is_fill=false): + code(_code),p_break((CImg*)0 - 2), + imgin(img_input),listin(list_input?*list_input:CImgList::const_empty()), + imgout(img_output?*img_output:CImg::empty()),listout(list_output?*list_output:CImgList::empty()), + img_stats(_img_stats),list_stats(_list_stats),list_median(_list_median),user_macro(0), + mem_img_median(~0U),debug_indent(0),result_dim(0),break_type(0),constcache_size(0), + is_parallelizable(true),is_fill(_is_fill),need_input_copy(false), + calling_function(funcname?funcname:"cimg_math_parser") { + if (!expression || !*expression) + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: Empty expression.", + pixel_type(),_cimg_mp_calling_function); + const char *_expression = expression; + while (*_expression && ((signed char)*_expression<=' ' || *_expression==';')) ++_expression; + CImg::string(_expression).move_to(expr); + char *ps = &expr.back() - 1; + while (ps>expr._data && ((signed char)*ps<=' ' || *ps==';')) --ps; + *(++ps) = 0; expr._width = (unsigned int)(ps - expr._data + 1); + + // Ease the retrieval of previous non-space characters afterwards. + pexpr.assign(expr._width); + char c, *pe = pexpr._data; + for (ps = expr._data, c = ' '; *ps; ++ps) { + if ((signed char)*ps>' ') c = *ps; else *ps = ' '; + *(pe++) = c; + } + *pe = 0; + level = get_level(expr); + + // Init constant values. +#define _cimg_mp_interpolation (reserved_label[29]!=~0U?reserved_label[29]:0) +#define _cimg_mp_boundary (reserved_label[30]!=~0U?reserved_label[30]:0) +#define _cimg_mp_slot_nan 29 +#define _cimg_mp_slot_x 30 +#define _cimg_mp_slot_y 31 +#define _cimg_mp_slot_z 32 +#define _cimg_mp_slot_c 33 + + mem.assign(96); + for (unsigned int i = 0; i<=10; ++i) mem[i] = (double)i; // mem[0-10] = 0...10 + for (unsigned int i = 1; i<=5; ++i) mem[i + 10] = -(double)i; // mem[11-15] = -1...-5 + mem[16] = 0.5; + mem[17] = 0; // thread_id + mem[18] = (double)imgin._width; // w + mem[19] = (double)imgin._height; // h + mem[20] = (double)imgin._depth; // d + mem[21] = (double)imgin._spectrum; // s + mem[22] = (double)imgin._is_shared; // r + mem[23] = (double)imgin._width*imgin._height; // wh + mem[24] = (double)imgin._width*imgin._height*imgin._depth; // whd + mem[25] = (double)imgin._width*imgin._height*imgin._depth*imgin._spectrum; // whds + mem[26] = (double)listin._width; // l + mem[27] = std::exp(1.0); // e + mem[28] = cimg::PI; // pi + mem[_cimg_mp_slot_nan] = cimg::type::nan(); // nan + + // Set value property : + // { -2 = other | -1 = variable | 0 = computation value | + // 1 = compile-time constant | N>1 = constant ptr to vector[N-1] }. + memtype.assign(mem._width,1,1,1,0); + for (unsigned int i = 0; i<_cimg_mp_slot_x; ++i) memtype[i] = 1; + memtype[17] = 0; + memtype[_cimg_mp_slot_x] = memtype[_cimg_mp_slot_y] = memtype[_cimg_mp_slot_z] = memtype[_cimg_mp_slot_c] = -2; + mempos = _cimg_mp_slot_c + 1; + variable_pos.assign(8); + + reserved_label.assign(128,1,1,1,~0U); + // reserved_label[4-28] are used to store these two-char variables: + // [0] = wh, [1] = whd, [2] = whds, [3] = pi, [4] = im, [5] = iM, [6] = ia, [7] = iv, + // [8] = is, [9] = ip, [10] = ic, [11] = xm, [12] = ym, [13] = zm, [14] = cm, [15] = xM, + // [16] = yM, [17] = zM, [18]=cM, [19]=i0...[28]=i9, [29] = interpolation, [30] = boundary + + // Compile expression into a serie of opcodes. + s_op = ""; ss_op = expr._data; + const unsigned int ind_result = compile(expr._data,expr._data + expr._width - 1,0,0); + if (!_cimg_mp_is_constant(ind_result)) { + if (_cimg_mp_is_vector(ind_result)) + CImg(&mem[ind_result] + 1,_cimg_mp_vector_size(ind_result),1,1,1,true). + fill(cimg::type::nan()); + else mem[ind_result] = cimg::type::nan(); + } + + // Free resources used for compiling expression and prepare evaluation. + result_dim = _cimg_mp_vector_size(ind_result); + mem.resize(mempos,1,1,1,-1); + result = mem._data + ind_result; + memtype.assign(); + constcache_vals.assign(); + constcache_inds.assign(); + level.assign(); + variable_pos.assign(); + reserved_label.assign(); + expr.assign(); + pexpr.assign(); + opcode.assign(); + opcode._is_shared = true; + + // Execute init() bloc if any specified. + if (code_init) { + mem[_cimg_mp_slot_x] = mem[_cimg_mp_slot_y] = mem[_cimg_mp_slot_z] = mem[_cimg_mp_slot_c] = 0; + p_code_end = code_init.end(); + for (p_code = code_init; p_code_data; + const ulongT target = opcode[1]; + mem[target] = _cimg_mp_defunc(*this); + } + } + p_code_end = code.end(); + } + + _cimg_math_parser(): + code(_code),p_code_end(0),p_break((CImg*)0 - 2), + imgin(CImg::const_empty()),listin(CImgList::const_empty()), + imgout(CImg::empty()),listout(CImgList::empty()), + img_stats(_img_stats),list_stats(_list_stats),list_median(_list_median),debug_indent(0), + result_dim(0),break_type(0),constcache_size(0),is_parallelizable(true),is_fill(false),need_input_copy(false), + calling_function(0) { + mem.assign(1 + _cimg_mp_slot_c,1,1,1,0); // Allow to skip 'is_empty?' test in operator()() + result = mem._data; + } + + _cimg_math_parser(const _cimg_math_parser& mp): + mem(mp.mem),code(mp.code),p_code_end(mp.p_code_end),p_break(mp.p_break), + imgin(mp.imgin),listin(mp.listin),imgout(mp.imgout),listout(mp.listout),img_stats(mp.img_stats), + list_stats(mp.list_stats),list_median(mp.list_median),debug_indent(0),result_dim(mp.result_dim), + break_type(0),constcache_size(0),is_parallelizable(mp.is_parallelizable),is_fill(mp.is_fill), + need_input_copy(mp.need_input_copy), result(mem._data + (mp.result - mp.mem._data)),calling_function(0) { +#ifdef cimg_use_openmp + mem[17] = omp_get_thread_num(); +#endif + opcode.assign(); + opcode._is_shared = true; + } + + // Count parentheses/brackets level of each character of the expression. + CImg get_level(CImg& expr) const { + bool is_escaped = false, next_is_escaped = false; + unsigned int mode = 0, next_mode = 0; // { 0=normal | 1=char-string | 2=vector-string + CImg res(expr._width - 1); + unsigned int *pd = res._data; + int level = 0; + for (const char *ps = expr._data; *ps && level>=0; ++ps) { + if (!is_escaped && !next_is_escaped && *ps=='\\') next_is_escaped = true; + if (!is_escaped && *ps=='\'') { // Non-escaped character + if (!mode && ps>expr._data && *(ps - 1)=='[') next_mode = mode = 2; // Start vector-string + else if (mode==2 && *(ps + 1)==']') next_mode = !mode; // End vector-string + else if (mode<2) next_mode = mode?(mode = 0):1; // Start/end char-string + } + *(pd++) = (unsigned int)(mode>=1 || is_escaped?level + (mode==1): + *ps=='(' || *ps=='['?level++: + *ps==')' || *ps==']'?--level: + level); + mode = next_mode; + is_escaped = next_is_escaped; + next_is_escaped = false; + } + if (mode) { + cimg::strellipsize(expr,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: Unterminated string literal, in expression '%s'.", + pixel_type(),_cimg_mp_calling_function, + expr._data); + } + if (level) { + cimg::strellipsize(expr,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: Unbalanced parentheses/brackets, in expression '%s'.", + pixel_type(),_cimg_mp_calling_function, + expr._data); + } + return res; + } + + // Tell for each character of an expression if it is inside a string or not. + CImg is_inside_string(CImg& expr) const { + bool is_escaped = false, next_is_escaped = false; + unsigned int mode = 0, next_mode = 0; // { 0=normal | 1=char-string | 2=vector-string + CImg res = CImg::string(expr); + bool *pd = res._data; + for (const char *ps = expr._data; *ps; ++ps) { + if (!next_is_escaped && *ps=='\\') next_is_escaped = true; + if (!is_escaped && *ps=='\'') { // Non-escaped character + if (!mode && ps>expr._data && *(ps - 1)=='[') next_mode = mode = 2; // Start vector-string + else if (mode==2 && *(ps + 1)==']') next_mode = !mode; // End vector-string + else if (mode<2) next_mode = mode?(mode = 0):1; // Start/end char-string + } + *(pd++) = mode>=1 || is_escaped; + mode = next_mode; + is_escaped = next_is_escaped; + next_is_escaped = false; + } + return res; + } + + // Compilation procedure. + unsigned int compile(char *ss, char *se, const unsigned int depth, unsigned int *const p_ref) { + if (depth>256) { + cimg::strellipsize(expr,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: Call stack overflow (infinite recursion?), " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function, + (ss - 4)>expr._data?"...":"", + (ss - 4)>expr._data?ss - 4:expr._data, + se<&expr.back()?"...":""); + } + char c1, c2, c3, c4; + + // Simplify expression when possible. + do { + c2 = 0; + if (ssss && ((signed char)(c1 = *(se - 1))<=' ' || c1==';')) --se; + } + while (*ss=='(' && *(se - 1)==')' && std::strchr(ss,')')==se - 1) { + ++ss; --se; c2 = 1; + } + } while (c2 && ss::%s: %s%s Missing %s, in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"", + *s_op=='F'?"argument":"item", + (ss_op - 4)>expr._data?"...":"", + (ss_op - 4)>expr._data?ss_op - 4:expr._data, + ss_op + std::strlen(ss_op)<&expr.back()?"...":""); + } + + const char *const previous_s_op = s_op, *const previous_ss_op = ss_op; + const unsigned int depth1 = depth + 1; + unsigned int pos, p1, p2, p3, arg1, arg2, arg3, arg4, arg5, arg6; + char + *const se1 = se - 1, *const se2 = se - 2, *const se3 = se - 3, + *const ss1 = ss + 1, *const ss2 = ss + 2, *const ss3 = ss + 3, *const ss4 = ss + 4, + *const ss5 = ss + 5, *const ss6 = ss + 6, *const ss7 = ss + 7, *const ss8 = ss + 8, + *s, *ps, *ns, *s0, *s1, *s2, *s3, sep = 0, end = 0; + double val, val1, val2; + mp_func op; + + // 'p_ref' is a 'unsigned int[7]' used to return a reference to an image or vector value + // linked to the returned memory slot (reference that cannot be determined at compile time). + // p_ref[0] can be { 0 = scalar (unlinked) | 1 = vector value | 2 = image value (offset) | + // 3 = image value (coordinates) | 4 = image value as a vector (offsets) | + // 5 = image value as a vector (coordinates) }. + // Depending on p_ref[0], the remaining p_ref[k] have the following meaning: + // When p_ref[0]==0, p_ref is actually unlinked. + // When p_ref[0]==1, p_ref = [ 1, vector_ind, offset ]. + // When p_ref[0]==2, p_ref = [ 2, image_ind (or ~0U), is_relative, offset ]. + // When p_ref[0]==3, p_ref = [ 3, image_ind (or ~0U), is_relative, x, y, z, c ]. + // When p_ref[0]==4, p_ref = [ 4, image_ind (or ~0U), is_relative, offset ]. + // When p_ref[0]==5, p_ref = [ 5, image_ind (or ~0U), is_relative, x, y, z ]. + if (p_ref) { *p_ref = 0; p_ref[1] = p_ref[2] = p_ref[3] = p_ref[4] = p_ref[5] = p_ref[6] = ~0U; } + + const char saved_char = *se; *se = 0; + const unsigned int clevel = level[ss - expr._data], clevel1 = clevel + 1; + bool is_sth, is_relative; + CImg ref; + CImgList _opcode; + CImg variable_name; + + // Look for a single value or a pre-defined variable. + int nb = cimg_sscanf(ss,"%lf%c%c",&val,&(sep=0),&(end=0)); + +#if cimg_OS==2 + // Check for +/-NaN and +/-inf as Microsoft's sscanf() version is not able + // to read those particular values. + if (!nb && (*ss=='+' || *ss=='-' || *ss=='i' || *ss=='I' || *ss=='n' || *ss=='N')) { + is_sth = true; + s = ss; + if (*s=='+') ++s; else if (*s=='-') { ++s; is_sth = false; } + if (!cimg::strcasecmp(s,"inf")) { val = cimg::type::inf(); nb = 1; } + else if (!cimg::strcasecmp(s,"nan")) { val = cimg::type::nan(); nb = 1; } + if (nb==1 && !is_sth) val = -val; + } +#endif + if (nb==1) _cimg_mp_constant(val); + if (nb==2 && sep=='%') _cimg_mp_constant(val/100); + + if (ss1==se) switch (*ss) { // One-char reserved variable + case 'c' : _cimg_mp_return(reserved_label['c']!=~0U?reserved_label['c']:_cimg_mp_slot_c); + case 'd' : _cimg_mp_return(reserved_label['d']!=~0U?reserved_label['d']:20); + case 'e' : _cimg_mp_return(reserved_label['e']!=~0U?reserved_label['e']:27); + case 'h' : _cimg_mp_return(reserved_label['h']!=~0U?reserved_label['h']:19); + case 'l' : _cimg_mp_return(reserved_label['l']!=~0U?reserved_label['l']:26); + case 'r' : _cimg_mp_return(reserved_label['r']!=~0U?reserved_label['r']:22); + case 's' : _cimg_mp_return(reserved_label['s']!=~0U?reserved_label['s']:21); + case 't' : _cimg_mp_return(reserved_label['t']!=~0U?reserved_label['t']:17); + case 'w' : _cimg_mp_return(reserved_label['w']!=~0U?reserved_label['w']:18); + case 'x' : _cimg_mp_return(reserved_label['x']!=~0U?reserved_label['x']:_cimg_mp_slot_x); + case 'y' : _cimg_mp_return(reserved_label['y']!=~0U?reserved_label['y']:_cimg_mp_slot_y); + case 'z' : _cimg_mp_return(reserved_label['z']!=~0U?reserved_label['z']:_cimg_mp_slot_z); + case 'u' : + if (reserved_label['u']!=~0U) _cimg_mp_return(reserved_label['u']); + _cimg_mp_scalar2(mp_u,0,1); + case 'g' : + if (reserved_label['g']!=~0U) _cimg_mp_return(reserved_label['g']); + _cimg_mp_scalar0(mp_g); + case 'i' : + if (reserved_label['i']!=~0U) _cimg_mp_return(reserved_label['i']); + _cimg_mp_scalar0(mp_i); + case 'I' : + _cimg_mp_op("Variable 'I'"); + if (reserved_label['I']!=~0U) _cimg_mp_return(reserved_label['I']); + _cimg_mp_check_vector0(imgin._spectrum); + need_input_copy = true; + pos = vector(imgin._spectrum); + CImg::vector((ulongT)mp_Joff,pos,0,0,imgin._spectrum).move_to(code); + _cimg_mp_return(pos); + case 'R' : + if (reserved_label['R']!=~0U) _cimg_mp_return(reserved_label['R']); + need_input_copy = true; + _cimg_mp_scalar6(mp_ixyzc,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,0,0,0); + case 'G' : + if (reserved_label['G']!=~0U) _cimg_mp_return(reserved_label['G']); + need_input_copy = true; + _cimg_mp_scalar6(mp_ixyzc,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,1,0,0); + case 'B' : + if (reserved_label['B']!=~0U) _cimg_mp_return(reserved_label['B']); + need_input_copy = true; + _cimg_mp_scalar6(mp_ixyzc,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,2,0,0); + case 'A' : + if (reserved_label['A']!=~0U) _cimg_mp_return(reserved_label['A']); + need_input_copy = true; + _cimg_mp_scalar6(mp_ixyzc,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,3,0,0); + } + else if (ss2==se) { // Two-chars reserved variable + arg1 = arg2 = ~0U; + if (*ss=='w' && *ss1=='h') // wh + _cimg_mp_return(reserved_label[0]!=~0U?reserved_label[0]:23); + if (*ss=='p' && *ss1=='i') // pi + _cimg_mp_return(reserved_label[3]!=~0U?reserved_label[3]:28); + if (*ss=='i') { + if (*ss1>='0' && *ss1<='9') { // i0...i9 + pos = 19 + *ss1 - '0'; + if (reserved_label[pos]!=~0U) _cimg_mp_return(reserved_label[pos]); + need_input_copy = true; + _cimg_mp_scalar6(mp_ixyzc,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,pos - 19,0,0); + } + switch (*ss1) { + case 'm' : arg1 = 4; arg2 = 0; break; // im + case 'M' : arg1 = 5; arg2 = 1; break; // iM + case 'a' : arg1 = 6; arg2 = 2; break; // ia + case 'v' : arg1 = 7; arg2 = 3; break; // iv + case 's' : arg1 = 8; arg2 = 12; break; // is + case 'p' : arg1 = 9; arg2 = 13; break; // ip + case 'c' : // ic + if (reserved_label[10]!=~0U) _cimg_mp_return(reserved_label[10]); + if (mem_img_median==~0U) mem_img_median = imgin?constant(imgin.median()):0; + _cimg_mp_return(mem_img_median); + break; + } + } + else if (*ss1=='m') switch (*ss) { + case 'x' : arg1 = 11; arg2 = 4; break; // xm + case 'y' : arg1 = 12; arg2 = 5; break; // ym + case 'z' : arg1 = 13; arg2 = 6; break; // zm + case 'c' : arg1 = 14; arg2 = 7; break; // cm + } + else if (*ss1=='M') switch (*ss) { + case 'x' : arg1 = 15; arg2 = 8; break; // xM + case 'y' : arg1 = 16; arg2 = 9; break; // yM + case 'z' : arg1 = 17; arg2 = 10; break; // zM + case 'c' : arg1 = 18; arg2 = 11; break; // cM + } + if (arg1!=~0U) { + if (reserved_label[arg1]!=~0U) _cimg_mp_return(reserved_label[arg1]); + if (!img_stats) { + img_stats.assign(1,14,1,1,0).fill(imgin.get_stats(),false); + mem_img_stats.assign(1,14,1,1,~0U); + } + if (mem_img_stats[arg2]==~0U) mem_img_stats[arg2] = constant(img_stats[arg2]); + _cimg_mp_return(mem_img_stats[arg2]); + } + } else if (ss3==se) { // Three-chars reserved variable + if (*ss=='w' && *ss1=='h' && *ss2=='d') // whd + _cimg_mp_return(reserved_label[1]!=~0U?reserved_label[1]:24); + } else if (ss4==se) { // Four-chars reserved variable + if (*ss=='w' && *ss1=='h' && *ss2=='d' && *ss3=='s') // whds + _cimg_mp_return(reserved_label[2]!=~0U?reserved_label[2]:25); + } + + pos = ~0U; + for (s0 = ss, s = ss1; s='i'?1:3,p2); + + if (p_ref) { + *p_ref = _cimg_mp_is_vector(arg2)?4:2; + p_ref[1] = p1; + p_ref[2] = (unsigned int)is_relative; + p_ref[3] = arg1; + if (_cimg_mp_is_vector(arg2)) + set_variable_vector(arg2); // Prevent from being used in further optimization + else if (_cimg_mp_is_comp(arg2)) memtype[arg2] = -2; + if (p1!=~0U && _cimg_mp_is_comp(p1)) memtype[p1] = -2; + if (_cimg_mp_is_comp(arg1)) memtype[arg1] = -2; + } + + + if (p1!=~0U) { + if (!listout) _cimg_mp_return(arg2); + if (*ss>='i') + CImg::vector((ulongT)(is_relative?mp_list_set_joff:mp_list_set_ioff), + arg2,p1,arg1).move_to(code); + else if (_cimg_mp_is_scalar(arg2)) + CImg::vector((ulongT)(is_relative?mp_list_set_Joff_s:mp_list_set_Ioff_s), + arg2,p1,arg1).move_to(code); + else + CImg::vector((ulongT)(is_relative?mp_list_set_Joff_v:mp_list_set_Ioff_v), + arg2,p1,arg1,_cimg_mp_vector_size(arg2)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg2); + if (*ss>='i') + CImg::vector((ulongT)(is_relative?mp_set_joff:mp_set_ioff), + arg2,arg1).move_to(code); + else if (_cimg_mp_is_scalar(arg2)) + CImg::vector((ulongT)(is_relative?mp_set_Joff_s:mp_set_Ioff_s), + arg2,arg1).move_to(code); + else + CImg::vector((ulongT)(is_relative?mp_set_Joff_v:mp_set_Ioff_v), + arg2,arg1,_cimg_mp_vector_size(arg2)).move_to(code); + } + _cimg_mp_return(arg2); + } + + if (*ss1=='(' && *ve1==')') { // i/j/I/J(_#ind,_x,_y,_z,_c) = value + is_parallelizable = false; + if (*ss2=='#') { // Index specified + s0 = ss3; while (s01) { + arg2 = arg1 + 1; + if (p2>2) { + arg3 = arg2 + 1; + if (p2>3) arg4 = arg3 + 1; + } + } + } else if (s1='i'?1:3,p2); + + if (p_ref) { + *p_ref = _cimg_mp_is_vector(arg5)?5:3; + p_ref[1] = p1; + p_ref[2] = (unsigned int)is_relative; + p_ref[3] = arg1; + p_ref[4] = arg2; + p_ref[5] = arg3; + p_ref[6] = arg4; + if (_cimg_mp_is_vector(arg5)) + set_variable_vector(arg5); // Prevent from being used in further optimization + else if (_cimg_mp_is_comp(arg5)) memtype[arg5] = -2; + if (p1!=~0U && _cimg_mp_is_comp(p1)) memtype[p1] = -2; + if (_cimg_mp_is_comp(arg1)) memtype[arg1] = -2; + if (_cimg_mp_is_comp(arg2)) memtype[arg2] = -2; + if (_cimg_mp_is_comp(arg3)) memtype[arg3] = -2; + if (_cimg_mp_is_comp(arg4)) memtype[arg4] = -2; + } + if (p1!=~0U) { + if (!listout) _cimg_mp_return(arg5); + if (*ss>='i') + CImg::vector((ulongT)(is_relative?mp_list_set_jxyzc:mp_list_set_ixyzc), + arg5,p1,arg1,arg2,arg3,arg4).move_to(code); + else if (_cimg_mp_is_scalar(arg5)) + CImg::vector((ulongT)(is_relative?mp_list_set_Jxyz_s:mp_list_set_Ixyz_s), + arg5,p1,arg1,arg2,arg3).move_to(code); + else + CImg::vector((ulongT)(is_relative?mp_list_set_Jxyz_v:mp_list_set_Ixyz_v), + arg5,p1,arg1,arg2,arg3,_cimg_mp_vector_size(arg5)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg5); + if (*ss>='i') + CImg::vector((ulongT)(is_relative?mp_set_jxyzc:mp_set_ixyzc), + arg5,arg1,arg2,arg3,arg4).move_to(code); + else if (_cimg_mp_is_scalar(arg5)) + CImg::vector((ulongT)(is_relative?mp_set_Jxyz_s:mp_set_Ixyz_s), + arg5,arg1,arg2,arg3).move_to(code); + else + CImg::vector((ulongT)(is_relative?mp_set_Jxyz_v:mp_set_Ixyz_v), + arg5,arg1,arg2,arg3,_cimg_mp_vector_size(arg5)).move_to(code); + } + _cimg_mp_return(arg5); + } + } + + // Assign vector value (direct). + if (l_variable_name>3 && *ve1==']' && *ss!='[') { + s0 = ve1; while (s0>ss && (*s0!='[' || level[s0 - expr._data]!=clevel)) --s0; + is_sth = true; // is_valid_variable_name? + if (*ss>='0' && *ss<='9') is_sth = false; + else for (ns = ss; nsss) { + variable_name[s0 - ss] = 0; // Remove brackets in variable name + arg1 = ~0U; // Vector slot + arg2 = compile(++s0,ve1,depth1,0); // Index + arg3 = compile(s + 1,se,depth1,0); // Value to assign + _cimg_mp_check_type(arg3,2,1,0); + + if (variable_name[1]) { // Multi-char variable + cimglist_for(variable_def,i) if (!std::strcmp(variable_name,variable_def[i])) { + arg1 = variable_pos[i]; break; + } + } else arg1 = reserved_label[*variable_name]; // Single-char variable + if (arg1==~0U) compile(ss,s0 - 1,depth1,0); // Variable does not exist -> error + else { // Variable already exists + if (_cimg_mp_is_scalar(arg1)) compile(ss,s,depth1,0); // Variable is not a vector -> error + if (_cimg_mp_is_constant(arg2)) { // Constant index -> return corresponding variable slot directly + nb = (int)mem[arg2]; + if (nb>=0 && nb<(int)_cimg_mp_vector_size(arg1)) { + arg1+=nb + 1; + CImg::vector((ulongT)mp_copy,arg1,arg3).move_to(code); + _cimg_mp_return(arg1); + } + compile(ss,s,depth1,0); // Out-of-bounds reference -> error + } + + // Case of non-constant index -> return assigned value + linked reference + if (p_ref) { + *p_ref = 1; + p_ref[1] = arg1; + p_ref[2] = arg2; + if (_cimg_mp_is_comp(arg3)) memtype[arg3] = -2; // Prevent from being used in further optimization + if (_cimg_mp_is_comp(arg2)) memtype[arg2] = -2; + } + CImg::vector((ulongT)mp_vector_set_off,arg3,arg1,(ulongT)_cimg_mp_vector_size(arg1), + arg2,arg3). + move_to(code); + _cimg_mp_return(arg3); + } + } + } + + // Assign user-defined macro. + if (l_variable_name>2 && *ve1==')' && *ss!='(') { + s0 = ve1; while (s0>ss && *s0!='(') --s0; + is_sth = std::strncmp(variable_name,"debug(",6) && + std::strncmp(variable_name,"print(",6); // is_valid_function_name? + if (*ss>='0' && *ss<='9') is_sth = false; + else for (ns = ss; nsss) { // Looks like a valid function declaration + s0 = variable_name._data + (s0 - ss); + *s0 = 0; + s1 = variable_name._data + l_variable_name - 1; // Pointer to closing parenthesis + CImg(variable_name._data,(unsigned int)(s0 - variable_name._data + 1)).move_to(macro_def,0); + ++s; while (*s && (signed char)*s<=' ') ++s; + CImg(s,(unsigned int)(se - s + 1)).move_to(macro_body,0); + + p1 = 1; // Indice of current parsed argument + for (s = s0 + 1; s<=s1; ++p1, s = ns + 1) { // Parse function arguments + if (p1>24) { + *se = saved_char; + cimg::strellipsize(variable_name,64); + s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s: Too much specified arguments (>24) in macro " + "definition '%s()', in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + variable_name._data, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + while (*s && (signed char)*s<=' ') ++s; + if (*s==')' && p1==1) break; // Function has no arguments + + s2 = s; // Start of the argument name + is_sth = true; // is_valid_argument_name? + if (*s>='0' && *s<='9') is_sth = false; + else for (ns = s; ns' '; ++ns) + if (!is_varchar(*ns)) { is_sth = false; break; } + s3 = ns; // End of the argument name + while (*ns && (signed char)*ns<=' ') ++ns; + if (!is_sth || s2==s3 || (*ns!=',' && ns!=s1)) { + *se = saved_char; + cimg::strellipsize(variable_name,64); + s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s: %s name specified for argument %u when defining " + "macro '%s()', in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + is_sth?"Empty":"Invalid",p1, + variable_name._data, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + if (ns==s1 || *ns==',') { // New argument found + *s3 = 0; + p2 = (unsigned int)(s3 - s2); // Argument length + for (ps = std::strstr(macro_body[0],s2); ps; ps = std::strstr(ps,s2)) { // Replace by arg number + if (!((ps>macro_body[0]._data && is_varchar(*(ps - 1))) || + (ps + p2macro_body[0]._data && *(ps - 1)=='#') { // Remove pre-number sign + *(ps - 1) = (char)p1; + if (ps + p26 && !std::strncmp(variable_name,"const ",6); + + s0 = variable_name._data; + if (is_const) { + s0+=6; while ((signed char)*s0<=' ') ++s0; + variable_name.resize(variable_name.end() - s0,1,1,1,0,0,1); + } + + if (*variable_name>='0' && *variable_name<='9') is_sth = false; + else for (ns = variable_name._data; *ns; ++ns) + if (!is_varchar(*ns)) { is_sth = false; break; } + + // Assign variable (direct). + if (is_sth) { + arg3 = variable_name[1]?~0U:*variable_name; // One-char variable + if (variable_name[1] && !variable_name[2]) { // Two-chars variable + c1 = variable_name[0]; + c2 = variable_name[1]; + if (c1=='w' && c2=='h') arg3 = 0; // wh + else if (c1=='p' && c2=='i') arg3 = 3; // pi + else if (c1=='i') { + if (c2>='0' && c2<='9') arg3 = 19 + c2 - '0'; // i0...i9 + else if (c2=='m') arg3 = 4; // im + else if (c2=='M') arg3 = 5; // iM + else if (c2=='a') arg3 = 6; // ia + else if (c2=='v') arg3 = 7; // iv + else if (c2=='s') arg3 = 8; // is + else if (c2=='p') arg3 = 9; // ip + else if (c2=='c') arg3 = 10; // ic + } else if (c2=='m') { + if (c1=='x') arg3 = 11; // xm + else if (c1=='y') arg3 = 12; // ym + else if (c1=='z') arg3 = 13; // zm + else if (c1=='c') arg3 = 14; // cm + } else if (c2=='M') { + if (c1=='x') arg3 = 15; // xM + else if (c1=='y') arg3 = 16; // yM + else if (c1=='z') arg3 = 17; // zM + else if (c1=='c') arg3 = 18; // cM + } + } else if (variable_name[1] && variable_name[2] && !variable_name[3]) { // Three-chars variable + c1 = variable_name[0]; + c2 = variable_name[1]; + c3 = variable_name[2]; + if (c1=='w' && c2=='h' && c3=='d') arg3 = 1; // whd + } else if (variable_name[1] && variable_name[2] && variable_name[3] && + !variable_name[4]) { // Four-chars variable + c1 = variable_name[0]; + c2 = variable_name[1]; + c3 = variable_name[2]; + c4 = variable_name[3]; + if (c1=='w' && c2=='h' && c3=='d' && c4=='s') arg3 = 2; // whds + } else if (!std::strcmp(variable_name,"interpolation")) arg3 = 29; // interpolation + else if (!std::strcmp(variable_name,"boundary")) arg3 = 30; // boundary + + arg1 = ~0U; + arg2 = compile(s + 1,se,depth1,0); + if (is_const) _cimg_mp_check_constant(arg2,2,0); + + if (arg3!=~0U) // One-char variable, or variable in reserved_labels + arg1 = reserved_label[arg3]; + else // Multi-char variable name : check for existing variable with same name + cimglist_for(variable_def,i) + if (!std::strcmp(variable_name,variable_def[i])) { arg1 = variable_pos[i]; break; } + + if (arg1==~0U) { // Create new variable + if (_cimg_mp_is_vector(arg2)) { // Vector variable + arg1 = is_comp_vector(arg2)?arg2:vector_copy(arg2); + set_variable_vector(arg1); + } else { // Scalar variable + if (is_const) arg1 = arg2; + else { + arg1 = _cimg_mp_is_comp(arg2)?arg2:scalar1(mp_copy,arg2); + memtype[arg1] = -1; + } + } + + if (arg3!=~0U) reserved_label[arg3] = arg1; + else { + if (variable_def._width>=variable_pos._width) variable_pos.resize(-200,1,1,1,0); + variable_pos[variable_def._width] = arg1; + variable_name.move_to(variable_def); + } + + } else { // Variable already exists -> assign a new value + if (is_const || _cimg_mp_is_constant(arg1)) { + *se = saved_char; + cimg::strellipsize(variable_name,64); + s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s: Invalid assignment of %sconst variable '%s'%s, " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + _cimg_mp_is_constant(arg1)?"already-defined ":"non-", + variable_name._data, + !_cimg_mp_is_constant(arg1) && is_const?" as a new const variable":"", + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + _cimg_mp_check_type(arg2,2,_cimg_mp_is_vector(arg1)?3:1,_cimg_mp_vector_size(arg1)); + if (_cimg_mp_is_vector(arg1)) { // Vector + if (_cimg_mp_is_vector(arg2)) // From vector + CImg::vector((ulongT)mp_vector_copy,arg1,arg2,(ulongT)_cimg_mp_vector_size(arg1)). + move_to(code); + else // From scalar + CImg::vector((ulongT)mp_vector_init,arg1,1,(ulongT)_cimg_mp_vector_size(arg1),arg2). + move_to(code); + } else // Scalar + CImg::vector((ulongT)mp_copy,arg1,arg2).move_to(code); + } + _cimg_mp_return(arg1); + } + + // Assign lvalue (variable name was not valid for a direct assignment). + arg1 = ~0U; + is_sth = (bool)std::strchr(variable_name,'?'); // Contains_ternary_operator? + if (is_sth) break; // Do nothing and make ternary operator prioritary over assignment + + if (l_variable_name>2 && (std::strchr(variable_name,'(') || std::strchr(variable_name,'['))) { + ref.assign(7); + arg1 = compile(ss,s,depth1,ref); // Lvalue slot + arg2 = compile(s + 1,se,depth1,0); // Value to assign + + if (*ref==1) { // Vector value (scalar): V[k] = scalar + _cimg_mp_check_type(arg2,2,1,0); + arg3 = ref[1]; // Vector slot + arg4 = ref[2]; // Index + if (p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + CImg::vector((ulongT)mp_vector_set_off,arg2,arg3,(ulongT)_cimg_mp_vector_size(arg3),arg4,arg2). + move_to(code); + _cimg_mp_return(arg2); + } + + if (*ref==2) { // Image value (scalar): i/j[_#ind,off] = scalar + is_parallelizable = false; + _cimg_mp_check_type(arg2,2,1,0); + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // Offset + if (p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + if (p1!=~0U) { + if (!listout) _cimg_mp_return(arg2); + CImg::vector((ulongT)(is_relative?mp_list_set_joff:mp_list_set_ioff), + arg2,p1,arg3).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg2); + CImg::vector((ulongT)(is_relative?mp_set_joff:mp_set_ioff), + arg2,arg3).move_to(code); + } + _cimg_mp_return(arg2); + } + + if (*ref==3) { // Image value (scalar): i/j(_#ind,_x,_y,_z,_c) = scalar + is_parallelizable = false; + _cimg_mp_check_type(arg2,2,1,0); + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // X + arg4 = ref[4]; // Y + arg5 = ref[5]; // Z + arg6 = ref[6]; // C + if (p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + if (p1!=~0U) { + if (!listout) _cimg_mp_return(arg2); + CImg::vector((ulongT)(is_relative?mp_list_set_jxyzc:mp_list_set_ixyzc), + arg2,p1,arg3,arg4,arg5,arg6).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg2); + CImg::vector((ulongT)(is_relative?mp_set_jxyzc:mp_set_ixyzc), + arg2,arg3,arg4,arg5,arg6).move_to(code); + } + _cimg_mp_return(arg2); + } + + if (*ref==4) { // Image value (vector): I/J[_#ind,off] = value + is_parallelizable = false; + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // Offset + if (p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + if (p1!=~0U) { + if (!listout) _cimg_mp_return(arg2); + if (_cimg_mp_is_scalar(arg2)) + CImg::vector((ulongT)(is_relative?mp_list_set_Joff_s:mp_list_set_Ioff_s), + arg2,p1,arg3).move_to(code); + else + CImg::vector((ulongT)(is_relative?mp_list_set_Joff_v:mp_list_set_Ioff_v), + arg2,p1,arg3,_cimg_mp_vector_size(arg2)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg2); + if (_cimg_mp_is_scalar(arg2)) + CImg::vector((ulongT)(is_relative?mp_set_Joff_s:mp_set_Ioff_s), + arg2,arg3).move_to(code); + else + CImg::vector((ulongT)(is_relative?mp_set_Joff_v:mp_set_Ioff_v), + arg2,arg3,_cimg_mp_vector_size(arg2)).move_to(code); + } + _cimg_mp_return(arg2); + } + + if (*ref==5) { // Image value (vector): I/J(_#ind,_x,_y,_z,_c) = value + is_parallelizable = false; + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // X + arg4 = ref[4]; // Y + arg5 = ref[5]; // Z + if (p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + if (p1!=~0U) { + if (!listout) _cimg_mp_return(arg2); + if (_cimg_mp_is_scalar(arg2)) + CImg::vector((ulongT)(is_relative?mp_list_set_Jxyz_s:mp_list_set_Ixyz_s), + arg2,p1,arg3,arg4,arg5).move_to(code); + else + CImg::vector((ulongT)(is_relative?mp_list_set_Jxyz_v:mp_list_set_Ixyz_v), + arg2,p1,arg3,arg4,arg5,_cimg_mp_vector_size(arg2)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg2); + if (_cimg_mp_is_scalar(arg2)) + CImg::vector((ulongT)(is_relative?mp_set_Jxyz_s:mp_set_Ixyz_s), + arg2,arg3,arg4,arg5).move_to(code); + else + CImg::vector((ulongT)(is_relative?mp_set_Jxyz_v:mp_set_Ixyz_v), + arg2,arg3,arg4,arg5,_cimg_mp_vector_size(arg2)).move_to(code); + } + _cimg_mp_return(arg2); + } + + if (_cimg_mp_is_vector(arg1)) { // Vector variable: V = value + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + if (_cimg_mp_is_vector(arg2)) // From vector + CImg::vector((ulongT)mp_vector_copy,arg1,arg2,(ulongT)_cimg_mp_vector_size(arg1)). + move_to(code); + else // From scalar + CImg::vector((ulongT)mp_vector_init,arg1,1,(ulongT)_cimg_mp_vector_size(arg1),arg2). + move_to(code); + _cimg_mp_return(arg1); + } + + if (_cimg_mp_is_variable(arg1)) { // Scalar variable: s = scalar + _cimg_mp_check_type(arg2,2,1,0); + CImg::vector((ulongT)mp_copy,arg1,arg2).move_to(code); + _cimg_mp_return(arg1); + } + } + + // No assignment expressions match -> error + *se = saved_char; + cimg::strellipsize(variable_name,64); + s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s: Invalid %slvalue '%s', " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + arg1!=~0U && _cimg_mp_is_constant(arg1)?"const ":"", + variable_name._data, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + + // Apply unary/binary/ternary operators. The operator precedences should be the same as in C++. + for (s = se2, ps = se3, ns = ps - 1; s>ss1; --s, --ps, --ns) // Here, ns = ps - 1 + if (*s=='=' && (*ps=='*' || *ps=='/' || *ps=='^') && *ns==*ps && + level[s - expr._data]==clevel) { // Self-operators for complex numbers only (**=,//=,^^=) + _cimg_mp_op(*ps=='*'?"Operator '**='":*ps=='/'?"Operator '//='":"Operator '^^='"); + + ref.assign(7); + arg1 = compile(ss,ns,depth1,ref); // Vector slot + arg2 = compile(s + 1,se,depth1,0); // Right operand + _cimg_mp_check_type(arg1,1,2,2); + _cimg_mp_check_type(arg2,2,3,2); + if (_cimg_mp_is_vector(arg2)) { // Complex **= complex + if (*ps=='*') + CImg::vector((ulongT)mp_complex_mul,arg1,arg1,arg2).move_to(code); + else if (*ps=='/') + CImg::vector((ulongT)mp_complex_div_vv,arg1,arg1,arg2).move_to(code); + else + CImg::vector((ulongT)mp_complex_pow_vv,arg1,arg1,arg2).move_to(code); + } else { // Complex **= scalar + if (*ps=='*') { + if (arg2==1) _cimg_mp_return(arg1); + self_vector_s(arg1,mp_self_mul,arg2); + } else if (*ps=='/') { + if (arg2==1) _cimg_mp_return(arg1); + self_vector_s(arg1,mp_self_div,arg2); + } else { + if (arg2==1) _cimg_mp_return(arg1); + CImg::vector((ulongT)mp_complex_pow_vs,arg1,arg1,arg2).move_to(code); + } + } + + // Write computed value back in image if necessary. + if (*ref==4) { // Image value (vector): I/J[_#ind,off] **= value + is_parallelizable = false; + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // Offset + if (p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + if (p1!=~0U) { + if (!listout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_list_set_Joff_v:mp_list_set_Ioff_v), + arg1,p1,arg3,_cimg_mp_vector_size(arg1)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_set_Joff_v:mp_set_Ioff_v), + arg1,arg3,_cimg_mp_vector_size(arg1)).move_to(code); + } + + } else if (*ref==5) { // Image value (vector): I/J(_#ind,_x,_y,_z,_c) **= value + is_parallelizable = false; + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // X + arg4 = ref[4]; // Y + arg5 = ref[5]; // Z + if (p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + if (p1!=~0U) { + if (!listout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_list_set_Jxyz_v:mp_list_set_Ixyz_v), + arg1,p1,arg3,arg4,arg5,_cimg_mp_vector_size(arg1)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_set_Jxyz_v:mp_set_Ixyz_v), + arg1,arg3,arg4,arg5,_cimg_mp_vector_size(arg1)).move_to(code); + } + } + + _cimg_mp_return(arg1); + } + + for (s = se2, ps = se3, ns = ps - 1; s>ss1; --s, --ps, --ns) // Here, ns = ps - 1 + if (*s=='=' && (*ps=='+' || *ps=='-' || *ps=='*' || *ps=='/' || *ps=='%' || + *ps=='&' || *ps=='^' || *ps=='|' || + (*ps=='>' && *ns=='>') || (*ps=='<' && *ns=='<')) && + level[s - expr._data]==clevel) { // Self-operators (+=,-=,*=,/=,%=,>>=,<<=,&=,^=,|=) + switch (*ps) { + case '+' : op = mp_self_add; _cimg_mp_op("Operator '+='"); break; + case '-' : op = mp_self_sub; _cimg_mp_op("Operator '-='"); break; + case '*' : op = mp_self_mul; _cimg_mp_op("Operator '*='"); break; + case '/' : op = mp_self_div; _cimg_mp_op("Operator '/='"); break; + case '%' : op = mp_self_modulo; _cimg_mp_op("Operator '%='"); break; + case '<' : op = mp_self_bitwise_left_shift; _cimg_mp_op("Operator '<<='"); break; + case '>' : op = mp_self_bitwise_right_shift; _cimg_mp_op("Operator '>>='"); break; + case '&' : op = mp_self_bitwise_and; _cimg_mp_op("Operator '&='"); break; + case '|' : op = mp_self_bitwise_or; _cimg_mp_op("Operator '|='"); break; + default : op = mp_self_pow; _cimg_mp_op("Operator '^='"); break; + } + s1 = *ps=='>' || *ps=='<'?ns:ps; + + ref.assign(7); + arg1 = compile(ss,s1,depth1,ref); // Variable slot + arg2 = compile(s + 1,se,depth1,0); // Value to apply + + // Check for particular case to be simplified. + if ((op==mp_self_add || op==mp_self_sub) && !arg2) _cimg_mp_return(arg1); + if ((op==mp_self_mul || op==mp_self_div) && arg2==1) _cimg_mp_return(arg1); + + // Apply operator on a copy to prevent modifying a constant or a variable. + if (*ref && (_cimg_mp_is_constant(arg1) || _cimg_mp_is_vector(arg1) || _cimg_mp_is_variable(arg1))) { + if (_cimg_mp_is_vector(arg1)) arg1 = vector_copy(arg1); + else arg1 = scalar1(mp_copy,arg1); + } + + if (*ref==1) { // Vector value (scalar): V[k] += scalar + _cimg_mp_check_type(arg2,2,1,0); + arg3 = ref[1]; // Vector slot + arg4 = ref[2]; // Index + if (p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + CImg::vector((ulongT)op,arg1,arg2).move_to(code); + CImg::vector((ulongT)mp_vector_set_off,arg1,arg3,(ulongT)_cimg_mp_vector_size(arg3),arg4,arg1). + move_to(code); + _cimg_mp_return(arg1); + } + + if (*ref==2) { // Image value (scalar): i/j[_#ind,off] += scalar + is_parallelizable = false; + _cimg_mp_check_type(arg2,2,1,0); + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // Offset + if (p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + CImg::vector((ulongT)op,arg1,arg2).move_to(code); + if (p1!=~0U) { + if (!listout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_list_set_joff:mp_list_set_ioff), + arg1,p1,arg3).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_set_joff:mp_set_ioff), + arg1,arg3).move_to(code); + } + _cimg_mp_return(arg1); + } + + if (*ref==3) { // Image value (scalar): i/j(_#ind,_x,_y,_z,_c) += scalar + is_parallelizable = false; + _cimg_mp_check_type(arg2,2,1,0); + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // X + arg4 = ref[4]; // Y + arg5 = ref[5]; // Z + arg6 = ref[6]; // C + if (p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + CImg::vector((ulongT)op,arg1,arg2).move_to(code); + if (p1!=~0U) { + if (!listout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_list_set_jxyzc:mp_list_set_ixyzc), + arg1,p1,arg3,arg4,arg5,arg6).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_set_jxyzc:mp_set_ixyzc), + arg1,arg3,arg4,arg5,arg6).move_to(code); + } + _cimg_mp_return(arg1); + } + + if (*ref==4) { // Image value (vector): I/J[_#ind,off] += value + is_parallelizable = false; + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // Offset + if (p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + if (_cimg_mp_is_scalar(arg2)) self_vector_s(arg1,op,arg2); else self_vector_v(arg1,op,arg2); + if (p1!=~0U) { + if (!listout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_list_set_Joff_v:mp_list_set_Ioff_v), + arg1,p1,arg3,_cimg_mp_vector_size(arg1)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_set_Joff_v:mp_set_Ioff_v), + arg1,arg3,_cimg_mp_vector_size(arg1)).move_to(code); + } + _cimg_mp_return(arg1); + } + + if (*ref==5) { // Image value (vector): I/J(_#ind,_x,_y,_z,_c) += value + is_parallelizable = false; + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // X + arg4 = ref[4]; // Y + arg5 = ref[5]; // Z + if (p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + if (_cimg_mp_is_scalar(arg2)) self_vector_s(arg1,op,arg2); else self_vector_v(arg1,op,arg2); + if (p1!=~0U) { + if (!listout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_list_set_Jxyz_v:mp_list_set_Ixyz_v), + arg1,p1,arg3,arg4,arg5,_cimg_mp_vector_size(arg1)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(arg1); + CImg::vector((ulongT)(is_relative?mp_set_Jxyz_v:mp_set_Ixyz_v), + arg1,arg3,arg4,arg5,_cimg_mp_vector_size(arg1)).move_to(code); + } + _cimg_mp_return(arg1); + } + + if (_cimg_mp_is_vector(arg1)) { // Vector variable: V += value + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + if (_cimg_mp_is_vector(arg2)) self_vector_v(arg1,op,arg2); // Vector += vector + else self_vector_s(arg1,op,arg2); // Vector += scalar + _cimg_mp_return(arg1); + } + + if (_cimg_mp_is_variable(arg1)) { // Scalar variable: s += scalar + _cimg_mp_check_type(arg2,2,1,0); + CImg::vector((ulongT)op,arg1,arg2).move_to(code); + _cimg_mp_return(arg1); + } + + variable_name.assign(ss,(unsigned int)(s - ss)).back() = 0; + cimg::strpare(variable_name,false,true); + *se = saved_char; + s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s: Invalid %slvalue '%s', " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + _cimg_mp_is_constant(arg1)?"const ":"", + variable_name._data, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + + for (s = ss1; s::vector((ulongT)mp_if,pos,arg1,arg2,arg3, + p3 - p2,code._width - p3,arg4).move_to(code,p2); + _cimg_mp_return(pos); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='|' && *ns=='|' && level[s - expr._data]==clevel) { // Logical or ('||') + _cimg_mp_op("Operator '||'"); + arg1 = compile(ss,s,depth1,0); + _cimg_mp_check_type(arg1,1,1,0); + if (arg1>0 && arg1<=16) _cimg_mp_return(1); + p2 = code._width; + arg2 = compile(s + 2,se,depth1,0); + _cimg_mp_check_type(arg2,2,1,0); + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) + _cimg_mp_constant(mem[arg1] || mem[arg2]); + if (!arg1) _cimg_mp_return(arg2); + pos = scalar(); + CImg::vector((ulongT)mp_logical_or,pos,arg1,arg2,code._width - p2). + move_to(code,p2); + _cimg_mp_return(pos); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='&' && *ns=='&' && level[s - expr._data]==clevel) { // Logical and ('&&') + _cimg_mp_op("Operator '&&'"); + arg1 = compile(ss,s,depth1,0); + _cimg_mp_check_type(arg1,1,1,0); + if (!arg1) _cimg_mp_return(0); + p2 = code._width; + arg2 = compile(s + 2,se,depth1,0); + _cimg_mp_check_type(arg2,2,1,0); + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) + _cimg_mp_constant(mem[arg1] && mem[arg2]); + if (arg1>0 && arg1<=16) _cimg_mp_return(arg2); + pos = scalar(); + CImg::vector((ulongT)mp_logical_and,pos,arg1,arg2,code._width - p2). + move_to(code,p2); + _cimg_mp_return(pos); + } + + for (s = se2; s>ss; --s) + if (*s=='|' && level[s - expr._data]==clevel) { // Bitwise or ('|') + _cimg_mp_op("Operator '|'"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 1,se,depth1,0); + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_bitwise_or,arg1,arg2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) { + if (!arg2) _cimg_mp_return(arg1); + _cimg_mp_vector2_vs(mp_bitwise_or,arg1,arg2); + } + if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) { + if (!arg1) _cimg_mp_return(arg2); + _cimg_mp_vector2_sv(mp_bitwise_or,arg1,arg2); + } + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) + _cimg_mp_constant((longT)mem[arg1] | (longT)mem[arg2]); + if (!arg2) _cimg_mp_return(arg1); + if (!arg1) _cimg_mp_return(arg2); + _cimg_mp_scalar2(mp_bitwise_or,arg1,arg2); + } + + for (s = se2; s>ss; --s) + if (*s=='&' && level[s - expr._data]==clevel) { // Bitwise and ('&') + _cimg_mp_op("Operator '&'"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 1,se,depth1,0); + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_bitwise_and,arg1,arg2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_bitwise_and,arg1,arg2); + if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_bitwise_and,arg1,arg2); + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) + _cimg_mp_constant((longT)mem[arg1] & (longT)mem[arg2]); + if (!arg1 || !arg2) _cimg_mp_return(0); + _cimg_mp_scalar2(mp_bitwise_and,arg1,arg2); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='!' && *ns=='=' && level[s - expr._data]==clevel) { // Not equal to ('!=') + _cimg_mp_op("Operator '!='"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 2,se,depth1,0); + if (arg1==arg2) _cimg_mp_return(0); + p1 = _cimg_mp_vector_size(arg1); + p2 = _cimg_mp_vector_size(arg2); + if (p1 || p2) { + if (p1 && p2 && p1!=p2) _cimg_mp_return(1); + _cimg_mp_scalar6(mp_vector_neq,arg1,p1,arg2,p2,11,1); + } + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1]!=mem[arg2]); + _cimg_mp_scalar2(mp_neq,arg1,arg2); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='=' && *ns=='=' && level[s - expr._data]==clevel) { // Equal to ('==') + _cimg_mp_op("Operator '=='"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 2,se,depth1,0); + if (arg1==arg2) _cimg_mp_return(1); + p1 = _cimg_mp_vector_size(arg1); + p2 = _cimg_mp_vector_size(arg2); + if (p1 || p2) { + if (p1 && p2 && p1!=p2) _cimg_mp_return(0); + _cimg_mp_scalar6(mp_vector_eq,arg1,p1,arg2,p2,11,1); + } + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1]==mem[arg2]); + _cimg_mp_scalar2(mp_eq,arg1,arg2); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='<' && *ns=='=' && level[s - expr._data]==clevel) { // Less or equal than ('<=') + _cimg_mp_op("Operator '<='"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 2,se,depth1,0); + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_lte,arg1,arg2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_lte,arg1,arg2); + if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_lte,arg1,arg2); + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1]<=mem[arg2]); + if (arg1==arg2) _cimg_mp_return(1); + _cimg_mp_scalar2(mp_lte,arg1,arg2); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='>' && *ns=='=' && level[s - expr._data]==clevel) { // Greater or equal than ('>=') + _cimg_mp_op("Operator '>='"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 2,se,depth1,0); + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_gte,arg1,arg2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_gte,arg1,arg2); + if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_gte,arg1,arg2); + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1]>=mem[arg2]); + if (arg1==arg2) _cimg_mp_return(1); + _cimg_mp_scalar2(mp_gte,arg1,arg2); + } + + for (s = se2, ns = se1, ps = se3; s>ss; --s, --ns, --ps) + if (*s=='<' && *ns!='<' && *ps!='<' && level[s - expr._data]==clevel) { // Less than ('<') + _cimg_mp_op("Operator '<'"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 1,se,depth1,0); + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_lt,arg1,arg2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_lt,arg1,arg2); + if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_lt,arg1,arg2); + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1]ss; --s, --ns, --ps) + if (*s=='>' && *ns!='>' && *ps!='>' && level[s - expr._data]==clevel) { // Greather than ('>') + _cimg_mp_op("Operator '>'"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 1,se,depth1,0); + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_gt,arg1,arg2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_gt,arg1,arg2); + if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_gt,arg1,arg2); + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1]>mem[arg2]); + if (arg1==arg2) _cimg_mp_return(0); + _cimg_mp_scalar2(mp_gt,arg1,arg2); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='<' && *ns=='<' && level[s - expr._data]==clevel) { // Left bit shift ('<<') + _cimg_mp_op("Operator '<<'"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 2,se,depth1,0); + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) + _cimg_mp_vector2_vv(mp_bitwise_left_shift,arg1,arg2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) { + if (!arg2) _cimg_mp_return(arg1); + _cimg_mp_vector2_vs(mp_bitwise_left_shift,arg1,arg2); + } + if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) + _cimg_mp_vector2_sv(mp_bitwise_left_shift,arg1,arg2); + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) + _cimg_mp_constant((longT)mem[arg1]<<(unsigned int)mem[arg2]); + if (!arg1) _cimg_mp_return(0); + if (!arg2) _cimg_mp_return(arg1); + _cimg_mp_scalar2(mp_bitwise_left_shift,arg1,arg2); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='>' && *ns=='>' && level[s - expr._data]==clevel) { // Right bit shift ('>>') + _cimg_mp_op("Operator '>>'"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 2,se,depth1,0); + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) + _cimg_mp_vector2_vv(mp_bitwise_right_shift,arg1,arg2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) { + if (!arg2) _cimg_mp_return(arg1); + _cimg_mp_vector2_vs(mp_bitwise_right_shift,arg1,arg2); + } + if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) + _cimg_mp_vector2_sv(mp_bitwise_right_shift,arg1,arg2); + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) + _cimg_mp_constant((longT)mem[arg1]>>(unsigned int)mem[arg2]); + if (!arg1) _cimg_mp_return(0); + if (!arg2) _cimg_mp_return(arg1); + _cimg_mp_scalar2(mp_bitwise_right_shift,arg1,arg2); + } + + for (ns = se1, s = se2, ps = pexpr._data + (se3 - expr._data); s>ss; --ns, --s, --ps) + if (*s=='+' && (*ns!='+' || ns!=se1) && *ps!='-' && *ps!='+' && *ps!='*' && *ps!='/' && *ps!='%' && + *ps!='&' && *ps!='|' && *ps!='^' && *ps!='!' && *ps!='~' && *ps!='#' && + (*ps!='e' || !(ps - pexpr._data>ss - expr._data && (*(ps - 1)=='.' || (*(ps - 1)>='0' && + *(ps - 1)<='9')))) && + level[s - expr._data]==clevel) { // Addition ('+') + _cimg_mp_op("Operator '+'"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 1,se,depth1,0); + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + if (!arg2) _cimg_mp_return(arg1); + if (!arg1) _cimg_mp_return(arg2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_add,arg1,arg2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_add,arg1,arg2); + if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_add,arg1,arg2); + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1] + mem[arg2]); + if (code) { // Try to spot linear case 'a*b + c'. + CImg &pop = code.back(); + if (pop[0]==(ulongT)mp_mul && _cimg_mp_is_comp(pop[1]) && (pop[1]==arg1 || pop[1]==arg2)) { + arg3 = (unsigned int)pop[1]; + arg4 = (unsigned int)pop[2]; + arg5 = (unsigned int)pop[3]; + code.remove(); + CImg::vector((ulongT)mp_linear_add,arg3,arg4,arg5,arg3==arg2?arg1:arg2).move_to(code); + _cimg_mp_return(arg3); + } + } + if (arg2==1) _cimg_mp_scalar1(mp_increment,arg1); + if (arg1==1) _cimg_mp_scalar1(mp_increment,arg2); + _cimg_mp_scalar2(mp_add,arg1,arg2); + } + + for (ns = se1, s = se2, ps = pexpr._data + (se3 - expr._data); s>ss; --ns, --s, --ps) + if (*s=='-' && (*ns!='-' || ns!=se1) && *ps!='-' && *ps!='+' && *ps!='*' && *ps!='/' && *ps!='%' && + *ps!='&' && *ps!='|' && *ps!='^' && *ps!='!' && *ps!='~' && *ps!='#' && + (*ps!='e' || !(ps - pexpr._data>ss - expr._data && (*(ps - 1)=='.' || (*(ps - 1)>='0' && + *(ps - 1)<='9')))) && + level[s - expr._data]==clevel) { // Subtraction ('-') + _cimg_mp_op("Operator '-'"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 1,se,depth1,0); + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + if (!arg2) _cimg_mp_return(arg1); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_sub,arg1,arg2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_sub,arg1,arg2); + if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) { + if (!arg1) _cimg_mp_vector1_v(mp_minus,arg2); + _cimg_mp_vector2_sv(mp_sub,arg1,arg2); + } + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1] - mem[arg2]); + if (!arg1) _cimg_mp_scalar1(mp_minus,arg2); + if (code) { // Try to spot linear cases 'a*b - c' and 'c - a*b'. + CImg &pop = code.back(); + if (pop[0]==(ulongT)mp_mul && _cimg_mp_is_comp(pop[1]) && (pop[1]==arg1 || pop[1]==arg2)) { + arg3 = (unsigned int)pop[1]; + arg4 = (unsigned int)pop[2]; + arg5 = (unsigned int)pop[3]; + code.remove(); + CImg::vector((ulongT)(arg3==arg1?mp_linear_sub_left:mp_linear_sub_right), + arg3,arg4,arg5,arg3==arg1?arg2:arg1).move_to(code); + _cimg_mp_return(arg3); + } + } + if (arg2==1) _cimg_mp_scalar1(mp_decrement,arg1); + _cimg_mp_scalar2(mp_sub,arg1,arg2); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='*' && *ns=='*' && level[s - expr._data]==clevel) { // Complex multiplication ('**') + _cimg_mp_op("Operator '**'"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 2,se,depth1,0); + _cimg_mp_check_type(arg1,1,3,2); + _cimg_mp_check_type(arg2,2,3,2); + if (arg2==1) _cimg_mp_return(arg1); + if (arg1==1) _cimg_mp_return(arg2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) { + pos = vector(2); + CImg::vector((ulongT)mp_complex_mul,pos,arg1,arg2).move_to(code); + _cimg_mp_return(pos); + } + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_mul,arg1,arg2); + if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_mul,arg1,arg2); + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1]*mem[arg2]); + if (!arg1 || !arg2) _cimg_mp_return(0); + _cimg_mp_scalar2(mp_mul,arg1,arg2); + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='/' && *ns=='/' && level[s - expr._data]==clevel) { // Complex division ('//') + _cimg_mp_op("Operator '//'"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 2,se,depth1,0); + _cimg_mp_check_type(arg1,1,3,2); + _cimg_mp_check_type(arg2,2,3,2); + if (arg2==1) _cimg_mp_return(arg1); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) { + pos = vector(2); + CImg::vector((ulongT)mp_complex_div_vv,pos,arg1,arg2).move_to(code); + _cimg_mp_return(pos); + } + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_div,arg1,arg2); + if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) { + pos = vector(2); + CImg::vector((ulongT)mp_complex_div_sv,pos,arg1,arg2).move_to(code); + _cimg_mp_return(pos); + } + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1]/mem[arg2]); + if (!arg1) _cimg_mp_return(0); + _cimg_mp_scalar2(mp_div,arg1,arg2); + } + + for (s = se2; s>ss; --s) if (*s=='*' && level[s - expr._data]==clevel) { // Multiplication ('*') + _cimg_mp_op("Operator '*'"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 1,se,depth1,0); + p2 = _cimg_mp_vector_size(arg2); + if (p2>0 && _cimg_mp_vector_size(arg1)==p2*p2) { // Particular case of matrix multiplication + pos = vector(p2); + CImg::vector((ulongT)mp_matrix_mul,pos,arg1,arg2,p2,p2,1).move_to(code); + _cimg_mp_return(pos); + } + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + if (arg2==1) _cimg_mp_return(arg1); + if (arg1==1) _cimg_mp_return(arg2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_mul,arg1,arg2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_mul,arg1,arg2); + if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_mul,arg1,arg2); + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1]*mem[arg2]); + + if (code) { // Try to spot double multiplication 'a*b*c'. + CImg &pop = code.back(); + if (pop[0]==(ulongT)mp_mul && _cimg_mp_is_comp(pop[1]) && (pop[1]==arg1 || pop[1]==arg2)) { + arg3 = (unsigned int)pop[1]; + arg4 = (unsigned int)pop[2]; + arg5 = (unsigned int)pop[3]; + code.remove(); + CImg::vector((ulongT)mp_mul2,arg3,arg4,arg5,arg3==arg2?arg1:arg2).move_to(code); + _cimg_mp_return(arg3); + } + } + if (!arg1 || !arg2) _cimg_mp_return(0); + _cimg_mp_scalar2(mp_mul,arg1,arg2); + } + + for (s = se2; s>ss; --s) if (*s=='/' && level[s - expr._data]==clevel) { // Division ('/') + _cimg_mp_op("Operator '/'"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 1,se,depth1,0); + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + if (arg2==1) _cimg_mp_return(arg1); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_div,arg1,arg2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_div,arg1,arg2); + if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_div,arg1,arg2); + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) _cimg_mp_constant(mem[arg1]/mem[arg2]); + if (!arg1) _cimg_mp_return(0); + _cimg_mp_scalar2(mp_div,arg1,arg2); + } + + for (s = se2, ns = se1; s>ss; --s, --ns) + if (*s=='%' && *ns!='^' && level[s - expr._data]==clevel) { // Modulo ('%') + _cimg_mp_op("Operator '%'"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 1,se,depth1,0); + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_modulo,arg1,arg2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_modulo,arg1,arg2); + if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_modulo,arg1,arg2); + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) + _cimg_mp_constant(cimg::mod(mem[arg1],mem[arg2])); + _cimg_mp_scalar2(mp_modulo,arg1,arg2); + } + + if (se1>ss) { + if (*ss=='+' && (*ss1!='+' || (ss2='0' && *ss2<='9'))) { // Unary plus ('+') + _cimg_mp_op("Operator '+'"); + _cimg_mp_return(compile(ss1,se,depth1,0)); + } + + if (*ss=='-' && (*ss1!='-' || (ss2='0' && *ss2<='9'))) { // Unary minus ('-') + _cimg_mp_op("Operator '-'"); + arg1 = compile(ss1,se,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_minus,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(-mem[arg1]); + _cimg_mp_scalar1(mp_minus,arg1); + } + + if (*ss=='!') { // Logical not ('!') + _cimg_mp_op("Operator '!'"); + if (*ss1=='!') { // '!!expr' optimized as 'bool(expr)' + arg1 = compile(ss2,se,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_bool,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant((bool)mem[arg1]); + _cimg_mp_scalar1(mp_bool,arg1); + } + arg1 = compile(ss1,se,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_logical_not,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(!mem[arg1]); + _cimg_mp_scalar1(mp_logical_not,arg1); + } + + if (*ss=='~') { // Bitwise not ('~') + _cimg_mp_op("Operator '~'"); + arg1 = compile(ss1,se,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_bitwise_not,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(~(unsigned int)mem[arg1]); + _cimg_mp_scalar1(mp_bitwise_not,arg1); + } + } + + for (s = se3, ns = se2; s>ss; --s, --ns) + if (*s=='^' && *ns=='^' && level[s - expr._data]==clevel) { // Complex power ('^^') + _cimg_mp_op("Operator '^^'"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 2,se,depth1,0); + _cimg_mp_check_type(arg1,1,3,2); + _cimg_mp_check_type(arg2,2,3,2); + if (arg2==1) _cimg_mp_return(arg1); + pos = vector(2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) { + CImg::vector((ulongT)mp_complex_pow_vv,pos,arg1,arg2).move_to(code); + _cimg_mp_return(pos); + } + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) { + CImg::vector((ulongT)mp_complex_pow_vs,pos,arg1,arg2).move_to(code); + _cimg_mp_return(pos); + } + if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) { + CImg::vector((ulongT)mp_complex_pow_sv,pos,arg1,arg2).move_to(code); + _cimg_mp_return(pos); + } + CImg::vector((ulongT)mp_complex_pow_ss,pos,arg1,arg2).move_to(code); + _cimg_mp_return(pos); + } + + for (s = se2; s>ss; --s) + if (*s=='^' && level[s - expr._data]==clevel) { // Power ('^') + _cimg_mp_op("Operator '^'"); + arg1 = compile(ss,s,depth1,0); + arg2 = compile(s + 1,se,depth1,0); + _cimg_mp_check_type(arg2,2,3,_cimg_mp_vector_size(arg1)); + if (arg2==1) _cimg_mp_return(arg1); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_vv(mp_pow,arg1,arg2); + if (_cimg_mp_is_vector(arg1) && _cimg_mp_is_scalar(arg2)) _cimg_mp_vector2_vs(mp_pow,arg1,arg2); + if (_cimg_mp_is_scalar(arg1) && _cimg_mp_is_vector(arg2)) _cimg_mp_vector2_sv(mp_pow,arg1,arg2); + if (_cimg_mp_is_constant(arg1) && _cimg_mp_is_constant(arg2)) + _cimg_mp_constant(std::pow(mem[arg1],mem[arg2])); + switch (arg2) { + case 0 : _cimg_mp_return(1); + case 2 : _cimg_mp_scalar1(mp_sqr,arg1); + case 3 : _cimg_mp_scalar1(mp_pow3,arg1); + case 4 : _cimg_mp_scalar1(mp_pow4,arg1); + default : + if (_cimg_mp_is_constant(arg2)) { + if (mem[arg2]==0.5) { _cimg_mp_scalar1(mp_sqrt,arg1); } + else if (mem[arg2]==0.25) { _cimg_mp_scalar1(mp_pow0_25,arg1); } + } + _cimg_mp_scalar2(mp_pow,arg1,arg2); + } + } + + // Percentage computation. + if (*se1=='%') { + arg1 = compile(ss,se1,depth1,0); + arg2 = _cimg_mp_is_constant(arg1)?0:constant(100); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector2_vs(mp_div,arg1,arg2); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(mem[arg1]/100); + _cimg_mp_scalar2(mp_div,arg1,arg2); + } + + is_sth = ss1ss && (*se1=='+' || *se1=='-') && *se2==*se1)) { // Pre/post-decrement and increment + if ((is_sth && *ss=='+') || (!is_sth && *se1=='+')) { + _cimg_mp_op("Operator '++'"); + op = mp_self_increment; + } else { + _cimg_mp_op("Operator '--'"); + op = mp_self_decrement; + } + ref.assign(7); + arg1 = is_sth?compile(ss2,se,depth1,ref):compile(ss,se2,depth1,ref); // Variable slot + + // Apply operator on a copy to prevent modifying a constant or a variable. + if (*ref && (_cimg_mp_is_constant(arg1) || _cimg_mp_is_vector(arg1) || _cimg_mp_is_variable(arg1))) { + if (_cimg_mp_is_vector(arg1)) arg1 = vector_copy(arg1); + else arg1 = scalar1(mp_copy,arg1); + } + + if (is_sth) pos = arg1; // Determine return indice, depending on pre/post action + else { + if (_cimg_mp_is_vector(arg1)) pos = vector_copy(arg1); + else pos = scalar1(mp_copy,arg1); + } + + if (*ref==1) { // Vector value (scalar): V[k]++ + arg3 = ref[1]; // Vector slot + arg4 = ref[2]; // Index + if (is_sth && p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + CImg::vector((ulongT)op,arg1,1).move_to(code); + CImg::vector((ulongT)mp_vector_set_off,arg1,arg3,(ulongT)_cimg_mp_vector_size(arg3),arg4,arg1). + move_to(code); + _cimg_mp_return(pos); + } + + if (*ref==2) { // Image value (scalar): i/j[_#ind,off]++ + is_parallelizable = false; + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // Offset + if (is_sth && p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + CImg::vector((ulongT)op,arg1).move_to(code); + if (p1!=~0U) { + if (!listout) _cimg_mp_return(pos); + CImg::vector((ulongT)(is_relative?mp_list_set_joff:mp_list_set_ioff), + arg1,p1,arg3).move_to(code); + } else { + if (!imgout) _cimg_mp_return(pos); + CImg::vector((ulongT)(is_relative?mp_set_joff:mp_set_ioff), + arg1,arg3).move_to(code); + } + _cimg_mp_return(pos); + } + + if (*ref==3) { // Image value (scalar): i/j(_#ind,_x,_y,_z,_c)++ + is_parallelizable = false; + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // X + arg4 = ref[4]; // Y + arg5 = ref[5]; // Z + arg6 = ref[6]; // C + if (is_sth && p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + CImg::vector((ulongT)op,arg1).move_to(code); + if (p1!=~0U) { + if (!listout) _cimg_mp_return(pos); + CImg::vector((ulongT)(is_relative?mp_list_set_jxyzc:mp_list_set_ixyzc), + arg1,p1,arg3,arg4,arg5,arg6).move_to(code); + } else { + if (!imgout) _cimg_mp_return(pos); + CImg::vector((ulongT)(is_relative?mp_set_jxyzc:mp_set_ixyzc), + arg1,arg3,arg4,arg5,arg6).move_to(code); + } + _cimg_mp_return(pos); + } + + if (*ref==4) { // Image value (vector): I/J[_#ind,off]++ + is_parallelizable = false; + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // Offset + if (is_sth && p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + self_vector_s(arg1,op==mp_self_increment?mp_self_add:mp_self_sub,1); + if (p1!=~0U) { + if (!listout) _cimg_mp_return(pos); + CImg::vector((ulongT)(is_relative?mp_list_set_Joff_v:mp_list_set_Ioff_v), + arg1,p1,arg3,_cimg_mp_vector_size(arg1)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(pos); + CImg::vector((ulongT)(is_relative?mp_set_Joff_v:mp_set_Ioff_v), + arg1,arg3,_cimg_mp_vector_size(arg1)).move_to(code); + } + _cimg_mp_return(pos); + } + + if (*ref==5) { // Image value (vector): I/J(_#ind,_x,_y,_z,_c)++ + is_parallelizable = false; + p1 = ref[1]; // Index + is_relative = (bool)ref[2]; + arg3 = ref[3]; // X + arg4 = ref[4]; // Y + arg5 = ref[5]; // Z + if (is_sth && p_ref) std::memcpy(p_ref,ref,ref._width*sizeof(unsigned int)); + self_vector_s(arg1,op==mp_self_increment?mp_self_add:mp_self_sub,1); + if (p1!=~0U) { + if (!listout) _cimg_mp_return(pos); + CImg::vector((ulongT)(is_relative?mp_list_set_Jxyz_v:mp_list_set_Ixyz_v), + arg1,p1,arg3,arg4,arg5,_cimg_mp_vector_size(arg1)).move_to(code); + } else { + if (!imgout) _cimg_mp_return(pos); + CImg::vector((ulongT)(is_relative?mp_set_Jxyz_v:mp_set_Ixyz_v), + arg1,arg3,arg4,arg5,_cimg_mp_vector_size(arg1)).move_to(code); + } + _cimg_mp_return(pos); + } + + if (_cimg_mp_is_vector(arg1)) { // Vector variable: V++ + self_vector_s(arg1,op==mp_self_increment?mp_self_add:mp_self_sub,1); + _cimg_mp_return(pos); + } + + if (_cimg_mp_is_variable(arg1)) { // Scalar variable: s++ + CImg::vector((ulongT)op,arg1).move_to(code); + _cimg_mp_return(pos); + } + + if (is_sth) variable_name.assign(ss2,(unsigned int)(se - ss1)); + else variable_name.assign(ss,(unsigned int)(se1 - ss)); + variable_name.back() = 0; + cimg::strpare(variable_name,false,true); + *se = saved_char; + cimg::strellipsize(variable_name,64); + s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s: Invalid %slvalue '%s', " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + _cimg_mp_is_constant(arg1)?"const ":"", + variable_name._data, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + + // Array-like access to vectors and image values 'i/j/I/J[_#ind,offset,_boundary]' and 'vector[offset]'. + if (*se1==']' && *ss!='[') { + _cimg_mp_op("Value accessor '[]'"); + is_relative = *ss=='j' || *ss=='J'; + s0 = s1 = std::strchr(ss,'['); do { --s1; } while ((signed char)*s1<=' '); cimg::swap(*s0,*++s1); + + if ((*ss=='I' || *ss=='J') && *ss1=='[' && + (reserved_label[*ss]==~0U || !_cimg_mp_is_vector(reserved_label[*ss]))) { // Image value as a vector + if (*ss2=='#') { // Index specified + s0 = ss3; while (s0::vector((ulongT)(is_relative?mp_list_Joff:mp_list_Ioff), + pos,p1,arg1,arg2==~0U?_cimg_mp_boundary:arg2,p2).move_to(code); + } else { + need_input_copy = true; + CImg::vector((ulongT)(is_relative?mp_Joff:mp_Ioff), + pos,arg1,arg2==~0U?_cimg_mp_boundary:arg2,p2).move_to(code); + } + _cimg_mp_return(pos); + } + + if ((*ss=='i' || *ss=='j') && *ss1=='[' && + (reserved_label[*ss]==~0U || !_cimg_mp_is_vector(reserved_label[*ss]))) { // Image value as a scalar + if (*ss2=='#') { // Index specified + s0 = ss3; while (s0ss && (*s0!='[' || level[s0 - expr._data]!=clevel)) --s0; + if (s0>ss) { // Vector value + arg1 = compile(ss,s0,depth1,0); + if (_cimg_mp_is_scalar(arg1)) { + variable_name.assign(ss,(unsigned int)(s0 - ss + 1)).back() = 0; + *se = saved_char; + cimg::strellipsize(variable_name,64); + s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s: Array brackets used on non-vector variable '%s', " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + variable_name._data, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + + } + s1 = s0 + 1; while (s1 sub-vector extraction + p1 = _cimg_mp_vector_size(arg1); + arg2 = compile(++s0,s1,depth1,0); // Starting indice + arg3 = compile(++s1,se1,depth1,0); // Length + _cimg_mp_check_constant(arg3,2,3); + arg3 = (unsigned int)mem[arg3]; + pos = vector(arg3); + CImg::vector((ulongT)mp_vector_crop,pos,arg1,p1,arg2,arg3).move_to(code); + _cimg_mp_return(pos); + } + + // One argument -> vector value reference + arg2 = compile(++s0,se1,depth1,0); + if (_cimg_mp_is_constant(arg2)) { // Constant index + nb = (int)mem[arg2]; + if (nb>=0 && nb<(int)_cimg_mp_vector_size(arg1)) _cimg_mp_return(arg1 + 1 + nb); + variable_name.assign(ss,(unsigned int)(s0 - ss)).back() = 0; + *se = saved_char; + cimg::strellipsize(variable_name,64); + s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: Out-of-bounds reference '%s[%d]' " + "(vector '%s' has dimension %u), " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function, + variable_name._data,nb, + variable_name._data,_cimg_mp_vector_size(arg1), + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + if (p_ref) { + *p_ref = 1; + p_ref[1] = arg1; + p_ref[2] = arg2; + if (_cimg_mp_is_comp(arg2)) memtype[arg2] = -2; // Prevent from being used in further optimization + } + pos = scalar3(mp_vector_off,arg1,_cimg_mp_vector_size(arg1),arg2); + memtype[pos] = -2; // Prevent from being used in further optimization + _cimg_mp_return(pos); + } + } + + // Look for a function call, an access to image value, or a parenthesis. + if (*se1==')') { + if (*ss=='(') _cimg_mp_return(compile(ss1,se1,depth1,p_ref)); // Simple parentheses + _cimg_mp_op("Value accessor '()'"); + is_relative = *ss=='j' || *ss=='J'; + s0 = s1 = std::strchr(ss,'('); do { --s1; } while ((signed char)*s1<=' '); cimg::swap(*s0,*++s1); + + // I/J(_#ind,_x,_y,_z,_interpolation,_boundary_conditions) + if ((*ss=='I' || *ss=='J') && *ss1=='(') { // Image value as scalar + if (*ss2=='#') { // Index specified + s0 = ss3; while (s01) { + arg2 = arg1 + 1; + if (p2>2) arg3 = arg2 + 1; + } + if (s1::vector((ulongT)(is_relative?mp_list_Jxyz:mp_list_Ixyz), + pos,p1,arg1,arg2,arg3, + arg4==~0U?_cimg_mp_interpolation:arg4, + arg5==~0U?_cimg_mp_boundary:arg5,p2).move_to(code); + else { + need_input_copy = true; + CImg::vector((ulongT)(is_relative?mp_Jxyz:mp_Ixyz), + pos,arg1,arg2,arg3, + arg4==~0U?_cimg_mp_interpolation:arg4, + arg5==~0U?_cimg_mp_boundary:arg5,p2).move_to(code); + } + _cimg_mp_return(pos); + } + + // i/j(_#ind,_x,_y,_z,_c,_interpolation,_boundary_conditions) + if ((*ss=='i' || *ss=='j') && *ss1=='(') { // Image value as scalar + if (*ss2=='#') { // Index specified + s0 = ss3; while (s01) { + arg2 = arg1 + 1; + if (p2>2) { + arg3 = arg2 + 1; + if (p2>3) arg4 = arg3 + 1; + } + } + if (s1::vector((ulongT)mp_arg,0,0,p2,arg1,arg2).move_to(_opcode); + for (s = ++s2; s::vector(arg3).move_to(_opcode); + ++p3; + s = ns; + } + (_opcode>'y').move_to(opcode); + opcode[2] = opcode._height; + if (_cimg_mp_is_constant(arg1)) { + p3-=1; // Number of args + arg1 = (unsigned int)(mem[arg1]<0?mem[arg1] + p3:mem[arg1]); + if (arg1::vector((ulongT)mp_break,_cimg_mp_slot_nan).move_to(code); + _cimg_mp_return(_cimg_mp_slot_nan); + } + } + + if (!std::strncmp(ss,"breakpoint(",11)) { // Break point (for abort test) + _cimg_mp_op("Function 'breakpoint()'"); + if (pexpr[se2 - expr._data]=='(') { // no arguments? + CImg::vector((ulongT)mp_breakpoint,_cimg_mp_slot_nan).move_to(code); + _cimg_mp_return(_cimg_mp_slot_nan); + } + } + break; + + case 'c' : + if ((*ss1=='m' || *ss1=='M') && *ss2=='(') { // cm(), cM() + _cimg_mp_op(*ss1=='m'?"Function 'cm()'":"Function 'cM()'"); + if (*ss3=='#') { p1 = compile(ss4,se1,depth1,0); _cimg_mp_check_list(false); } // Index specified + else { if (ss3!=se1) break; p1 = ~0U; } + pos = scalar(); + CImg::vector((ulongT)(*ss1=='m'?mp_image_cm:mp_image_cM),pos,p1).move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"cabs(",5)) { // Complex absolute value + _cimg_mp_op("Function 'cabs()'"); + arg1 = compile(ss5,se1,depth1,0); + _cimg_mp_check_type(arg1,0,2,2); + _cimg_mp_scalar2(mp_complex_abs,arg1 + 1,arg1 + 2); + } + + if (!std::strncmp(ss,"carg(",5)) { // Complex argument + _cimg_mp_op("Function 'carg()'"); + arg1 = compile(ss5,se1,depth1,0); + _cimg_mp_check_type(arg1,0,2,2); + _cimg_mp_scalar2(mp_atan2,arg1 + 2,arg1 + 1); + } + + if (!std::strncmp(ss,"cbrt(",5)) { // Cubic root + _cimg_mp_op("Function 'cbrt()'"); + arg1 = compile(ss5,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_cbrt,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(cimg::cbrt(mem[arg1])); + _cimg_mp_scalar1(mp_cbrt,arg1); + } + + if (!std::strncmp(ss,"cconj(",6)) { // Complex conjugate + _cimg_mp_op("Function 'cconj()'"); + arg1 = compile(ss6,se1,depth1,0); + _cimg_mp_check_type(arg1,0,2,2); + pos = vector(2); + CImg::vector((ulongT)mp_complex_conj,pos,arg1).move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"ceil(",5)) { // Ceil + _cimg_mp_op("Function 'ceil()'"); + arg1 = compile(ss5,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_ceil,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::ceil(mem[arg1])); + _cimg_mp_scalar1(mp_ceil,arg1); + } + + if (!std::strncmp(ss,"cexp(",5)) { // Complex exponential + _cimg_mp_op("Function 'cexp()'"); + arg1 = compile(ss5,se1,depth1,0); + _cimg_mp_check_type(arg1,0,2,2); + pos = vector(2); + CImg::vector((ulongT)mp_complex_exp,pos,arg1).move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"clog(",5)) { // Complex logarithm + _cimg_mp_op("Function 'clog()'"); + arg1 = compile(ss5,se1,depth1,0); + _cimg_mp_check_type(arg1,0,2,2); + pos = vector(2); + CImg::vector((ulongT)mp_complex_log,pos,arg1).move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"continue(",9)) { // Complex absolute value + if (pexpr[se2 - expr._data]=='(') { // no arguments? + CImg::vector((ulongT)mp_continue,_cimg_mp_slot_nan).move_to(code); + _cimg_mp_return(_cimg_mp_slot_nan); + } + } + + if (!std::strncmp(ss,"copy(",5)) { // Memory copy + _cimg_mp_op("Function 'copy()'"); + ref.assign(14); + s1 = ss5; while (s1(1,22).move_to(code); + code.back().get_shared_rows(0,7).fill((ulongT)mp_memcopy,p1,arg1,arg2,arg3,arg4,arg5,arg6); + code.back().get_shared_rows(8,21).fill(ref); + _cimg_mp_return(p1); + } + + if (!std::strncmp(ss,"cos(",4)) { // Cosine + _cimg_mp_op("Function 'cos()'"); + arg1 = compile(ss4,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_cos,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::cos(mem[arg1])); + _cimg_mp_scalar1(mp_cos,arg1); + } + + if (!std::strncmp(ss,"cosh(",5)) { // Hyperbolic cosine + _cimg_mp_op("Function 'cosh()'"); + arg1 = compile(ss5,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_cosh,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::cosh(mem[arg1])); + _cimg_mp_scalar1(mp_cosh,arg1); + } + + if (!std::strncmp(ss,"crop(",5)) { // Image crop + _cimg_mp_op("Function 'crop()'"); + if (*ss5=='#') { // Index specified + s0 = ss6; while (s0::sequence(_cimg_mp_vector_size(arg1),arg1 + 1, + arg1 + (ulongT)_cimg_mp_vector_size(arg1)); + opcode.resize(1,std::min(opcode._height,4U),1,1,0).move_to(_opcode); + is_sth = true; + } else { + _cimg_mp_check_type(arg1,pos + 1,1,0); + CImg::vector(arg1).move_to(_opcode); + } + s = ns; + } + (_opcode>'y').move_to(opcode); + + arg1 = 0; arg2 = (p1!=~0U); + switch (opcode._height) { + case 0 : case 1 : + CImg::vector(0,0,0,0,~0U,~0U,~0U,~0U,0).move_to(opcode); + break; + case 2 : + CImg::vector(*opcode,0,0,0,opcode[1],~0U,~0U,~0U,_cimg_mp_boundary).move_to(opcode); + arg1 = arg2?3:2; + break; + case 3 : + CImg::vector(*opcode,0,0,0,opcode[1],~0U,~0U,~0U,opcode[2]).move_to(opcode); + arg1 = arg2?3:2; + break; + case 4 : + CImg::vector(*opcode,opcode[1],0,0,opcode[2],opcode[3],~0U,~0U,_cimg_mp_boundary). + move_to(opcode); + arg1 = (is_sth?2:1) + arg2; + break; + case 5 : + CImg::vector(*opcode,opcode[1],0,0,opcode[2],opcode[3],~0U,~0U,opcode[4]). + move_to(opcode); + arg1 = (is_sth?2:1) + arg2; + break; + case 6 : + CImg::vector(*opcode,opcode[1],opcode[2],0,opcode[3],opcode[4],opcode[5],~0U, + _cimg_mp_boundary).move_to(opcode); + arg1 = (is_sth?2:4) + arg2; + break; + case 7 : + CImg::vector(*opcode,opcode[1],opcode[2],0,opcode[3],opcode[4],opcode[5],~0U, + opcode[6]).move_to(opcode); + arg1 = (is_sth?2:4) + arg2; + break; + case 8 : + CImg::vector(*opcode,opcode[1],opcode[2],opcode[3],opcode[4],opcode[5],opcode[6], + opcode[7],_cimg_mp_boundary).move_to(opcode); + arg1 = (is_sth?2:5) + arg2; + break; + case 9 : + arg1 = (is_sth?2:5) + arg2; + break; + default : // Error -> too much arguments + *se = saved_char; + s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s: Too much arguments specified, " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + + _cimg_mp_check_type((unsigned int)*opcode,arg2 + 1,1,0); + _cimg_mp_check_type((unsigned int)opcode[1],arg2 + 1 + (is_sth?0:1),1,0); + _cimg_mp_check_type((unsigned int)opcode[2],arg2 + 1 + (is_sth?0:2),1,0); + _cimg_mp_check_type((unsigned int)opcode[3],arg2 + 1 + (is_sth?0:3),1,0); + if (opcode[4]!=(ulongT)~0U) { + _cimg_mp_check_constant((unsigned int)opcode[4],arg1,3); + opcode[4] = (ulongT)mem[opcode[4]]; + } + if (opcode[5]!=(ulongT)~0U) { + _cimg_mp_check_constant((unsigned int)opcode[5],arg1 + 1,3); + opcode[5] = (ulongT)mem[opcode[5]]; + } + if (opcode[6]!=(ulongT)~0U) { + _cimg_mp_check_constant((unsigned int)opcode[6],arg1 + 2,3); + opcode[6] = (ulongT)mem[opcode[6]]; + } + if (opcode[7]!=(ulongT)~0U) { + _cimg_mp_check_constant((unsigned int)opcode[7],arg1 + 3,3); + opcode[7] = (ulongT)mem[opcode[7]]; + } + _cimg_mp_check_type((unsigned int)opcode[8],arg1 + 4,1,0); + + if (opcode[4]==(ulongT)~0U || opcode[5]==(ulongT)~0U || + opcode[6]==(ulongT)~0U || opcode[7]==(ulongT)~0U) { + if (p1!=~0U) { + _cimg_mp_check_constant(p1,1,1); + p1 = (unsigned int)cimg::mod((int)mem[p1],listin.width()); + } + const CImg &img = p1!=~0U?listin[p1]:imgin; + if (!img) { + *se = saved_char; + s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s: Cannot crop empty image when " + "some xyzc-coordinates are unspecified, in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + if (opcode[4]==(ulongT)~0U) opcode[4] = (ulongT)img._width; + if (opcode[5]==(ulongT)~0U) opcode[5] = (ulongT)img._height; + if (opcode[6]==(ulongT)~0U) opcode[6] = (ulongT)img._depth; + if (opcode[7]==(ulongT)~0U) opcode[7] = (ulongT)img._spectrum; + } + + pos = vector((unsigned int)(opcode[4]*opcode[5]*opcode[6]*opcode[7])); + CImg::vector((ulongT)mp_image_crop, + pos,p1, + *opcode,opcode[1],opcode[2],opcode[3], + opcode[4],opcode[5],opcode[6],opcode[7], + opcode[8]).move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"cross(",6)) { // Cross product + _cimg_mp_op("Function 'cross()'"); + s1 = ss6; while (s1::vector((ulongT)mp_cross,pos,arg1,arg2).move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"cut(",4)) { // Cut + _cimg_mp_op("Function 'cut()'"); + s1 = ss4; while (s1val2?val2:val); + } + _cimg_mp_scalar3(mp_cut,arg1,arg2,arg3); + } + break; + + case 'd' : + if (*ss1=='(') { // Image depth + _cimg_mp_op("Function 'd()'"); + if (*ss2=='#') { p1 = compile(ss3,se1,depth1,0); _cimg_mp_check_list(false); } // Index specified + else { if (ss2!=se1) break; p1 = ~0U; } + pos = scalar(); + CImg::vector((ulongT)mp_image_d,pos,p1).move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"date(",5)) { // Date and file date + _cimg_mp_op("Function 'date()'"); + s1 = ss5; while (s1::string(ss6,true,true).unroll('y'),true); + cimg::strpare(variable_name,false,true); + ((CImg::vector((ulongT)mp_debug,arg1,0,code._width - p1), + variable_name)>'y').move_to(opcode); + opcode[2] = opcode._height; + opcode.move_to(code,p1); + *se1 = ')'; + _cimg_mp_return(arg1); + } + + if (!std::strncmp(ss,"display(",8)) { // Display memory, vector or image + _cimg_mp_op("Function 'display()'"); + if (pexpr[se2 - expr._data]=='(') { // no arguments? + CImg::vector((ulongT)mp_display_memory,_cimg_mp_slot_nan).move_to(code); + _cimg_mp_return(_cimg_mp_slot_nan); + } + if (*ss8!='#') { // Vector + s1 = ss8; while (s1::string(ss8,true,true).unroll('y'),true); + cimg::strpare(variable_name,false,true); + if (_cimg_mp_is_vector(arg1)) + ((CImg::vector((ulongT)mp_vector_print,arg1,0,(ulongT)_cimg_mp_vector_size(arg1)), + variable_name)>'y').move_to(opcode); + else + ((CImg::vector((ulongT)mp_print,arg1,0), + variable_name)>'y').move_to(opcode); + opcode[2] = opcode._height; + opcode.move_to(code); + + ((CImg::vector((ulongT)mp_display,arg1,0,(ulongT)_cimg_mp_vector_size(arg1), + arg2,arg3,arg4,arg5), + variable_name)>'y').move_to(opcode); + opcode[2] = opcode._height; + opcode.move_to(code); + *s1 = c1; + _cimg_mp_return(arg1); + + } else { // Image + p1 = compile(ss8 + 1,se1,depth1,0); + _cimg_mp_check_list(true); + CImg::vector((ulongT)mp_image_display,_cimg_mp_slot_nan,p1).move_to(code); + _cimg_mp_return(_cimg_mp_slot_nan); + } + } + + if (!std::strncmp(ss,"det(",4)) { // Matrix determinant + _cimg_mp_op("Function 'det()'"); + arg1 = compile(ss4,se1,depth1,0); + _cimg_mp_check_matrix_square(arg1,1); + p1 = (unsigned int)std::sqrt((float)_cimg_mp_vector_size(arg1)); + _cimg_mp_scalar2(mp_det,arg1,p1); + } + + if (!std::strncmp(ss,"diag(",5)) { // Diagonal matrix + _cimg_mp_op("Function 'diag()'"); + arg1 = compile(ss5,se1,depth1,0); + _cimg_mp_check_type(arg1,1,2,0); + p1 = _cimg_mp_vector_size(arg1); + pos = vector(p1*p1); + CImg::vector((ulongT)mp_diag,pos,arg1,p1).move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"dot(",4)) { // Dot product + _cimg_mp_op("Function 'dot()'"); + s1 = ss4; while (s1::vector((ulongT)mp_dowhile,p1,p2,arg2 - arg1,code._width - arg2,_cimg_mp_vector_size(p1), + p1>=arg6 && !_cimg_mp_is_constant(p1), + p2>=arg6 && !_cimg_mp_is_constant(p2)).move_to(code,arg1); + _cimg_mp_return(p1); + } + + if (!std::strncmp(ss,"draw(",5)) { // Draw image + is_parallelizable = false; + _cimg_mp_op("Function 'draw()'"); + if (*ss5=='#') { // Index specified + s0 = ss6; while (s01) { + arg3 = arg2 + 1; + if (p2>2) { + arg4 = arg3 + 1; + if (p2>3) arg5 = arg4 + 1; + } + } + ++s0; + is_sth = true; + } else { + if (s0::vector((ulongT)mp_image_draw,arg1,(ulongT)_cimg_mp_vector_size(arg1),p1,arg2,arg3,arg4,arg5, + 0,0,0,0,1,(ulongT)~0U,0,1).move_to(opcode); + + arg2 = arg3 = arg4 = arg5 = ~0U; + p2 = p1!=~0U?0:1; + if (s0::vector((ulongT)mp_matrix_eig,pos,arg1,p1).move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"end(",4)) { // End + _cimg_mp_op("Function 'end()'"); + code.swap(code_end); + arg1 = compile(ss4,se1,depth1,p_ref); + code.swap(code_end); + _cimg_mp_return(arg1); + } + + if (!std::strncmp(ss,"exp(",4)) { // Exponential + _cimg_mp_op("Function 'exp()'"); + arg1 = compile(ss4,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_exp,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::exp(mem[arg1])); + _cimg_mp_scalar1(mp_exp,arg1); + } + + if (!std::strncmp(ss,"eye(",4)) { // Identity matrix + _cimg_mp_op("Function 'eye()'"); + arg1 = compile(ss4,se1,depth1,0); + _cimg_mp_check_constant(arg1,1,3); + p1 = (unsigned int)mem[arg1]; + pos = vector(p1*p1); + CImg::vector((ulongT)mp_eye,pos,p1).move_to(code); + _cimg_mp_return(pos); + } + break; + + case 'f' : + if (!std::strncmp(ss,"fact(",5)) { // Factorial + _cimg_mp_op("Function 'fact()'"); + arg1 = compile(ss5,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_factorial,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(cimg::factorial(mem[arg1])); + _cimg_mp_scalar1(mp_factorial,arg1); + } + + if (!std::strncmp(ss,"fibo(",5)) { // Fibonacci + _cimg_mp_op("Function 'fibo()'"); + arg1 = compile(ss5,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_fibonacci,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(cimg::fibonacci(mem[arg1])); + _cimg_mp_scalar1(mp_fibonacci,arg1); + } + + if (!std::strncmp(ss,"find(",5)) { // Find + _cimg_mp_op("Function 'find()'"); + + // First argument: data to look at. + s0 = ss5; while (s0::vector((ulongT)mp_for,p3,(ulongT)_cimg_mp_vector_size(p3),p2,arg2 - arg1,arg3 - arg2, + arg4 - arg3,code._width - arg4, + p3>=arg6 && !_cimg_mp_is_constant(p3), + p2>=arg6 && !_cimg_mp_is_constant(p2)).move_to(code,arg1); + _cimg_mp_return(p3); + } + + if (!std::strncmp(ss,"floor(",6)) { // Floor + _cimg_mp_op("Function 'floor()'"); + arg1 = compile(ss6,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_floor,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::floor(mem[arg1])); + _cimg_mp_scalar1(mp_floor,arg1); + } + break; + + case 'g' : + if (!std::strncmp(ss,"gauss(",6)) { // Gaussian function + _cimg_mp_op("Function 'gauss()'"); + s1 = ss6; while (s1::vector((ulongT)mp_image_h,pos,p1).move_to(code); + _cimg_mp_return(pos); + } + + case 'i' : + if ((*ss1=='m' || *ss1=='M' || *ss1=='a' || *ss1=='v' || *ss1=='s' || *ss1=='p' || *ss1=='c') && + *ss2=='(') { // im(), iM(), ia(), iv(), is(), ip(), ic() + _cimg_mp_op(*ss1=='m'?"Function 'im()'": + *ss1=='M'?"Function 'iM()'": + *ss1=='a'?"Function 'ia()'": + *ss1=='v'?"Function 'iv()'": + *ss1=='s'?"Function 'is()'": + *ss1=='p'?"Function 'ip()'": + "Function 'ic()"); + if (*ss3=='#') { p1 = compile(ss4,se1,depth1,0); _cimg_mp_check_list(false); } // Index specified + else { if (ss3!=se1) break; p1 = ~0U; } + pos = scalar(); + CImg::vector((ulongT)(*ss1=='m'?mp_image_im: + *ss1=='M'?mp_image_iM: + *ss1=='a'?mp_image_ia: + *ss1=='v'?mp_image_iv: + *ss1=='s'?mp_image_is: + *ss1=='p'?mp_image_ip: + mp_image_ic),pos,p1).move_to(code); + _cimg_mp_return(pos); + } + + if (*ss1=='f' && *ss2=='(') { // If..then[..else.] + _cimg_mp_op("Function 'if()'"); + s1 = ss3; while (s1::vector((ulongT)mp_if,pos,arg1,arg2,arg3, + p3 - p2,code._width - p3,arg4).move_to(code,p2); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"init(",5)) { // Init + _cimg_mp_op("Function 'init()'"); + code.swap(code_init); + arg1 = compile(ss5,se1,depth1,p_ref); + code.swap(code_init); + _cimg_mp_return(arg1); + } + + if (!std::strncmp(ss,"int(",4)) { // Integer cast + _cimg_mp_op("Function 'int()'"); + arg1 = compile(ss4,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_int,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant((longT)mem[arg1]); + _cimg_mp_scalar1(mp_int,arg1); + } + + if (!std::strncmp(ss,"inv(",4)) { // Matrix/scalar inversion + _cimg_mp_op("Function 'inv()'"); + arg1 = compile(ss4,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) { + _cimg_mp_check_matrix_square(arg1,1); + p1 = (unsigned int)std::sqrt((float)_cimg_mp_vector_size(arg1)); + pos = vector(p1*p1); + CImg::vector((ulongT)mp_matrix_inv,pos,arg1,p1).move_to(code); + _cimg_mp_return(pos); + } + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(1/mem[arg1]); + _cimg_mp_scalar2(mp_div,1,arg1); + } + + if (*ss1=='s') { // Family of 'is_?()' functions + + if (!std::strncmp(ss,"isbool(",7)) { // Is boolean? + _cimg_mp_op("Function 'isbool()'"); + if (ss7==se1) _cimg_mp_return(0); + arg1 = compile(ss7,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_isbool,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_return(mem[arg1]==0.0 || mem[arg1]==1.0); + _cimg_mp_scalar1(mp_isbool,arg1); + } + + if (!std::strncmp(ss,"isdir(",6)) { // Is directory? + _cimg_mp_op("Function 'isdir()'"); + *se1 = 0; + is_sth = cimg::is_directory(ss6); + *se1 = ')'; + _cimg_mp_return(is_sth?1U:0U); + } + + if (!std::strncmp(ss,"isfile(",7)) { // Is file? + _cimg_mp_op("Function 'isfile()'"); + *se1 = 0; + is_sth = cimg::is_file(ss7); + *se1 = ')'; + _cimg_mp_return(is_sth?1U:0U); + } + + if (!std::strncmp(ss,"isin(",5)) { // Is in sequence/vector? + if (ss5>=se1) _cimg_mp_return(0); + _cimg_mp_op("Function 'isin()'"); + pos = scalar(); + CImg::vector((ulongT)mp_isin,pos,0).move_to(_opcode); + for (s = ss5; s::sequence(_cimg_mp_vector_size(arg1),arg1 + 1, + arg1 + (ulongT)_cimg_mp_vector_size(arg1)). + move_to(_opcode); + else CImg::vector(arg1).move_to(_opcode); + s = ns; + } + (_opcode>'y').move_to(opcode); + opcode[2] = opcode._height; + opcode.move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"isinf(",6)) { // Is infinite? + _cimg_mp_op("Function 'isinf()'"); + if (ss6==se1) _cimg_mp_return(0); + arg1 = compile(ss6,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_isinf,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_return((unsigned int)cimg::type::is_inf(mem[arg1])); + _cimg_mp_scalar1(mp_isinf,arg1); + } + + if (!std::strncmp(ss,"isint(",6)) { // Is integer? + _cimg_mp_op("Function 'isint()'"); + if (ss6==se1) _cimg_mp_return(0); + arg1 = compile(ss6,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_isint,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_return((unsigned int)(cimg::mod(mem[arg1],1.0)==0)); + _cimg_mp_scalar1(mp_isint,arg1); + } + + if (!std::strncmp(ss,"isnan(",6)) { // Is NaN? + _cimg_mp_op("Function 'isnan()'"); + if (ss6==se1) _cimg_mp_return(0); + arg1 = compile(ss6,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_isnan,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_return((unsigned int)cimg::type::is_nan(mem[arg1])); + _cimg_mp_scalar1(mp_isnan,arg1); + } + + if (!std::strncmp(ss,"isval(",6)) { // Is value? + _cimg_mp_op("Function 'isval()'"); + val = 0; + if (cimg_sscanf(ss6,"%lf%c%c",&val,&sep,&end)==2 && sep==')') _cimg_mp_return(1); + _cimg_mp_return(0); + } + + } + break; + + case 'l' : + if (!std::strncmp(ss,"log(",4)) { // Natural logarithm + _cimg_mp_op("Function 'log()'"); + arg1 = compile(ss4,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_log,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::log(mem[arg1])); + _cimg_mp_scalar1(mp_log,arg1); + } + + if (!std::strncmp(ss,"log2(",5)) { // Base-2 logarithm + _cimg_mp_op("Function 'log2()'"); + arg1 = compile(ss5,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_log2,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(cimg::log2(mem[arg1])); + _cimg_mp_scalar1(mp_log2,arg1); + } + + if (!std::strncmp(ss,"log10(",6)) { // Base-10 logarithm + _cimg_mp_op("Function 'log10()'"); + arg1 = compile(ss6,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_log10,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::log10(mem[arg1])); + _cimg_mp_scalar1(mp_log10,arg1); + } + + if (!std::strncmp(ss,"lowercase(",10)) { // Lower case + _cimg_mp_op("Function 'lowercase()'"); + arg1 = compile(ss + 10,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_lowercase,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(cimg::lowercase(mem[arg1])); + _cimg_mp_scalar1(mp_lowercase,arg1); + } + break; + + case 'm' : + if (!std::strncmp(ss,"mul(",4)) { // Matrix multiplication + _cimg_mp_op("Function 'mul()'"); + s1 = ss4; while (s1expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s: Types of first and second arguments ('%s' and '%s') " + "do not match with third argument 'nb_colsB=%u', " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s_type(arg1)._data,s_type(arg2)._data,p3, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + pos = vector(arg4*p3); + CImg::vector((ulongT)mp_matrix_mul,pos,arg1,arg2,arg4,arg5,p3).move_to(code); + _cimg_mp_return(pos); + } + break; + + case 'n' : + if (!std::strncmp(ss,"narg(",5)) { // Number of arguments + _cimg_mp_op("Function 'narg()'"); + if (ss5>=se1) _cimg_mp_return(0); + arg1 = 0; + for (s = ss5; s::vector((ulongT)mp_norm0,pos,0).move_to(_opcode); break; + case 1 : + CImg::vector((ulongT)mp_norm1,pos,0).move_to(_opcode); break; + case 2 : + CImg::vector((ulongT)mp_norm2,pos,0).move_to(_opcode); break; + case ~0U : + CImg::vector((ulongT)mp_norminf,pos,0).move_to(_opcode); break; + default : + CImg::vector((ulongT)mp_normp,pos,0,(ulongT)(arg1==~0U?-1:(int)arg1)). + move_to(_opcode); + } + for ( ; s::sequence(_cimg_mp_vector_size(arg2),arg2 + 1, + arg2 + (ulongT)_cimg_mp_vector_size(arg2)). + move_to(_opcode); + else CImg::vector(arg2).move_to(_opcode); + s = ns; + } + + (_opcode>'y').move_to(opcode); + if (arg1>0 && opcode._height==4) // Special case with one argument and p>=1 + _cimg_mp_scalar1(mp_abs,opcode[3]); + opcode[2] = opcode._height; + opcode.move_to(code); + _cimg_mp_return(pos); + } + break; + + case 'p' : + if (!std::strncmp(ss,"permut(",7)) { // Number of permutations + _cimg_mp_op("Function 'permut()'"); + s1 = ss7; while (s1expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s: Type of first argument ('%s') " + "does not match with second argument 'nb_colsA=%u', " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s_type(arg1)._data,p2, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + pos = vector(p1); + CImg::vector((ulongT)mp_matrix_pseudoinv,pos,arg1,p2,p3).move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"print(",6)) { // Print expressions + _cimg_mp_op("Function 'print()'"); + if (*ss6!='#') { // Regular expression + for (s = ss6; s::string(s,true,true).unroll('y'),true); + cimg::strpare(variable_name,false,true); + if (_cimg_mp_is_vector(pos)) // Vector + ((CImg::vector((ulongT)mp_vector_print,pos,0,(ulongT)_cimg_mp_vector_size(pos)), + variable_name)>'y').move_to(opcode); + else // Scalar + ((CImg::vector((ulongT)mp_print,pos,0), + variable_name)>'y').move_to(opcode); + opcode[2] = opcode._height; + opcode.move_to(code); + *ns = c1; s = ns; + } + _cimg_mp_return(pos); + } else { // Image + p1 = compile(ss7,se1,depth1,0); + _cimg_mp_check_list(true); + CImg::vector((ulongT)mp_image_print,_cimg_mp_slot_nan,p1).move_to(code); + _cimg_mp_return(_cimg_mp_slot_nan); + } + } + break; + + case 'r' : + if (!std::strncmp(ss,"resize(",7)) { // Vector or image resize + _cimg_mp_op("Function 'resize()'"); + if (*ss7!='#') { // Vector + s1 = ss7; while (s1::vector((ulongT)mp_vector_resize,pos,arg2,arg1,(ulongT)_cimg_mp_vector_size(arg1), + arg3,arg4).move_to(code); + _cimg_mp_return(pos); + + } else { // Image + is_parallelizable = false; + s0 = ss8; while (s0::vector((ulongT)mp_image_resize,_cimg_mp_slot_nan,p1,~0U,~0U,~0U,~0U,1,0,0,0,0,0). + move_to(opcode); + pos = 0; + for (s = s0; s10) { + *se = saved_char; + s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s: %s arguments, in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + pos<1?"Missing":"Too much", + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + opcode.move_to(code); + _cimg_mp_return(_cimg_mp_slot_nan); + } + } + + if (!std::strncmp(ss,"reverse(",8)) { // Vector reverse + _cimg_mp_op("Function 'reverse()'"); + arg1 = compile(ss8,se1,depth1,0); + if (!_cimg_mp_is_vector(arg1)) _cimg_mp_return(arg1); + p1 = _cimg_mp_vector_size(arg1); + pos = vector(p1); + CImg::vector((ulongT)mp_vector_reverse,pos,arg1,p1).move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"rol(",4) || !std::strncmp(ss,"ror(",4)) { // Bitwise rotation + _cimg_mp_op(ss[2]=='l'?"Function 'rol()'":"Function 'ror()'"); + s1 = ss4; while (s11) { + arg2 = arg1 + 1; + if (p2>2) arg3 = arg2 + 1; + } + arg4 = compile(++s1,se1,depth1,0); + } else { + s2 = s1 + 1; while (s2::vector((ulongT)mp_rot3d,pos,arg1,arg2,arg3,arg4).move_to(code); + } else { // 2d rotation + _cimg_mp_check_type(arg1,1,1,0); + pos = vector(4); + CImg::vector((ulongT)mp_rot2d,pos,arg1).move_to(code); + } + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"round(",6)) { // Value rounding + _cimg_mp_op("Function 'round()'"); + s1 = ss6; while (s1::vector((ulongT)mp_image_s,pos,p1).move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"same(",5)) { // Test if operands have the same values + _cimg_mp_op("Function 'same()'"); + s1 = ss5; while (s1::vector((ulongT)mp_single,arg1,code._width - p1).move_to(code,p1); + _cimg_mp_return(arg1); + } + + if (!std::strncmp(ss,"sinh(",5)) { // Hyperbolic sine + _cimg_mp_op("Function 'sinh()'"); + arg1 = compile(ss5,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_sinh,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::sinh(mem[arg1])); + _cimg_mp_scalar1(mp_sinh,arg1); + } + + if (!std::strncmp(ss,"size(",5)) { // Vector size. + _cimg_mp_op("Function 'size()'"); + arg1 = compile(ss5,se1,depth1,0); + _cimg_mp_constant(_cimg_mp_is_scalar(arg1)?0:_cimg_mp_vector_size(arg1)); + } + + if (!std::strncmp(ss,"solve(",6)) { // Solve linear system + _cimg_mp_op("Function 'solve()'"); + s1 = ss6; while (s1expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s: Types of first and second arguments ('%s' and '%s') " + "do not match with third argument 'nb_colsB=%u', " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s_type(arg1)._data,s_type(arg2)._data,p3, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + pos = vector(arg4*p3); + CImg::vector((ulongT)mp_solve,pos,arg1,arg2,arg4,arg5,p3).move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"sort(",5)) { // Sort vector + _cimg_mp_op("Function 'sort()'"); + s1 = ss6; while (s1expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s: Invalid specified chunk size (%u) for first argument " + "('%s'), in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + arg3,s_type(arg1)._data, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + pos = vector(p1); + CImg::vector((ulongT)mp_sort,pos,arg1,p1,arg2,arg3).move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"sqr(",4)) { // Square + _cimg_mp_op("Function 'sqr()'"); + arg1 = compile(ss4,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_sqr,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(cimg::sqr(mem[arg1])); + _cimg_mp_scalar1(mp_sqr,arg1); + } + + if (!std::strncmp(ss,"sqrt(",5)) { // Square root + _cimg_mp_op("Function 'sqrt()'"); + arg1 = compile(ss5,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_sqrt,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::sqrt(mem[arg1])); + _cimg_mp_scalar1(mp_sqrt,arg1); + } + + if (!std::strncmp(ss,"stod(",5)) { // String to double + _cimg_mp_op("Function 'stod()'"); + s1 = ss5; while (s1expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s: Type of first argument ('%s') " + "does not match with second argument 'nb_colsA=%u', " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s_type(arg1)._data,p2, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + pos = vector(p1 + p2 + p2*p2); + CImg::vector((ulongT)mp_matrix_svd,pos,arg1,p2,p3).move_to(code); + _cimg_mp_return(pos); + } + break; + + case 't' : + if (!std::strncmp(ss,"tan(",4)) { // Tangent + _cimg_mp_op("Function 'tan()'"); + arg1 = compile(ss4,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_tan,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::tan(mem[arg1])); + _cimg_mp_scalar1(mp_tan,arg1); + } + + if (!std::strncmp(ss,"tanh(",5)) { // Hyperbolic tangent + _cimg_mp_op("Function 'tanh()'"); + arg1 = compile(ss5,se1,depth1,0); + if (_cimg_mp_is_vector(arg1)) _cimg_mp_vector1_v(mp_tanh,arg1); + if (_cimg_mp_is_constant(arg1)) _cimg_mp_constant(std::tanh(mem[arg1])); + _cimg_mp_scalar1(mp_tanh,arg1); + } + + if (!std::strncmp(ss,"trace(",6)) { // Matrix trace + _cimg_mp_op("Function 'trace()'"); + arg1 = compile(ss6,se1,depth1,0); + _cimg_mp_check_matrix_square(arg1,1); + p1 = (unsigned int)std::sqrt((float)_cimg_mp_vector_size(arg1)); + _cimg_mp_scalar2(mp_trace,arg1,p1); + } + + if (!std::strncmp(ss,"transp(",7)) { // Matrix transpose + _cimg_mp_op("Function 'transp()'"); + s1 = ss7; while (s1expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s: Size of first argument ('%s') does not match " + "second argument 'nb_cols=%u', in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + s_type(arg1)._data,p2, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + pos = vector(p3*p2); + CImg::vector((ulongT)mp_transp,pos,arg1,p2,p3).move_to(code); + _cimg_mp_return(pos); + } + break; + + case 'u' : + if (*ss1=='(') { // Random value with uniform distribution + _cimg_mp_op("Function 'u()'"); + if (*ss2==')') _cimg_mp_scalar2(mp_u,0,1); + s1 = ss2; while (s1ss6 && *s0==',') ++s0; + s1 = s0; while (s1s0) { + *s1 = 0; + arg2 = arg3 = ~0U; + if (s0[0]=='w' && s0[1]=='h' && !s0[2]) arg1 = reserved_label[arg3 = 0]; + else if (s0[0]=='w' && s0[1]=='h' && s0[2]=='d' && !s0[3]) arg1 = reserved_label[arg3 = 1]; + else if (s0[0]=='w' && s0[1]=='h' && s0[2]=='d' && s0[3]=='s' && !s0[4]) + arg1 = reserved_label[arg3 = 2]; + else if (s0[0]=='p' && s0[1]=='i' && !s0[2]) arg1 = reserved_label[arg3 = 3]; + else if (s0[0]=='i' && s0[1]=='m' && !s0[2]) arg1 = reserved_label[arg3 = 4]; + else if (s0[0]=='i' && s0[1]=='M' && !s0[2]) arg1 = reserved_label[arg3 = 5]; + else if (s0[0]=='i' && s0[1]=='a' && !s0[2]) arg1 = reserved_label[arg3 = 6]; + else if (s0[0]=='i' && s0[1]=='v' && !s0[2]) arg1 = reserved_label[arg3 = 7]; + else if (s0[0]=='i' && s0[1]=='s' && !s0[2]) arg1 = reserved_label[arg3 = 8]; + else if (s0[0]=='i' && s0[1]=='p' && !s0[2]) arg1 = reserved_label[arg3 = 9]; + else if (s0[0]=='i' && s0[1]=='c' && !s0[2]) arg1 = reserved_label[arg3 = 10]; + else if (s0[0]=='x' && s0[1]=='m' && !s0[2]) arg1 = reserved_label[arg3 = 11]; + else if (s0[0]=='y' && s0[1]=='m' && !s0[2]) arg1 = reserved_label[arg3 = 12]; + else if (s0[0]=='z' && s0[1]=='m' && !s0[2]) arg1 = reserved_label[arg3 = 13]; + else if (s0[0]=='c' && s0[1]=='m' && !s0[2]) arg1 = reserved_label[arg3 = 14]; + else if (s0[0]=='x' && s0[1]=='M' && !s0[2]) arg1 = reserved_label[arg3 = 15]; + else if (s0[0]=='y' && s0[1]=='M' && !s0[2]) arg1 = reserved_label[arg3 = 16]; + else if (s0[0]=='z' && s0[1]=='M' && !s0[2]) arg1 = reserved_label[arg3 = 17]; + else if (s0[0]=='c' && s0[1]=='M' && !s0[2]) arg1 = reserved_label[arg3 = 18]; + else if (s0[0]=='i' && s0[1]>='0' && s0[1]<='9' && !s0[2]) + arg1 = reserved_label[arg3 = 19 + s0[1] - '0']; + else if (!std::strcmp(s0,"interpolation")) arg1 = reserved_label[arg3 = 29]; + else if (!std::strcmp(s0,"boundary")) arg1 = reserved_label[arg3 = 30]; + else if (s0[1]) { // Multi-char variable + cimglist_for(variable_def,i) if (!std::strcmp(s0,variable_def[i])) { + arg1 = variable_pos[i]; arg2 = i; break; + } + } else arg1 = reserved_label[arg3 = *s0]; // Single-char variable + + if (arg1!=~0U) { + if (arg2==~0U) { if (arg3!=~0U) reserved_label[arg3] = ~0U; } + else { + variable_def.remove(arg2); + if (arg20) || + !std::strncmp(ss,"vector(",7) || + (!std::strncmp(ss,"vector",6) && ss7::sequence(arg4,arg3 + 1,arg3 + arg4).move_to(_opcode); + arg2+=arg4; + } else { CImg::vector(arg3).move_to(_opcode); ++arg2; } + s = ns; + } + if (arg1==~0U) arg1 = arg2; + _cimg_mp_check_vector0(arg1); + pos = vector(arg1); + _opcode.insert(CImg::vector((ulongT)mp_vector_init,pos,0,arg1),0); + (_opcode>'y').move_to(opcode); + opcode[2] = opcode._height; + opcode.move_to(code); + _cimg_mp_return(pos); + } + break; + + case 'w' : + if (*ss1=='(') { // Image width + _cimg_mp_op("Function 'w()'"); + if (*ss2=='#') { p1 = compile(ss3,se1,depth1,0); _cimg_mp_check_list(false); } // Index specified + else { if (ss2!=se1) break; p1 = ~0U; } + pos = scalar(); + CImg::vector((ulongT)mp_image_w,pos,p1).move_to(code); + _cimg_mp_return(pos); + } + + if (*ss1=='h' && *ss2=='(') { // Image width*height + _cimg_mp_op("Function 'wh()'"); + if (*ss3=='#') { p1 = compile(ss4,se1,depth1,0); _cimg_mp_check_list(false); } // Index specified + else { if (ss3!=se1) break; p1 = ~0U; } + pos = scalar(); + CImg::vector((ulongT)mp_image_wh,pos,p1).move_to(code); + _cimg_mp_return(pos); + } + + if (*ss1=='h' && *ss2=='d' && *ss3=='(') { // Image width*height*depth + _cimg_mp_op("Function 'whd()'"); + if (*ss4=='#') { p1 = compile(ss5,se1,depth1,0); _cimg_mp_check_list(false); } // Index specified + else { if (ss4!=se1) break; p1 = ~0U; } + pos = scalar(); + CImg::vector((ulongT)mp_image_whd,pos,p1).move_to(code); + _cimg_mp_return(pos); + } + + if (*ss1=='h' && *ss2=='d' && *ss3=='s' && *ss4=='(') { // Image width*height*depth*spectrum + _cimg_mp_op("Function 'whds()'"); + if (*ss5=='#') { p1 = compile(ss6,se1,depth1,0); _cimg_mp_check_list(false); } // Index specified + else { if (ss5!=se1) break; p1 = ~0U; } + pos = scalar(); + CImg::vector((ulongT)mp_image_whds,pos,p1).move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"while(",6) || !std::strncmp(ss,"whiledo(",8)) { // While...do + _cimg_mp_op("Function 'whiledo()'"); + s0 = *ss5=='('?ss6:ss8; + s1 = s0; while (s1::vector((ulongT)mp_whiledo,pos,arg1,p2 - p1,code._width - p2,arg2, + pos>=arg6 && !_cimg_mp_is_constant(pos), + arg1>=arg6 && !_cimg_mp_is_constant(arg1)).move_to(code,p1); + _cimg_mp_return(pos); + } + break; + + case 'x' : + if ((*ss1=='m' || *ss1=='M') && *ss2=='(') { // xm(), xM() + _cimg_mp_op(*ss1=='m'?"Function 'xm()'":"Function 'xM()'"); + if (*ss3=='#') { p1 = compile(ss4,se1,depth1,0); _cimg_mp_check_list(false); } // Index specified + else { if (ss3!=se1) break; p1 = ~0U; } + pos = scalar(); + CImg::vector((ulongT)(*ss1=='m'?mp_image_xm:mp_image_xM),pos,p1).move_to(code); + _cimg_mp_return(pos); + } + + if (!std::strncmp(ss,"xor(",4)) { // Xor + _cimg_mp_op("Function 'xor()'"); + s1 = ss4; while (s1::vector((ulongT)(*ss1=='m'?mp_image_ym:mp_image_yM),pos,p1).move_to(code); + _cimg_mp_return(pos); + } + break; + + case 'z' : + if ((*ss1=='m' || *ss1=='M') && *ss2=='(') { // zm(), zM() + _cimg_mp_op(*ss1=='m'?"Function 'zm()'":"Function 'zM()'"); + if (*ss3=='#') { p1 = compile(ss4,se1,depth1,0); _cimg_mp_check_list(false); } // Index specified + else { if (ss3!=se1) break; p1 = ~0U; } + pos = scalar(); + CImg::vector((ulongT)(*ss1=='m'?mp_image_zm:mp_image_zM),pos,p1).move_to(code); + _cimg_mp_return(pos); + } + break; + + } + + if (!std::strncmp(ss,"min(",4) || !std::strncmp(ss,"max(",4) || + !std::strncmp(ss,"med(",4) || !std::strncmp(ss,"kth(",4) || + !std::strncmp(ss,"sum(",4) || + !std::strncmp(ss,"std(",4) || !std::strncmp(ss,"variance(",9) || + !std::strncmp(ss,"prod(",5) || !std::strncmp(ss,"mean(",5) || + !std::strncmp(ss,"argmin(",7) || !std::strncmp(ss,"argmax(",7)) { // Multi-argument functions + _cimg_mp_op(*ss=='a'?(ss[3]=='('?"Function 'arg()'":ss[4]=='i'?"Function 'argmin()'": + "Function 'argmax()'"): + *ss=='s'?(ss[1]=='u'?"Function 'sum()'":"Function 'std()'"): + *ss=='k'?"Function 'kth()'": + *ss=='p'?"Function 'prod()'": + *ss=='v'?"Function 'variance()'": + ss[1]=='i'?"Function 'min()'": + ss[1]=='a'?"Function 'max()'": + ss[2]=='a'?"Function 'mean()'":"Function 'med()'"); + op = *ss=='a'?(ss[3]=='('?mp_arg:ss[4]=='i'?mp_argmin:mp_argmax): + *ss=='s'?(ss[1]=='u'?mp_sum:mp_std): + *ss=='k'?mp_kth: + *ss=='p'?mp_prod: + *ss=='v'?mp_variance: + ss[1]=='i'?mp_min: + ss[1]=='a'?mp_max: + ss[2]=='a'?mp_mean: + mp_median; + is_sth = true; // Tell if all arguments are constant + pos = scalar(); + CImg::vector((ulongT)op,pos,0).move_to(_opcode); + for (s = std::strchr(ss,'(') + 1; s::sequence(_cimg_mp_vector_size(arg2),arg2 + 1, + arg2 + (ulongT)_cimg_mp_vector_size(arg2)). + move_to(_opcode); + else CImg::vector(arg2).move_to(_opcode); + is_sth&=_cimg_mp_is_constant(arg2); + s = ns; + } + (_opcode>'y').move_to(opcode); + opcode[2] = opcode._height; + if (is_sth) _cimg_mp_constant(op(*this)); + opcode.move_to(code); + _cimg_mp_return(pos); + } + + // No corresponding built-in function -> Look for a user-defined macro call. + s0 = strchr(ss,'('); + if (s0) { + variable_name.assign(ss,(unsigned int)(s0 - ss + 1)).back() = 0; + + // Count number of specified arguments. + p1 = 0; + for (s = s0 + 1; s<=se1; ++p1, s = ns + 1) { + while (*s && (signed char)*s<=' ') ++s; + if (*s==')' && !p1) break; + ns = s; while (ns _expr = macro_body[l]; // Expression to be substituted + + p1 = 1; // Indice of current parsed argument + for (s = s0 + 1; s<=se1; ++p1, s = ns + 1) { // Parse function arguments + while (*s && (signed char)*s<=' ') ++s; + if (*s==')' && p1==1) break; // Function has no arguments + if (p1>p2) { ++p1; break; } + ns = s; while (ns _pexpr(_expr._width); + ns = _pexpr._data; + for (ps = _expr._data, c1 = ' '; *ps; ++ps) { + if ((signed char)*ps>' ') c1 = *ps; + *(ns++) = c1; + } + *ns = 0; + + CImg _level = get_level(_expr); + expr.swap(_expr); + pexpr.swap(_pexpr); + level.swap(_level); + s0 = user_macro; + user_macro = macro_def[l]; + pos = compile(expr._data,expr._data + expr._width - 1,depth1,p_ref); + user_macro = s0; + level.swap(_level); + pexpr.swap(_pexpr); + expr.swap(_expr); + _cimg_mp_return(pos); + } + + if (arg3) { // Macro name matched but number of arguments does not + CImg sig_nargs(arg3); + arg1 = 0; + cimglist_for(macro_def,l) if (!std::strcmp(macro_def[l],variable_name)) + sig_nargs[arg1++] = (unsigned int)macro_def[l].back(); + *se = saved_char; + cimg::strellipsize(variable_name,64); + s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + if (sig_nargs._width>1) { + sig_nargs.sort(); + arg1 = sig_nargs.back(); + --sig_nargs._width; + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: Function '%s()': Number of specified arguments (%u) " + "does not match macro declaration (defined for %s or %u arguments), " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,variable_name._data, + p1,sig_nargs.value_string()._data,arg1, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } else + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: Function '%s()': Number of specified arguments (%u) " + "does not match macro declaration (defined for %u argument%s), " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,variable_name._data, + p1,*sig_nargs,*sig_nargs!=1?"s":"", + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + } + } // if (se1==')') + + // Char / string initializer. + if (*se1=='\'' && + ((se1>ss && *ss=='\'') || + (se1>ss1 && *ss=='_' && *ss1=='\''))) { + if (*ss=='_') { _cimg_mp_op("Char initializer"); s1 = ss2; } + else { _cimg_mp_op("String initializer"); s1 = ss1; } + arg1 = (unsigned int)(se1 - s1); // Original string length. + if (arg1) { + CImg(s1,arg1 + 1).move_to(variable_name).back() = 0; + cimg::strunescape(variable_name); + arg1 = (unsigned int)std::strlen(variable_name); + } + if (!arg1) _cimg_mp_return(0); // Empty string -> 0 + if (*ss=='_') { + if (arg1==1) _cimg_mp_constant(*variable_name); + *se = saved_char; + cimg::strellipsize(variable_name,64); + s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s: Literal %s contains more than one character, " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op, + ss1, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + pos = vector(arg1); + CImg::vector((ulongT)mp_string_init,pos,arg1).move_to(_opcode); + CImg(1,arg1/sizeof(ulongT) + (arg1%sizeof(ulongT)?1:0)).move_to(_opcode); + std::memcpy((char*)_opcode[1]._data,variable_name,arg1); + (_opcode>'y').move_to(code); + _cimg_mp_return(pos); + } + + // Vector initializer [ ... ]. + if (*ss=='[' && *se1==']') { + _cimg_mp_op("Vector initializer"); + s1 = ss1; while (s1s1 && (signed char)*s2<=' ') --s2; + if (s2>s1 && *s1=='\'' && *s2=='\'') { // Vector values provided as a string + arg1 = (unsigned int)(s2 - s1 - 1); // Original string length. + if (arg1) { + CImg(s1 + 1,arg1 + 1).move_to(variable_name).back() = 0; + cimg::strunescape(variable_name); + arg1 = (unsigned int)std::strlen(variable_name); + } + if (!arg1) _cimg_mp_return(0); // Empty string -> 0 + pos = vector(arg1); + CImg::vector((ulongT)mp_string_init,pos,arg1).move_to(_opcode); + CImg(1,arg1/sizeof(ulongT) + (arg1%sizeof(ulongT)?1:0)).move_to(_opcode); + std::memcpy((char*)_opcode[1]._data,variable_name,arg1); + (_opcode>'y').move_to(code); + } else { // Vector values provided as list of items + arg1 = 0; // Number of specified values. + if (*ss1!=']') for (s = ss1; s::sequence(arg3,arg2 + 1,arg2 + arg3).move_to(_opcode); + arg1+=arg3; + } else { CImg::vector(arg2).move_to(_opcode); ++arg1; } + s = ns; + } + _cimg_mp_check_vector0(arg1); + pos = vector(arg1); + _opcode.insert(CImg::vector((ulongT)mp_vector_init,pos,0,arg1),0); + (_opcode>'y').move_to(opcode); + opcode[2] = opcode._height; + opcode.move_to(code); + } + _cimg_mp_return(pos); + } + + // Variables related to the input list of images. + if (*ss1=='#' && ss2::vector((ulongT)mp_list_Joff,pos,p1,0,0,p2).move_to(code); + _cimg_mp_return(pos); + case 'R' : // R#ind + if (!listin) _cimg_mp_return(0); + _cimg_mp_scalar7(mp_list_ixyzc,arg1,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,0, + 0,_cimg_mp_boundary); + case 'G' : // G#ind + if (!listin) _cimg_mp_return(0); + _cimg_mp_scalar7(mp_list_ixyzc,arg1,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,1, + 0,_cimg_mp_boundary); + case 'B' : // B#ind + if (!listin) _cimg_mp_return(0); + _cimg_mp_scalar7(mp_list_ixyzc,arg1,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,2, + 0,_cimg_mp_boundary); + case 'A' : // A#ind + if (!listin) _cimg_mp_return(0); + _cimg_mp_scalar7(mp_list_ixyzc,arg1,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,3, + 0,_cimg_mp_boundary); + } + } + + if (*ss1 && *ss2=='#' && ss3::vector(listin[p1].median()).move_to(list_median[p1]); + _cimg_mp_constant(*list_median[p1]); + } + _cimg_mp_scalar1(mp_list_median,arg1); + } + if (*ss1>='0' && *ss1<='9') { // i0#ind...i9#ind + if (!listin) _cimg_mp_return(0); + _cimg_mp_scalar7(mp_list_ixyzc,arg1,_cimg_mp_slot_x,_cimg_mp_slot_y,_cimg_mp_slot_z,*ss1 - '0', + 0,_cimg_mp_boundary); + } + switch (*ss1) { + case 'm' : arg2 = 0; break; // im#ind + case 'M' : arg2 = 1; break; // iM#ind + case 'a' : arg2 = 2; break; // ia#ind + case 'v' : arg2 = 3; break; // iv#ind + case 's' : arg2 = 12; break; // is#ind + case 'p' : arg2 = 13; break; // ip#ind + } + } else if (*ss1=='m') switch (*ss) { + case 'x' : arg2 = 4; break; // xm#ind + case 'y' : arg2 = 5; break; // ym#ind + case 'z' : arg2 = 6; break; // zm#ind + case 'c' : arg2 = 7; break; // cm#ind + } else if (*ss1=='M') switch (*ss) { + case 'x' : arg2 = 8; break; // xM#ind + case 'y' : arg2 = 9; break; // yM#ind + case 'z' : arg2 = 10; break; // zM#ind + case 'c' : arg2 = 11; break; // cM#ind + } + if (arg2!=~0U) { + if (!listin) _cimg_mp_return(0); + if (_cimg_mp_is_constant(arg1)) { + if (!list_stats) list_stats.assign(listin._width); + if (!list_stats[p1]) list_stats[p1].assign(1,14,1,1,0).fill(listin[p1].get_stats(),false); + _cimg_mp_constant(list_stats(p1,arg2)); + } + _cimg_mp_scalar2(mp_list_stats,arg1,arg2); + } + } + + if (*ss=='w' && *ss1=='h' && *ss2=='d' && *ss3=='#' && ss4 error. + is_sth = true; // is_valid_variable_name + if (*variable_name>='0' && *variable_name<='9') is_sth = false; + else for (ns = variable_name._data; *ns; ++ns) + if (!is_varchar(*ns)) { is_sth = false; break; } + + *se = saved_char; + c1 = *se1; + cimg::strellipsize(variable_name,64); + s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + if (is_sth) + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: Undefined variable '%s' in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function, + variable_name._data, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + s1 = std::strchr(ss,'('); + s_op = s1 && c1==')'?"function call":"item"; + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: Unrecognized %s '%s' in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function, + s_op,variable_name._data, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + + // Evaluation procedure. + double operator()(const double x, const double y, const double z, const double c) { + mem[_cimg_mp_slot_x] = x; mem[_cimg_mp_slot_y] = y; mem[_cimg_mp_slot_z] = z; mem[_cimg_mp_slot_c] = c; + for (p_code = code; p_code_data; + const ulongT target = opcode[1]; + mem[target] = _cimg_mp_defunc(*this); + } + return *result; + } + + // Evaluation procedure (return output values in vector 'output'). + template + void operator()(const double x, const double y, const double z, const double c, t *const output) { + mem[_cimg_mp_slot_x] = x; mem[_cimg_mp_slot_y] = y; mem[_cimg_mp_slot_z] = z; mem[_cimg_mp_slot_c] = c; + for (p_code = code; p_code_data; + const ulongT target = opcode[1]; + mem[target] = _cimg_mp_defunc(*this); + } + if (result_dim) { + const double *ptrs = result + 1; + t *ptrd = output; + for (unsigned int k = 0; k_data; + const ulongT target = opcode[1]; + mem[target] = _cimg_mp_defunc(*this); + } + } + + // Return type of a memory element as a string. + CImg s_type(const unsigned int arg) const { + CImg res; + if (_cimg_mp_is_vector(arg)) { // Vector + CImg::string("vectorXXXXXXXXXXXXXXXX").move_to(res); + std::sprintf(res._data + 6,"%u",_cimg_mp_vector_size(arg)); + } else CImg::string("scalar").move_to(res); + return res; + } + + // Insert constant value in memory. + unsigned int constant(const double val) { + + // Search for built-in constant. + if (val==(double)(int)val) { + if (val>=0 && val<=10) return (unsigned int)val; + if (val<0 && val>=-5) return (unsigned int)(10 - val); + } + if (val==0.5) return 16; + if (cimg::type::is_nan(val)) return _cimg_mp_slot_nan; + + // Search for constant already requested before (in const cache). + unsigned int ind = ~0U; + if (constcache_size<1024) { + if (!constcache_size) { + constcache_vals.assign(16,1,1,1,0); + constcache_inds.assign(16,1,1,1,0); + *constcache_vals = val; + constcache_size = 1; + ind = 0; + } else { // Dichotomic search + const double val_beg = *constcache_vals, val_end = constcache_vals[constcache_size - 1]; + if (val_beg>=val) ind = 0; + else if (val_end==val) ind = constcache_size - 1; + else if (val_end=constcache_size || constcache_vals[ind]!=val) { + ++constcache_size; + if (constcache_size>constcache_vals._width) { + constcache_vals.resize(-200,1,1,1,0); + constcache_inds.resize(-200,1,1,1,0); + } + const int l = constcache_size - (int)ind - 1; + if (l>0) { + std::memmove(&constcache_vals[ind + 1],&constcache_vals[ind],l*sizeof(double)); + std::memmove(&constcache_inds[ind + 1],&constcache_inds[ind],l*sizeof(unsigned int)); + } + constcache_vals[ind] = val; + constcache_inds[ind] = 0; + } + } + if (constcache_inds[ind]) return constcache_inds[ind]; + } + + // Insert new constant in memory if necessary. + if (mempos>=mem._width) { mem.resize(-200,1,1,1,0); memtype.resize(-200,1,1,1,0); } + const unsigned int pos = mempos++; + mem[pos] = val; + memtype[pos] = 1; // Set constant property + if (ind!=~0U) constcache_inds[ind] = pos; + return pos; + } + + // Insert code instructions for processing scalars. + unsigned int scalar() { // Insert new scalar in memory. + if (mempos>=mem._width) { mem.resize(-200,1,1,1,0); memtype.resize(mem._width,1,1,1,0); } + return mempos++; + } + + unsigned int scalar0(const mp_func op) { + const unsigned int pos = scalar(); + CImg::vector((ulongT)op,pos).move_to(code); + return pos; + } + + unsigned int scalar1(const mp_func op, const unsigned int arg1) { + const unsigned int pos = + arg1>_cimg_mp_slot_c && _cimg_mp_is_comp(arg1) && op!=mp_copy?arg1:scalar(); + CImg::vector((ulongT)op,pos,arg1).move_to(code); + return pos; + } + + unsigned int scalar2(const mp_func op, const unsigned int arg1, const unsigned int arg2) { + const unsigned int pos = + arg1>_cimg_mp_slot_c && _cimg_mp_is_comp(arg1)?arg1: + arg2>_cimg_mp_slot_c && _cimg_mp_is_comp(arg2)?arg2:scalar(); + CImg::vector((ulongT)op,pos,arg1,arg2).move_to(code); + return pos; + } + + unsigned int scalar3(const mp_func op, + const unsigned int arg1, const unsigned int arg2, const unsigned int arg3) { + const unsigned int pos = + arg1>_cimg_mp_slot_c && _cimg_mp_is_comp(arg1)?arg1: + arg2>_cimg_mp_slot_c && _cimg_mp_is_comp(arg2)?arg2: + arg3>_cimg_mp_slot_c && _cimg_mp_is_comp(arg3)?arg3:scalar(); + CImg::vector((ulongT)op,pos,arg1,arg2,arg3).move_to(code); + return pos; + } + + unsigned int scalar4(const mp_func op, + const unsigned int arg1, const unsigned int arg2, const unsigned int arg3, + const unsigned int arg4) { + const unsigned int pos = + arg1>_cimg_mp_slot_c && _cimg_mp_is_comp(arg1)?arg1: + arg2>_cimg_mp_slot_c && _cimg_mp_is_comp(arg2)?arg2: + arg3>_cimg_mp_slot_c && _cimg_mp_is_comp(arg3)?arg3: + arg4>_cimg_mp_slot_c && _cimg_mp_is_comp(arg4)?arg4:scalar(); + CImg::vector((ulongT)op,pos,arg1,arg2,arg3,arg4).move_to(code); + return pos; + } + + unsigned int scalar5(const mp_func op, + const unsigned int arg1, const unsigned int arg2, const unsigned int arg3, + const unsigned int arg4, const unsigned int arg5) { + const unsigned int pos = + arg1>_cimg_mp_slot_c && _cimg_mp_is_comp(arg1)?arg1: + arg2>_cimg_mp_slot_c && _cimg_mp_is_comp(arg2)?arg2: + arg3>_cimg_mp_slot_c && _cimg_mp_is_comp(arg3)?arg3: + arg4>_cimg_mp_slot_c && _cimg_mp_is_comp(arg4)?arg4: + arg5>_cimg_mp_slot_c && _cimg_mp_is_comp(arg5)?arg5:scalar(); + CImg::vector((ulongT)op,pos,arg1,arg2,arg3,arg4,arg5).move_to(code); + return pos; + } + + unsigned int scalar6(const mp_func op, + const unsigned int arg1, const unsigned int arg2, const unsigned int arg3, + const unsigned int arg4, const unsigned int arg5, const unsigned int arg6) { + const unsigned int pos = + arg1>_cimg_mp_slot_c && _cimg_mp_is_comp(arg1)?arg1: + arg2>_cimg_mp_slot_c && _cimg_mp_is_comp(arg2)?arg2: + arg3>_cimg_mp_slot_c && _cimg_mp_is_comp(arg3)?arg3: + arg4>_cimg_mp_slot_c && _cimg_mp_is_comp(arg4)?arg4: + arg5>_cimg_mp_slot_c && _cimg_mp_is_comp(arg5)?arg5: + arg6>_cimg_mp_slot_c && _cimg_mp_is_comp(arg6)?arg6:scalar(); + CImg::vector((ulongT)op,pos,arg1,arg2,arg3,arg4,arg5,arg6).move_to(code); + return pos; + } + + unsigned int scalar7(const mp_func op, + const unsigned int arg1, const unsigned int arg2, const unsigned int arg3, + const unsigned int arg4, const unsigned int arg5, const unsigned int arg6, + const unsigned int arg7) { + const unsigned int pos = + arg1>_cimg_mp_slot_c && _cimg_mp_is_comp(arg1)?arg1: + arg2>_cimg_mp_slot_c && _cimg_mp_is_comp(arg2)?arg2: + arg3>_cimg_mp_slot_c && _cimg_mp_is_comp(arg3)?arg3: + arg4>_cimg_mp_slot_c && _cimg_mp_is_comp(arg4)?arg4: + arg5>_cimg_mp_slot_c && _cimg_mp_is_comp(arg5)?arg5: + arg6>_cimg_mp_slot_c && _cimg_mp_is_comp(arg6)?arg6: + arg7>_cimg_mp_slot_c && _cimg_mp_is_comp(arg7)?arg7:scalar(); + CImg::vector((ulongT)op,pos,arg1,arg2,arg3,arg4,arg5,arg6,arg7).move_to(code); + return pos; + } + + // Return a string that defines the calling function + the user-defined function scope. + CImg calling_function_s() const { + CImg res; + const unsigned int + l1 = calling_function?(unsigned int)std::strlen(calling_function):0U, + l2 = user_macro?(unsigned int)std::strlen(user_macro):0U; + if (l2) { + res.assign(l1 + l2 + 48); + cimg_snprintf(res,res._width,"%s(): When substituting function '%s()'",calling_function,user_macro); + } else { + res.assign(l1 + l2 + 4); + cimg_snprintf(res,res._width,"%s()",calling_function); + } + return res; + } + + // Return true if specified argument can be a part of an allowed variable name. + bool is_varchar(const char c) const { + return (c>='a' && c<='z') || (c>='A' && c<='Z') || (c>='0' && c<='9') || c=='_'; + } + + // Insert code instructions for processing vectors. + bool is_comp_vector(const unsigned int arg) const { + unsigned int siz = _cimg_mp_vector_size(arg); + if (siz>8) return false; + const int *ptr = memtype.data(arg + 1); + bool is_tmp = true; + while (siz-->0) if (*(ptr++)) { is_tmp = false; break; } + return is_tmp; + } + + void set_variable_vector(const unsigned int arg) { + unsigned int siz = _cimg_mp_vector_size(arg); + int *ptr = memtype.data(arg + 1); + while (siz-->0) *(ptr++) = -1; + } + + unsigned int vector(const unsigned int siz) { // Insert new vector of specified size in memory + if (mempos + siz>=mem._width) { + mem.resize(2*mem._width + siz,1,1,1,0); + memtype.resize(mem._width,1,1,1,0); + } + const unsigned int pos = mempos++; + mem[pos] = cimg::type::nan(); + memtype[pos] = siz + 1; + mempos+=siz; + return pos; + } + + unsigned int vector(const unsigned int siz, const double value) { // Insert new initialized vector + const unsigned int pos = vector(siz); + double *ptr = &mem[pos] + 1; + for (unsigned int i = 0; i::vector((ulongT)mp_vector_copy,pos,arg,siz).move_to(code); + return pos; + } + + void self_vector_s(const unsigned int pos, const mp_func op, const unsigned int arg1) { + const unsigned int siz = _cimg_mp_vector_size(pos); + if (siz>24) CImg::vector((ulongT)mp_self_map_vector_s,pos,siz,(ulongT)op,arg1).move_to(code); + else { + code.insert(siz); + for (unsigned int k = 1; k<=siz; ++k) + CImg::vector((ulongT)op,pos + k,arg1).move_to(code[code._width - 1 - siz + k]); + } + } + + void self_vector_v(const unsigned int pos, const mp_func op, const unsigned int arg1) { + const unsigned int siz = _cimg_mp_vector_size(pos); + if (siz>24) CImg::vector((ulongT)mp_self_map_vector_v,pos,siz,(ulongT)op,arg1).move_to(code); + else { + code.insert(siz); + for (unsigned int k = 1; k<=siz; ++k) + CImg::vector((ulongT)op,pos + k,arg1 + k).move_to(code[code._width - 1 - siz + k]); + } + } + + unsigned int vector1_v(const mp_func op, const unsigned int arg1) { + const unsigned int + siz = _cimg_mp_vector_size(arg1), + pos = is_comp_vector(arg1)?arg1:vector(siz); + if (siz>24) CImg::vector((ulongT)mp_vector_map_v,pos,siz,(ulongT)op,arg1).move_to(code); + else { + code.insert(siz); + for (unsigned int k = 1; k<=siz; ++k) + CImg::vector((ulongT)op,pos + k,arg1 + k).move_to(code[code._width - 1 - siz + k]); + } + return pos; + } + + unsigned int vector2_vv(const mp_func op, const unsigned int arg1, const unsigned int arg2) { + const unsigned int + siz = _cimg_mp_vector_size(arg1), + pos = is_comp_vector(arg1)?arg1:is_comp_vector(arg2)?arg2:vector(siz); + if (siz>24) CImg::vector((ulongT)mp_vector_map_vv,pos,siz,(ulongT)op,arg1,arg2).move_to(code); + else { + code.insert(siz); + for (unsigned int k = 1; k<=siz; ++k) + CImg::vector((ulongT)op,pos + k,arg1 + k,arg2 + k).move_to(code[code._width - 1 - siz + k]); + } + return pos; + } + + unsigned int vector2_vs(const mp_func op, const unsigned int arg1, const unsigned int arg2) { + const unsigned int + siz = _cimg_mp_vector_size(arg1), + pos = is_comp_vector(arg1)?arg1:vector(siz); + if (siz>24) CImg::vector((ulongT)mp_vector_map_vs,pos,siz,(ulongT)op,arg1,arg2).move_to(code); + else { + code.insert(siz); + for (unsigned int k = 1; k<=siz; ++k) + CImg::vector((ulongT)op,pos + k,arg1 + k,arg2).move_to(code[code._width - 1 - siz + k]); + } + return pos; + } + + unsigned int vector2_sv(const mp_func op, const unsigned int arg1, const unsigned int arg2) { + const unsigned int + siz = _cimg_mp_vector_size(arg2), + pos = is_comp_vector(arg2)?arg2:vector(siz); + if (siz>24) CImg::vector((ulongT)mp_vector_map_sv,pos,siz,(ulongT)op,arg1,arg2).move_to(code); + else { + code.insert(siz); + for (unsigned int k = 1; k<=siz; ++k) + CImg::vector((ulongT)op,pos + k,arg1,arg2 + k).move_to(code[code._width - 1 - siz + k]); + } + return pos; + } + + unsigned int vector3_vss(const mp_func op, const unsigned int arg1, const unsigned int arg2, + const unsigned int arg3) { + const unsigned int + siz = _cimg_mp_vector_size(arg1), + pos = is_comp_vector(arg1)?arg1:vector(siz); + if (siz>24) CImg::vector((ulongT)mp_vector_map_vss,pos,siz,(ulongT)op,arg1,arg2,arg3).move_to(code); + else { + code.insert(siz); + for (unsigned int k = 1; k<=siz; ++k) + CImg::vector((ulongT)op,pos + k,arg1 + k,arg2,arg3).move_to(code[code._width - 1 - siz + k]); + } + return pos; + } + + // Check if a memory slot is a positive integer constant scalar value. + // 'mode' can be: + // { 0=constant | 1=integer constant | 2=positive integer constant | 3=strictly-positive integer constant } + void check_constant(const unsigned int arg, const unsigned int n_arg, + const unsigned int mode, + char *const ss, char *const se, const char saved_char) { + _cimg_mp_check_type(arg,n_arg,1,0); + if (!(_cimg_mp_is_constant(arg) && + (!mode || (double)(int)mem[arg]==mem[arg]) && + (mode<2 || mem[arg]>=(mode==3)))) { + const char *s_arg = !n_arg?"":n_arg==1?"First ":n_arg==2?"Second ":n_arg==3?"Third ": + n_arg==4?"Fourth ":n_arg==5?"Fifth ":n_arg==6?"Sixth ":n_arg==7?"Seventh ":n_arg==8?"Eighth ": + n_arg==9?"Ninth ":"One of the "; + *se = saved_char; + char *const s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s%s %s%s (of type '%s') is not a%s constant, " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"", + s_arg,*s_arg?"argument":"Argument",s_type(arg)._data, + !mode?"":mode==1?"n integer": + mode==2?" positive integer":" strictly positive integer", + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + } + + // Check a matrix is square. + void check_matrix_square(const unsigned int arg, const unsigned int n_arg, + char *const ss, char *const se, const char saved_char) { + _cimg_mp_check_type(arg,n_arg,2,0); + const unsigned int + siz = _cimg_mp_vector_size(arg), + n = (unsigned int)std::sqrt((float)siz); + if (n*n!=siz) { + const char *s_arg; + if (*s_op!='F') s_arg = !n_arg?"":n_arg==1?"Left-hand ":"Right-hand "; + else s_arg = !n_arg?"":n_arg==1?"First ":n_arg==2?"Second ":n_arg==3?"Third ":"One "; + *se = saved_char; + char *const s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s%s %s%s (of type '%s') " + "cannot be considered as a square matrix, in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"", + s_arg,*s_op=='F'?(*s_arg?"argument":"Argument"):(*s_arg?"operand":"Operand"), + s_type(arg)._data, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + } + + // Check type compatibility for one argument. + // Bits of 'mode' tells what types are allowed: + // { 1 = scalar | 2 = vectorN }. + // If 'N' is not zero, it also restricts the vectors to be of size N only. + void check_type(const unsigned int arg, const unsigned int n_arg, + const unsigned int mode, const unsigned int N, + char *const ss, char *const se, const char saved_char) { + const bool + is_scalar = _cimg_mp_is_scalar(arg), + is_vector = _cimg_mp_is_vector(arg) && (!N || _cimg_mp_vector_size(arg)==N); + bool cond = false; + if (mode&1) cond|=is_scalar; + if (mode&2) cond|=is_vector; + if (!cond) { + const char *s_arg; + if (*s_op!='F') s_arg = !n_arg?"":n_arg==1?"Left-hand ":"Right-hand "; + else s_arg = !n_arg?"":n_arg==1?"First ":n_arg==2?"Second ":n_arg==3?"Third ": + n_arg==4?"Fourth ":n_arg==5?"Fifth ":n_arg==6?"Sixth ":n_arg==7?"Seventh ":n_arg==8?"Eighth": + n_arg==9?"Ninth":"One of the "; + CImg sb_type(32); + if (mode==1) cimg_snprintf(sb_type,sb_type._width,"'scalar'"); + else if (mode==2) { + if (N) cimg_snprintf(sb_type,sb_type._width,"'vector%u'",N); + else cimg_snprintf(sb_type,sb_type._width,"'vector'"); + } else { + if (N) cimg_snprintf(sb_type,sb_type._width,"'scalar' or 'vector%u'",N); + else cimg_snprintf(sb_type,sb_type._width,"'scalar' or 'vector'"); + } + *se = saved_char; + char *const s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s%s %s%s has invalid type '%s' (should be %s), " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"", + s_arg,*s_op=='F'?(*s_arg?"argument":"Argument"):(*s_arg?"operand":"Operand"), + s_type(arg)._data,sb_type._data, + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + } + + // Check that listin or listout are not empty. + void check_list(const bool is_out, + char *const ss, char *const se, const char saved_char) { + if ((!is_out && !listin) || (is_out && !listout)) { + *se = saved_char; + char *const s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s%s Invalid call with an empty image list, " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"", + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + } + + // Check a vector is not 0-dimensional, or with unknown dimension at compile time. + void check_vector0(const unsigned int dim, + char *const ss, char *const se, const char saved_char) { + char *s0 = 0; + if (!dim) { + *se = saved_char; + s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s%s Invalid construction of a 0-dimensional vector, " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"", + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } else if (dim==~0U) { + *se = saved_char; + s0 = ss - 4>expr._data?ss - 4:expr._data; + cimg::strellipsize(s0,64); + throw CImgArgumentException("[_cimg_math_parser] " + "CImg<%s>::%s: %s%s Invalid construction of a vector with dynamic size, " + "in expression '%s%s%s'.", + pixel_type(),_cimg_mp_calling_function,s_op,*s_op?":":"", + s0!=expr._data?"...":"",s0,se<&expr.back()?"...":""); + } + } + + // Evaluation functions, known by the parser. + // Defining these functions 'static' ensures that sizeof(mp_func)==sizeof(ulongT), + // so we can store pointers to them directly in the opcode vectors. +#ifdef _mp_arg +#undef _mp_arg +#endif +#define _mp_arg(x) mp.mem[mp.opcode[x]] + + static double mp_abs(_cimg_math_parser& mp) { + return cimg::abs(_mp_arg(2)); + } + + static double mp_add(_cimg_math_parser& mp) { + return _mp_arg(2) + _mp_arg(3); + } + + static double mp_acos(_cimg_math_parser& mp) { + return std::acos(_mp_arg(2)); + } + + static double mp_arg(_cimg_math_parser& mp) { + const int _ind = (int)_mp_arg(4); + const unsigned int + nb_args = (unsigned int)mp.opcode[2] - 4, + ind = _ind<0?_ind + nb_args:(unsigned int)_ind, + siz = (unsigned int)mp.opcode[3]; + if (siz>0) { + if (ind>=nb_args) std::memset(&_mp_arg(1) + 1,0,siz*sizeof(double)); + else std::memcpy(&_mp_arg(1) + 1,&_mp_arg(ind + 4) + 1,siz*sizeof(double)); + return cimg::type::nan(); + } + if (ind>=nb_args) return 0; + return _mp_arg(ind + 4); + } + + static double mp_argmin(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + double val = _mp_arg(3); + unsigned int argval = 0; + for (unsigned int i = 4; ival) { val = _val; argval = i - 3; } + } + return (double)argval; + } + + static double mp_asin(_cimg_math_parser& mp) { + return std::asin(_mp_arg(2)); + } + + static double mp_atan(_cimg_math_parser& mp) { + return std::atan(_mp_arg(2)); + } + + static double mp_atan2(_cimg_math_parser& mp) { + return std::atan2(_mp_arg(2),_mp_arg(3)); + } + + static double mp_bitwise_and(_cimg_math_parser& mp) { + return (double)((longT)_mp_arg(2) & (longT)_mp_arg(3)); + } + + static double mp_bitwise_left_shift(_cimg_math_parser& mp) { + return (double)((longT)_mp_arg(2)<<(unsigned int)_mp_arg(3)); + } + + static double mp_bitwise_not(_cimg_math_parser& mp) { + // Limit result to 32bits such that it can be entirely represented as a 'double'. + return (double)~(unsigned int)_mp_arg(2); + } + + static double mp_bitwise_or(_cimg_math_parser& mp) { + return (double)((longT)_mp_arg(2) | (longT)_mp_arg(3)); + } + + static double mp_bitwise_right_shift(_cimg_math_parser& mp) { + return (double)((longT)_mp_arg(2)>>(unsigned int)_mp_arg(3)); + } + + static double mp_bitwise_xor(_cimg_math_parser& mp) { + return (double)((longT)_mp_arg(2) ^ (longT)_mp_arg(3)); + } + + static double mp_bool(_cimg_math_parser& mp) { + return (double)(bool)_mp_arg(2); + } + + static double mp_break(_cimg_math_parser& mp) { + mp.break_type = 1; + mp.p_code = mp.p_break - 1; + return cimg::type::nan(); + } + + static double mp_breakpoint(_cimg_math_parser& mp) { + cimg_abort_test(); + cimg::unused(mp); + return cimg::type::nan(); + } + + static double mp_cbrt(_cimg_math_parser& mp) { + return cimg::cbrt(_mp_arg(2)); + } + + static double mp_ceil(_cimg_math_parser& mp) { + return std::ceil(_mp_arg(2)); + } + + static double mp_complex_abs(_cimg_math_parser& mp) { + return cimg::_hypot(_mp_arg(2),_mp_arg(3)); + } + + static double mp_complex_conj(_cimg_math_parser& mp) { + const double *ptrs = &_mp_arg(2) + 1; + double *ptrd = &_mp_arg(1) + 1; + *(ptrd++) = *(ptrs++); + *ptrd = -*(ptrs); + return cimg::type::nan(); + } + + static double mp_complex_div_sv(_cimg_math_parser& mp) { + const double + *ptr2 = &_mp_arg(3) + 1, + r1 = _mp_arg(2), + r2 = *(ptr2++), i2 = *ptr2; + double *ptrd = &_mp_arg(1) + 1; + const double denom = r2*r2 + i2*i2; + *(ptrd++) = r1*r2/denom; + *ptrd = -r1*i2/denom; + return cimg::type::nan(); + } + + static double mp_complex_div_vv(_cimg_math_parser& mp) { + const double + *ptr1 = &_mp_arg(2) + 1, *ptr2 = &_mp_arg(3) + 1, + r1 = *(ptr1++), i1 = *ptr1, + r2 = *(ptr2++), i2 = *ptr2; + double *ptrd = &_mp_arg(1) + 1; + const double denom = r2*r2 + i2*i2; + *(ptrd++) = (r1*r2 + i1*i2)/denom; + *ptrd = (r2*i1 - r1*i2)/denom; + return cimg::type::nan(); + } + + static double mp_complex_exp(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double *ptrs = &_mp_arg(2) + 1, r = *(ptrs++), i = *(ptrs), er = std::exp(r); + *(ptrd++) = er*std::cos(i); + *(ptrd++) = er*std::sin(i); + return cimg::type::nan(); + } + + static double mp_complex_log(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double *ptrs = &_mp_arg(2) + 1, r = *(ptrs++), i = *(ptrs); + *(ptrd++) = 0.5*std::log(r*r + i*i); + *(ptrd++) = std::atan2(i,r); + return cimg::type::nan(); + } + + static double mp_complex_mul(_cimg_math_parser& mp) { + const double + *ptr1 = &_mp_arg(2) + 1, *ptr2 = &_mp_arg(3) + 1, + r1 = *(ptr1++), i1 = *ptr1, + r2 = *(ptr2++), i2 = *ptr2; + double *ptrd = &_mp_arg(1) + 1; + *(ptrd++) = r1*r2 - i1*i2; + *(ptrd++) = r1*i2 + r2*i1; + return cimg::type::nan(); + } + + static void _mp_complex_pow(const double r1, const double i1, + const double r2, const double i2, + double *ptrd) { + double ro, io; + if (cimg::abs(i2)<1e-15) { // Exponent is real + if (cimg::abs(r1)<1e-15 && cimg::abs(i1)<1e-15) { + if (cimg::abs(r2)<1e-15) { ro = 1; io = 0; } + else ro = io = 0; + } else { + const double + mod1_2 = r1*r1 + i1*i1, + phi1 = std::atan2(i1,r1), + modo = std::pow(mod1_2,0.5*r2), + phio = r2*phi1; + ro = modo*std::cos(phio); + io = modo*std::sin(phio); + } + } else { // Exponent is complex + if (cimg::abs(r1)<1e-15 && cimg::abs(i1)<1e-15) ro = io = 0; + const double + mod1_2 = r1*r1 + i1*i1, + phi1 = std::atan2(i1,r1), + modo = std::pow(mod1_2,0.5*r2)*std::exp(-i2*phi1), + phio = r2*phi1 + 0.5*i2*std::log(mod1_2); + ro = modo*std::cos(phio); + io = modo*std::sin(phio); + } + *(ptrd++) = ro; + *ptrd = io; + } + + static double mp_complex_pow_ss(_cimg_math_parser& mp) { + const double val1 = _mp_arg(2), val2 = _mp_arg(3); + double *ptrd = &_mp_arg(1) + 1; + _mp_complex_pow(val1,0,val2,0,ptrd); + return cimg::type::nan(); + } + + static double mp_complex_pow_sv(_cimg_math_parser& mp) { + const double val1 = _mp_arg(2), *ptr2 = &_mp_arg(3) + 1; + double *ptrd = &_mp_arg(1) + 1; + _mp_complex_pow(val1,0,ptr2[0],ptr2[1],ptrd); + return cimg::type::nan(); + } + + static double mp_complex_pow_vs(_cimg_math_parser& mp) { + const double *ptr1 = &_mp_arg(2) + 1, val2 = _mp_arg(3); + double *ptrd = &_mp_arg(1) + 1; + _mp_complex_pow(ptr1[0],ptr1[1],val2,0,ptrd); + return cimg::type::nan(); + } + + static double mp_complex_pow_vv(_cimg_math_parser& mp) { + const double *ptr1 = &_mp_arg(2) + 1, *ptr2 = &_mp_arg(3) + 1; + double *ptrd = &_mp_arg(1) + 1; + _mp_complex_pow(ptr1[0],ptr1[1],ptr2[0],ptr2[1],ptrd); + return cimg::type::nan(); + } + + static double mp_continue(_cimg_math_parser& mp) { + mp.break_type = 2; + mp.p_code = mp.p_break - 1; + return cimg::type::nan(); + } + + static double mp_cos(_cimg_math_parser& mp) { + return std::cos(_mp_arg(2)); + } + + static double mp_cosh(_cimg_math_parser& mp) { + return std::cosh(_mp_arg(2)); + } + + static double mp_cross(_cimg_math_parser& mp) { + CImg + vout(&_mp_arg(1) + 1,1,3,1,1,true), + v1(&_mp_arg(2) + 1,1,3,1,1,true), + v2(&_mp_arg(3) + 1,1,3,1,1,true); + (vout = v1).cross(v2); + return cimg::type::nan(); + } + + static double mp_cut(_cimg_math_parser& mp) { + double val = _mp_arg(2), cmin = _mp_arg(3), cmax = _mp_arg(4); + return valcmax?cmax:val; + } + + static double mp_debug(_cimg_math_parser& mp) { + CImg expr(mp.opcode[2] - 4); + const ulongT *ptrs = mp.opcode._data + 4; + cimg_for(expr,ptrd,char) *ptrd = (char)*(ptrs++); + cimg::strellipsize(expr); + const ulongT g_target = mp.opcode[1]; + +#ifndef cimg_use_openmp + const unsigned int n_thread = 0; +#else + const unsigned int n_thread = omp_get_thread_num(); +#endif + cimg_pragma_openmp(critical) + { + std::fprintf(cimg::output(), + "\n[_cimg_math_parser] %p[thread #%u]:%*c" + "Start debugging expression '%s', code length %u -> mem[%u] (memsize: %u)", + (void*)&mp,n_thread,mp.debug_indent,' ', + expr._data,(unsigned int)mp.opcode[3],(unsigned int)g_target,mp.mem._width); + std::fflush(cimg::output()); + mp.debug_indent+=3; + } + const CImg *const p_end = (++mp.p_code) + mp.opcode[3]; + CImg _op; + for ( ; mp.p_code &op = *mp.p_code; + mp.opcode._data = op._data; + + _op.assign(1,op._height - 1); + const ulongT *ptrs = op._data + 1; + for (ulongT *ptrd = _op._data, *const ptrde = _op._data + _op._height; ptrd mem[%u] = %g", + (void*)&mp,n_thread,mp.debug_indent,' ', + (void*)mp.opcode._data,(void*)*mp.opcode,_op.value_string().data(), + (unsigned int)target,mp.mem[target]); + std::fflush(cimg::output()); + } + } + cimg_pragma_openmp(critical) + { + mp.debug_indent-=3; + std::fprintf(cimg::output(), + "\n[_cimg_math_parser] %p[thread #%u]:%*c" + "End debugging expression '%s' -> mem[%u] = %g (memsize: %u)", + (void*)&mp,n_thread,mp.debug_indent,' ', + expr._data,(unsigned int)g_target,mp.mem[g_target],mp.mem._width); + std::fflush(cimg::output()); + } + --mp.p_code; + return mp.mem[g_target]; + } + + static double mp_decrement(_cimg_math_parser& mp) { + return _mp_arg(2) - 1; + } + + static double mp_det(_cimg_math_parser& mp) { + const double *ptrs = &_mp_arg(2) + 1; + const unsigned int k = (unsigned int)mp.opcode[3]; + return CImg(ptrs,k,k,1,1,true).det(); + } + + static double mp_diag(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double *ptrs = &_mp_arg(2) + 1; + const unsigned int k = (unsigned int)mp.opcode[3]; + CImg(ptrd,k,k,1,1,true) = CImg(ptrs,1,k,1,1,true).get_diagonal(); + return cimg::type::nan(); + } + + static double mp_display_memory(_cimg_math_parser& mp) { + cimg::unused(mp); + std::fputc('\n',cimg::output()); + mp.mem.display("[_cimg_math_parser] Memory snapshot"); + return cimg::type::nan(); + } + + static double mp_display(_cimg_math_parser& mp) { + const unsigned int + _siz = (unsigned int)mp.opcode[3], + siz = _siz?_siz:1; + const double *const ptr = &_mp_arg(1) + (_siz?1:0); + const int + w = (int)_mp_arg(4), + h = (int)_mp_arg(5), + d = (int)_mp_arg(6), + s = (int)_mp_arg(7); + CImg img; + if (w>0 && h>0 && d>0 && s>0) { + if ((unsigned int)w*h*d*s<=siz) img.assign(ptr,w,h,d,s,true); + else img.assign(ptr,siz).resize(w,h,d,s,-1); + } else img.assign(ptr,1,siz,1,1,true); + + CImg expr(mp.opcode[2] - 8); + const ulongT *ptrs = mp.opcode._data + 8; + cimg_for(expr,ptrd,char) *ptrd = (char)*(ptrs++); + ((CImg::string("[_cimg_math_parser] ",false,true),expr)>'x').move_to(expr); + cimg::strellipsize(expr); + std::fputc('\n',cimg::output()); + img.display(expr._data); + return cimg::type::nan(); + } + + static double mp_div(_cimg_math_parser& mp) { + return _mp_arg(2)/_mp_arg(3); + } + + static double mp_dot(_cimg_math_parser& mp) { + const unsigned int siz = (unsigned int)mp.opcode[4]; + return CImg(&_mp_arg(2) + 1,1,siz,1,1,true). + dot(CImg(&_mp_arg(3) + 1,1,siz,1,1,true)); + } + + static double mp_dowhile(_cimg_math_parser& mp) { + const ulongT + mem_body = mp.opcode[1], + mem_cond = mp.opcode[2]; + const CImg + *const p_body = ++mp.p_code, + *const p_cond = p_body + mp.opcode[3], + *const p_end = p_cond + mp.opcode[4]; + const unsigned int vsiz = (unsigned int)mp.opcode[5]; + if (mp.opcode[6]) { // Set default value for result and condition if necessary + if (vsiz) CImg(&mp.mem[mem_body] + 1,vsiz,1,1,1,true).fill(cimg::type::nan()); + else mp.mem[mem_body] = cimg::type::nan(); + } + if (mp.opcode[7]) mp.mem[mem_cond] = 0; + + const unsigned int _break_type = mp.break_type; + mp.break_type = 0; + do { + for (mp.p_code = p_body; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0; + for (mp.p_code = p_cond; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0; + } while (mp.mem[mem_cond]); + mp.break_type = _break_type; + mp.p_code = p_end - 1; + return mp.mem[mem_body]; + } + + static double mp_eq(_cimg_math_parser& mp) { + return (double)(_mp_arg(2)==_mp_arg(3)); + } + + static double mp_exp(_cimg_math_parser& mp) { + return std::exp(_mp_arg(2)); + } + + static double mp_eye(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int k = (unsigned int)mp.opcode[2]; + CImg(ptrd,k,k,1,1,true).identity_matrix(); + return cimg::type::nan(); + } + + static double mp_factorial(_cimg_math_parser& mp) { + return cimg::factorial(_mp_arg(2)); + } + + static double mp_fibonacci(_cimg_math_parser& mp) { + return cimg::fibonacci((int)_mp_arg(2)); + } + + static double mp_find(_cimg_math_parser& mp) { + const bool is_forward = (bool)_mp_arg(5); + const ulongT siz = (ulongT)mp.opcode[3]; + longT ind = (longT)(mp.opcode[6]!=_cimg_mp_slot_nan?_mp_arg(6):is_forward?0:siz - 1); + if (ind<0 || ind>=(longT)siz) return -1.; + const double + *const ptrb = &_mp_arg(2) + 1, + *const ptre = ptrb + siz, + val = _mp_arg(4), + *ptr = ptrb + ind; + + // Forward search + if (is_forward) { + while (ptr=ptrb && *ptr!=val) --ptr; + return ptr=(longT)siz1) return -1.; + const double + *const ptr1b = &_mp_arg(2) + 1, + *const ptr1e = ptr1b + siz1, + *const ptr2b = &_mp_arg(4) + 1, + *const ptr2e = ptr2b + siz2, + *ptr1 = ptr1b + ind, + *p1 = 0, + *p2 = 0; + + // Forward search. + if (is_forward) { + do { + while (ptr1=ptr1b && *ptr1!=*ptr2b) --ptr1; + p1 = ptr1 + 1; + p2 = ptr2b + 1; + while (p1=ptr1b); + return p2 + *const p_init = ++mp.p_code, + *const p_cond = p_init + mp.opcode[4], + *const p_body = p_cond + mp.opcode[5], + *const p_post = p_body + mp.opcode[6], + *const p_end = p_post + mp.opcode[7]; + const unsigned int vsiz = (unsigned int)mp.opcode[2]; + bool is_cond = false; + if (mp.opcode[8]) { // Set default value for result and condition if necessary + if (vsiz) CImg(&mp.mem[mem_body] + 1,vsiz,1,1,1,true).fill(cimg::type::nan()); + else mp.mem[mem_body] = cimg::type::nan(); + } + if (mp.opcode[9]) mp.mem[mem_cond] = 0; + const unsigned int _break_type = mp.break_type; + mp.break_type = 0; + + for (mp.p_code = p_init; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + + if (!mp.break_type) do { + for (mp.p_code = p_cond; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; + + is_cond = (bool)mp.mem[mem_cond]; + if (is_cond && !mp.break_type) { + for (mp.p_code = p_body; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0; + + for (mp.p_code = p_post; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0; + } + } while (is_cond); + + mp.break_type = _break_type; + mp.p_code = p_end - 1; + return mp.mem[mem_body]; + } + + static double mp_g(_cimg_math_parser& mp) { + cimg::unused(mp); + return cimg::grand(); + } + + static double mp_gauss(_cimg_math_parser& mp) { + const double x = _mp_arg(2), s = _mp_arg(3); + return std::exp(-x*x/(2*s*s))/std::sqrt(2*s*s*cimg::PI); + } + + static double mp_gt(_cimg_math_parser& mp) { + return (double)(_mp_arg(2)>_mp_arg(3)); + } + + static double mp_gte(_cimg_math_parser& mp) { + return (double)(_mp_arg(2)>=_mp_arg(3)); + } + + static double mp_i(_cimg_math_parser& mp) { + return (double)mp.imgin.atXYZC((int)mp.mem[_cimg_mp_slot_x],(int)mp.mem[_cimg_mp_slot_y], + (int)mp.mem[_cimg_mp_slot_z],(int)mp.mem[_cimg_mp_slot_c],(T)0); + } + + static double mp_if(_cimg_math_parser& mp) { + const bool is_cond = (bool)_mp_arg(2); + const ulongT + mem_left = mp.opcode[3], + mem_right = mp.opcode[4]; + const CImg + *const p_right = ++mp.p_code + mp.opcode[5], + *const p_end = p_right + mp.opcode[6]; + const unsigned int vtarget = (unsigned int)mp.opcode[1], vsiz = (unsigned int)mp.opcode[7]; + if (is_cond) for ( ; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + else for (mp.p_code = p_right; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.p_code==mp.p_break) --mp.p_code; + else mp.p_code = p_end - 1; + if (vsiz) std::memcpy(&mp.mem[vtarget] + 1,&mp.mem[is_cond?mem_left:mem_right] + 1,sizeof(double)*vsiz); + return mp.mem[is_cond?mem_left:mem_right]; + } + + static double mp_image_crop(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const int x = (int)_mp_arg(3), y = (int)_mp_arg(4), z = (int)_mp_arg(5), c = (int)_mp_arg(6); + const unsigned int + dx = (unsigned int)mp.opcode[7], + dy = (unsigned int)mp.opcode[8], + dz = (unsigned int)mp.opcode[9], + dc = (unsigned int)mp.opcode[10]; + const bool boundary_conditions = (bool)_mp_arg(11); + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + if (!img) std::memset(ptrd,0,dx*dy*dz*dc*sizeof(double)); + else CImg(ptrd,dx,dy,dz,dc,true) = img.get_crop(x,y,z,c, + x + dx - 1,y + dy - 1, + z + dz - 1,c + dc - 1, + boundary_conditions); + return cimg::type::nan(); + } + + static double mp_image_d(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + return (double)img.depth(); + } + + static double mp_image_display(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listout.width()); + cimg::mutex(6); + CImg &img = mp.listout[ind]; + CImg title(256); + std::fputc('\n',cimg::output()); + cimg_snprintf(title,title._width,"[ Image #%u ]",ind); + img.display(title); + cimg::mutex(6,0); + return cimg::type::nan(); + } + + static double mp_image_draw(_cimg_math_parser& mp) { + const int x = (int)_mp_arg(4), y = (int)_mp_arg(5), z = (int)_mp_arg(6), c = (int)_mp_arg(7); + unsigned int ind = (unsigned int)mp.opcode[3]; + + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(3),mp.listin.width()); + CImg &img = ind==~0U?mp.imgout:mp.listout[ind]; + unsigned int + dx = (unsigned int)mp.opcode[8], + dy = (unsigned int)mp.opcode[9], + dz = (unsigned int)mp.opcode[10], + dc = (unsigned int)mp.opcode[11]; + dx = dx==~0U?img._width:(unsigned int)_mp_arg(8); + dy = dy==~0U?img._height:(unsigned int)_mp_arg(9); + dz = dz==~0U?img._depth:(unsigned int)_mp_arg(10); + dc = dc==~0U?img._spectrum:(unsigned int)_mp_arg(11); + + const ulongT sizS = mp.opcode[2]; + if (sizS<(ulongT)dx*dy*dz*dc) + throw CImgArgumentException("[_cimg_math_parser] CImg<%s>: Function 'draw()': " + "Sprite dimension (%lu values) and specified sprite geometry (%u,%u,%u,%u) " + "(%lu values) do not match.", + mp.imgin.pixel_type(),sizS,dx,dy,dz,dc,(ulongT)dx*dy*dz*dc); + CImg S(&_mp_arg(1) + 1,dx,dy,dz,dc,true); + const float opacity = (float)_mp_arg(12); + + if (img._data) { + if (mp.opcode[13]!=~0U) { // Opacity mask specified + const ulongT sizM = mp.opcode[14]; + if (sizM<(ulongT)dx*dy*dz) + throw CImgArgumentException("[_cimg_math_parser] CImg<%s>: Function 'draw()': " + "Mask dimension (%lu values) and specified sprite geometry (%u,%u,%u,%u) " + "(%lu values) do not match.", + mp.imgin.pixel_type(),sizS,dx,dy,dz,dc,(ulongT)dx*dy*dz*dc); + const CImg M(&_mp_arg(13) + 1,dx,dy,dz,(unsigned int)(sizM/(dx*dy*dz)),true); + img.draw_image(x,y,z,c,S,M,opacity,(float)_mp_arg(15)); + } else img.draw_image(x,y,z,c,S,opacity); + } + return cimg::type::nan(); + } + + static double mp_image_h(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + return (double)img.height(); + } + + static double mp_image_im(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + return (double)img.min(); + } + + static double mp_image_iM(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + return (double)img.max(); + } + + static double mp_image_ia(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + return (double)img.mean(); + } + + static double mp_image_iv(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + return (double)img.variance(); + } + + static double mp_image_is(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + return (double)img.sum(); + } + + static double mp_image_ip(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + return (double)img.product(); + } + + static double mp_image_ic(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + return (double)img.median(); + } + + static double mp_image_print(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listout.width()); + cimg::mutex(6); + CImg &img = mp.listout[ind]; + CImg title(256); + std::fputc('\n',cimg::output()); + cimg_snprintf(title,title._width,"[ Image #%u ]",ind); + img.print(title); + cimg::mutex(6,0); + return cimg::type::nan(); + } + + static double mp_image_resize(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listout.width()); + cimg::mutex(6); + CImg &img = mp.listout[ind]; + const double + _w = mp.opcode[3]==~0U?-100:_mp_arg(3), + _h = mp.opcode[4]==~0U?-100:_mp_arg(4), + _d = mp.opcode[5]==~0U?-100:_mp_arg(5), + _s = mp.opcode[6]==~0U?-100:_mp_arg(6); + const unsigned int + w = (unsigned int)(_w>=0?_w:-_w*img.width()/100), + h = (unsigned int)(_h>=0?_h:-_h*img.height()/100), + d = (unsigned int)(_d>=0?_d:-_d*img.depth()/100), + s = (unsigned int)(_s>=0?_s:-_s*img.spectrum()/100), + interp = (int)_mp_arg(7); + if (mp.is_fill && img._data==mp.imgout._data) { + cimg::mutex(6,0); + throw CImgArgumentException("[_cimg_math_parser] CImg<%s>: Function 'resize()': " + "Cannot both fill and resize image (%u,%u,%u,%u) " + "to new dimensions (%u,%u,%u,%u).", + img.pixel_type(),img._width,img._height,img._depth,img._spectrum,w,h,d,s); + } + const unsigned int + boundary = (int)_mp_arg(8); + const float + cx = (float)_mp_arg(9), + cy = (float)_mp_arg(10), + cz = (float)_mp_arg(11), + cc = (float)_mp_arg(12); + img.resize(w,h,d,s,interp,boundary,cx,cy,cz,cc); + cimg::mutex(6,0); + return cimg::type::nan(); + } + + static double mp_image_s(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + return (double)img.spectrum(); + } + + static double mp_image_w(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + return (double)img.width(); + } + + static double mp_image_wh(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + return (double)img.width()*img.height(); + } + + static double mp_image_whd(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + return (double)img.width()*img.height()*img.depth(); + } + + static double mp_image_whds(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + return (double)img.width()*img.height()*img.depth()*img.spectrum(); + } + + static double mp_image_xm(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + double x = 0; + img.contains(img.min(),x); + return x; + } + + static double mp_image_xM(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + double x = 0; + img.contains(img.max(),x); + return x; + } + + static double mp_image_ym(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + double x = 0, y = 0; + img.contains(img.min(),x,y); + return y; + } + + static double mp_image_yM(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + double x = 0, y = 0; + img.contains(img.max(),x,y); + return y; + } + + static double mp_image_zm(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + double x = 0, y = 0, z = 0; + img.contains(img.min(),x,y,z); + return z; + } + + static double mp_image_zM(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + double x = 0, y = 0, z = 0; + img.contains(img.max(),x,y,z); + return z; + } + + static double mp_image_cm(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + double x = 0, y = 0, z = 0, c = 0; + img.contains(img.min(),x,y,z,c); + return c; + } + + static double mp_image_cM(_cimg_math_parser& mp) { + unsigned int ind = (unsigned int)mp.opcode[2]; + if (ind!=~0U) ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + const CImg &img = ind==~0U?mp.imgin:mp.listin[ind]; + double x = 0, y = 0, z = 0, c = 0; + img.contains(img.max(),x,y,z,c); + return c; + } + + static double mp_increment(_cimg_math_parser& mp) { + return _mp_arg(2) + 1; + } + + static double mp_int(_cimg_math_parser& mp) { + return (double)(longT)_mp_arg(2); + } + + static double mp_ioff(_cimg_math_parser& mp) { + const unsigned int + boundary_conditions = (unsigned int)_mp_arg(3); + const CImg &img = mp.imgin; + const longT + off = (longT)_mp_arg(2), + whds = (longT)img.size(); + if (off>=0 && off::is_inf(_mp_arg(2)); + } + + static double mp_isint(_cimg_math_parser& mp) { + return (double)(cimg::mod(_mp_arg(2),1.0)==0); + } + + static double mp_isnan(_cimg_math_parser& mp) { + return (double)cimg::type::is_nan(_mp_arg(2)); + } + + static double mp_ixyzc(_cimg_math_parser& mp) { + const unsigned int + interpolation = (unsigned int)_mp_arg(6), + boundary_conditions = (unsigned int)_mp_arg(7); + const CImg &img = mp.imgin; + const double + x = _mp_arg(2), y = _mp_arg(3), + z = _mp_arg(4), c = _mp_arg(5); + if (interpolation==0) switch (boundary_conditions) { // Nearest neighbor interpolation + case 3 : { // Mirror + const int + w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(), s2 = 2*img.spectrum(), + mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2), + mz = cimg::mod((int)z,d2), mc = cimg::mod((int)c,s2); + return (double)img(mx &img = mp.imgin; + const longT + off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(2), + whds = (longT)img.size(); + if (off>=0 && off &img = mp.imgin; + const double + ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], + oz = mp.mem[_cimg_mp_slot_z], oc = mp.mem[_cimg_mp_slot_c], + x = ox + _mp_arg(2), y = oy + _mp_arg(3), + z = oz + _mp_arg(4), c = oc + _mp_arg(5); + if (interpolation==0) switch (boundary_conditions) { // Nearest neighbor interpolation + case 3 : { // Mirror + const int + w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(), s2 = 2*img.spectrum(), + mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2), + mz = cimg::mod((int)z,d2), mc = cimg::mod((int)c,s2); + return (double)img(mx vals(i_end - 4); + double *p = vals.data(); + for (unsigned int i = 4; i &img = mp.listin[indi]; + const bool is_forward = (bool)_mp_arg(4); + const ulongT siz = (ulongT)img.size(); + longT ind = (longT)(mp.opcode[5]!=_cimg_mp_slot_nan?_mp_arg(5):is_forward?0:siz - 1); + if (ind<0 || ind>=(longT)siz) return -1.; + const T + *const ptrb = img.data(), + *const ptre = img.end(), + *ptr = ptrb + ind; + const double val = _mp_arg(3); + + // Forward search + if (is_forward) { + while (ptr=ptrb && (double)*ptr!=val) --ptr; + return ptr &img = mp.listin[indi]; + const bool is_forward = (bool)_mp_arg(5); + const ulongT + siz1 = (ulongT)img.size(), + siz2 = (ulongT)mp.opcode[4]; + longT ind = (longT)(mp.opcode[6]!=_cimg_mp_slot_nan?_mp_arg(6):is_forward?0:siz1 - 1); + if (ind<0 || ind>=(longT)siz1) return -1.; + const T + *const ptr1b = img.data(), + *const ptr1e = ptr1b + siz1, + *ptr1 = ptr1b + ind, + *p1 = 0; + const double + *const ptr2b = &_mp_arg(3) + 1, + *const ptr2e = ptr2b + siz2, + *p2 = 0; + + // Forward search. + if (is_forward) { + do { + while (ptr1=ptr1b && *ptr1!=*ptr2b) --ptr1; + p1 = ptr1 + 1; + p2 = ptr2b + 1; + while (p1=ptr1b); + return p2 &img = mp.listin[ind]; + const longT + off = (longT)_mp_arg(3), + whds = (longT)img.size(); + if (off>=0 && off &img = mp.listin[ind]; + const double + x = _mp_arg(3), y = _mp_arg(4), + z = _mp_arg(5), c = _mp_arg(6); + if (interpolation==0) switch (boundary_conditions) { // Nearest neighbor interpolation + case 3 : { // Mirror + const int + w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(), s2 = 2*img.spectrum(), + mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2), + mz = cimg::mod((int)z,d2), mc = cimg::mod((int)c,s2); + return (double)img(mx &img = mp.listin[ind]; + const longT + off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(3), + whds = (longT)img.size(); + if (off>=0 && off &img = mp.listin[ind]; + const double + ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], + oz = mp.mem[_cimg_mp_slot_z], oc = mp.mem[_cimg_mp_slot_c], + x = ox + _mp_arg(3), y = oy + _mp_arg(4), + z = oz + _mp_arg(5), c = oc + _mp_arg(6); + if (interpolation==0) switch (boundary_conditions) { // Nearest neighbor interpolation + case 3 : { // Mirror + const int + w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(), s2 = 2*img.spectrum(), + mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2), + mz = cimg::mod((int)z,d2), mc = cimg::mod((int)c,s2); + return (double)img(mx::vector(mp.listin[ind].median()).move_to(mp.list_median[ind]); + return *mp.list_median[ind]; + } + + static double mp_list_set_ioff(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + CImg &img = mp.listout[ind]; + const longT + off = (longT)_mp_arg(3), + whds = (longT)img.size(); + const double val = _mp_arg(1); + if (off>=0 && off &img = mp.listout[ind]; + const int + x = (int)_mp_arg(3), y = (int)_mp_arg(4), + z = (int)_mp_arg(5), c = (int)_mp_arg(6); + const double val = _mp_arg(1); + if (x>=0 && x=0 && y=0 && z=0 && c &img = mp.listout[ind]; + const int + ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], + oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; + const longT + off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(3), + whds = (longT)img.size(); + const double val = _mp_arg(1); + if (off>=0 && off &img = mp.listout[ind]; + const double + ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], + oz = mp.mem[_cimg_mp_slot_z], oc = mp.mem[_cimg_mp_slot_c]; + const int + x = (int)(ox + _mp_arg(3)), y = (int)(oy + _mp_arg(4)), + z = (int)(oz + _mp_arg(5)), c = (int)(oc + _mp_arg(6)); + const double val = _mp_arg(1); + if (x>=0 && x=0 && y=0 && z=0 && c &img = mp.listout[ind]; + const longT + off = (longT)_mp_arg(3), + whd = (longT)img.width()*img.height()*img.depth(); + const T val = (T)_mp_arg(1); + if (off>=0 && off &img = mp.listout[ind]; + const longT + off = (longT)_mp_arg(3), + whd = (longT)img.width()*img.height()*img.depth(); + const double *ptrs = &_mp_arg(1) + 1; + if (off>=0 && off::nan(); + } + + static double mp_list_set_Ixyz_s(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + CImg &img = mp.listout[ind]; + const int + x = (int)_mp_arg(3), + y = (int)_mp_arg(4), + z = (int)_mp_arg(5); + const T val = (T)_mp_arg(1); + if (x>=0 && x=0 && y=0 && z &img = mp.listout[ind]; + const int + x = (int)_mp_arg(3), + y = (int)_mp_arg(4), + z = (int)_mp_arg(5); + const double *ptrs = &_mp_arg(1) + 1; + if (x>=0 && x=0 && y=0 && z::nan(); + } + + static double mp_list_set_Joff_s(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + CImg &img = mp.listout[ind]; + const int + ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], + oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; + const longT + off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(3), + whd = (longT)img.width()*img.height()*img.depth(); + const T val = (T)_mp_arg(1); + if (off>=0 && off &img = mp.listout[ind]; + const int + ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], + oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; + const longT + off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(3), + whd = (longT)img.width()*img.height()*img.depth(); + const double *ptrs = &_mp_arg(1) + 1; + if (off>=0 && off::nan(); + } + + static double mp_list_set_Jxyz_s(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + CImg &img = mp.listout[ind]; + const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z]; + const int + x = (int)(ox + _mp_arg(3)), + y = (int)(oy + _mp_arg(4)), + z = (int)(oz + _mp_arg(5)); + const T val = (T)_mp_arg(1); + if (x>=0 && x=0 && y=0 && z &img = mp.listout[ind]; + const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z]; + const int + x = (int)(ox + _mp_arg(3)), + y = (int)(oy + _mp_arg(4)), + z = (int)(oz + _mp_arg(5)); + const double *ptrs = &_mp_arg(1) + 1; + if (x>=0 && x=0 && y=0 && z::nan(); + } + + static double mp_list_spectrum(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + return (double)mp.listin[ind]._spectrum; + } + + static double mp_list_stats(_cimg_math_parser& mp) { + const unsigned int + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()), + k = (unsigned int)_mp_arg(3); + if (!mp.list_stats) mp.list_stats.assign(mp.listin._width); + if (!mp.list_stats[ind]) mp.list_stats[ind].assign(1,14,1,1,0).fill(mp.listin[ind].get_stats(),false); + return mp.list_stats(ind,k); + } + + static double mp_list_wh(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + return (double)mp.listin[ind]._width*mp.listin[ind]._height; + } + + static double mp_list_whd(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + return (double)mp.listin[ind]._width*mp.listin[ind]._height*mp.listin[ind]._depth; + } + + static double mp_list_whds(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + return (double)mp.listin[ind]._width*mp.listin[ind]._height*mp.listin[ind]._depth*mp.listin[ind]._spectrum; + } + + static double mp_list_width(_cimg_math_parser& mp) { + const unsigned int ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()); + return (double)mp.listin[ind]._width; + } + + static double mp_list_Ioff(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()), + boundary_conditions = (unsigned int)_mp_arg(4), + vsiz = (unsigned int)mp.opcode[5]; + const CImg &img = mp.listin[ind]; + const longT + off = (longT)_mp_arg(3), + whd = (longT)img.width()*img.height()*img.depth(); + const T *ptrs; + if (off>=0 && off::nan(); + } + if (img._data) switch (boundary_conditions) { + case 3 : { // Mirror + const longT whd2 = 2*whd, moff = cimg::mod(off,whd2); + ptrs = &img[moff::nan(); + } + case 2 : // Periodic + ptrs = &img[cimg::mod(off,whd)]; + cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return cimg::type::nan(); + case 1 : // Neumann + ptrs = off<0?&img[0]:&img[whd - 1]; + cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return cimg::type::nan(); + default : // Dirichlet + std::memset(ptrd,0,vsiz*sizeof(double)); + return cimg::type::nan(); + } + std::memset(ptrd,0,vsiz*sizeof(double)); + return cimg::type::nan(); + } + + static double mp_list_Ixyz(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()), + interpolation = (unsigned int)_mp_arg(6), + boundary_conditions = (unsigned int)_mp_arg(7), + vsiz = (unsigned int)mp.opcode[8]; + const CImg &img = mp.listin[ind]; + const double x = _mp_arg(3), y = _mp_arg(4), z = _mp_arg(5); + const ulongT whd = (ulongT)img._width*img._height*img._depth; + const T *ptrs; + if (interpolation==0) switch (boundary_conditions) { // Nearest neighbor interpolation + case 3 : { // Mirror + const int + w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(), + mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2), mz = cimg::mod((int)z,d2), + cx = mx::nan(); + } + + static double mp_list_Joff(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()), + boundary_conditions = (unsigned int)_mp_arg(4), + vsiz = (unsigned int)mp.opcode[5]; + const int + ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], oz = (int)mp.mem[_cimg_mp_slot_z]; + const CImg &img = mp.listin[ind]; + const longT + off = img.offset(ox,oy,oz) + (longT)_mp_arg(3), + whd = (longT)img.width()*img.height()*img.depth(); + const T *ptrs; + if (off>=0 && off::nan(); + } + if (img._data) switch (boundary_conditions) { + case 3 : { // Mirror + const longT whd2 = 2*whd, moff = cimg::mod(off,whd2); + ptrs = &img[moff::nan(); + } + case 2 : // Periodic + ptrs = &img[cimg::mod(off,whd)]; + cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return cimg::type::nan(); + case 1 : // Neumann + ptrs = off<0?&img[0]:&img[whd - 1]; + cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return cimg::type::nan(); + default : // Dirichlet + std::memset(ptrd,0,vsiz*sizeof(double)); + return cimg::type::nan(); + } + std::memset(ptrd,0,vsiz*sizeof(double)); + return cimg::type::nan(); + } + + static double mp_list_Jxyz(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int + ind = (unsigned int)cimg::mod((int)_mp_arg(2),mp.listin.width()), + interpolation = (unsigned int)_mp_arg(6), + boundary_conditions = (unsigned int)_mp_arg(7), + vsiz = (unsigned int)mp.opcode[8]; + const CImg &img = mp.listin[ind]; + const double + ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z], + x = ox + _mp_arg(3), y = oy + _mp_arg(4), z = oz + _mp_arg(5); + const ulongT whd = (ulongT)img._width*img._height*img._depth; + const T *ptrs; + if (interpolation==0) switch (boundary_conditions) { // Nearest neighbor interpolation + case 3 : { // Mirror + const int + w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(), + mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2), mz = cimg::mod((int)z,d2), + cx = mx::nan(); + } + + static double mp_log(_cimg_math_parser& mp) { + return std::log(_mp_arg(2)); + } + + static double mp_log10(_cimg_math_parser& mp) { + return std::log10(_mp_arg(2)); + } + + static double mp_log2(_cimg_math_parser& mp) { + return cimg::log2(_mp_arg(2)); + } + + static double mp_logical_and(_cimg_math_parser& mp) { + const bool val_left = (bool)_mp_arg(2); + const CImg *const p_end = ++mp.p_code + mp.opcode[4]; + if (!val_left) { mp.p_code = p_end - 1; return 0; } + const ulongT mem_right = mp.opcode[3]; + for ( ; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + --mp.p_code; + return (double)(bool)mp.mem[mem_right]; + } + + static double mp_logical_not(_cimg_math_parser& mp) { + return (double)!_mp_arg(2); + } + + static double mp_logical_or(_cimg_math_parser& mp) { + const bool val_left = (bool)_mp_arg(2); + const CImg *const p_end = ++mp.p_code + mp.opcode[4]; + if (val_left) { mp.p_code = p_end - 1; return 1; } + const ulongT mem_right = mp.opcode[3]; + for ( ; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + --mp.p_code; + return (double)(bool)mp.mem[mem_right]; + } + + static double mp_lowercase(_cimg_math_parser& mp) { + return cimg::lowercase(_mp_arg(2)); + } + + static double mp_lt(_cimg_math_parser& mp) { + return (double)(_mp_arg(2)<_mp_arg(3)); + } + + static double mp_lte(_cimg_math_parser& mp) { + return (double)(_mp_arg(2)<=_mp_arg(3)); + } + + static double mp_matrix_eig(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double *ptr1 = &_mp_arg(2) + 1; + const unsigned int k = (unsigned int)mp.opcode[3]; + CImg val, vec; + CImg(ptr1,k,k,1,1,true).symmetric_eigen(val,vec); + CImg(ptrd,1,k,1,1,true) = val; + CImg(ptrd + k,k,k,1,1,true) = vec.get_transpose(); + return cimg::type::nan(); + } + + static double mp_matrix_inv(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double *ptr1 = &_mp_arg(2) + 1; + const unsigned int k = (unsigned int)mp.opcode[3]; + CImg(ptrd,k,k,1,1,true) = CImg(ptr1,k,k,1,1,true).get_invert(); + return cimg::type::nan(); + } + + static double mp_matrix_mul(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double + *ptr1 = &_mp_arg(2) + 1, + *ptr2 = &_mp_arg(3) + 1; + const unsigned int + k = (unsigned int)mp.opcode[4], + l = (unsigned int)mp.opcode[5], + m = (unsigned int)mp.opcode[6]; + CImg(ptrd,m,k,1,1,true) = CImg(ptr1,l,k,1,1,true)*CImg(ptr2,m,l,1,1,true); + return cimg::type::nan(); + } + + static double mp_matrix_pseudoinv(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double *ptr1 = &_mp_arg(2) + 1; + const unsigned int + k = (unsigned int)mp.opcode[3], + l = (unsigned int)mp.opcode[4]; + CImg(ptrd,l,k,1,1,true) = CImg(ptr1,k,l,1,1,true).get_pseudoinvert(); + return cimg::type::nan(); + } + + static double mp_matrix_svd(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double *ptr1 = &_mp_arg(2) + 1; + const unsigned int + k = (unsigned int)mp.opcode[3], + l = (unsigned int)mp.opcode[4]; + CImg U, S, V; + CImg(ptr1,k,l,1,1,true).SVD(U,S,V); + CImg(ptrd,k,l,1,1,true) = U; + CImg(ptrd + k*l,1,k,1,1,true) = S; + CImg(ptrd + k*l + k,k,k,1,1,true) = V; + return cimg::type::nan(); + } + + static double mp_max(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + double val = _mp_arg(3); + for (unsigned int i = 4; i=mp.mem.width()) + throw CImgArgumentException("[_cimg_math_parser] CImg<%s>: Function 'copy()': " + "Out-of-bounds variable pointer " + "(length: %ld, increment: %ld, offset start: %ld, " + "offset end: %ld, offset max: %u).", + mp.imgin.pixel_type(),siz,inc,off,eoff,mp.mem._width - 1); + return &mp.mem[off]; + } + + static float* _mp_memcopy_float(_cimg_math_parser& mp, const ulongT *const p_ref, + const longT siz, const long inc) { + const unsigned ind = (unsigned int)p_ref[1]; + const CImg &img = ind==~0U?mp.imgin:mp.listin[cimg::mod((int)mp.mem[ind],mp.listin.width())]; + const bool is_relative = (bool)p_ref[2]; + int ox, oy, oz, oc; + longT off = 0; + if (is_relative) { + ox = (int)mp.mem[_cimg_mp_slot_x]; + oy = (int)mp.mem[_cimg_mp_slot_y]; + oz = (int)mp.mem[_cimg_mp_slot_z]; + oc = (int)mp.mem[_cimg_mp_slot_c]; + off = img.offset(ox,oy,oz,oc); + } + if ((*p_ref)%2) { + const int + x = (int)mp.mem[p_ref[3]], + y = (int)mp.mem[p_ref[4]], + z = (int)mp.mem[p_ref[5]], + c = *p_ref==5?0:(int)mp.mem[p_ref[6]]; + off+=img.offset(x,y,z,c); + } else off+=(longT)mp.mem[p_ref[3]]; + const longT eoff = off + (siz - 1)*inc; + if (off<0 || eoff>=(longT)img.size()) + throw CImgArgumentException("[_cimg_math_parser] CImg<%s>: Function 'copy()': " + "Out-of-bounds image pointer " + "(length: %ld, increment: %ld, offset start: %ld, " + "offset end: %ld, offset max: %lu).", + mp.imgin.pixel_type(),siz,inc,off,eoff,img.size() - 1); + return (float*)&img[off]; + } + + static double mp_memcopy(_cimg_math_parser& mp) { + longT siz = (longT)_mp_arg(4); + const longT inc_d = (longT)_mp_arg(5), inc_s = (longT)_mp_arg(6); + const float + _opacity = (float)_mp_arg(7), + opacity = (float)cimg::abs(_opacity), + omopacity = 1 - std::max(_opacity,0.0f); + if (siz>0) { + const bool + is_doubled = mp.opcode[8]<=1, + is_doubles = mp.opcode[15]<=1; + if (is_doubled && is_doubles) { // (double*) <- (double*) + double *ptrd = _mp_memcopy_double(mp,(unsigned int)mp.opcode[2],&mp.opcode[8],siz,inc_d); + const double *ptrs = _mp_memcopy_double(mp,(unsigned int)mp.opcode[3],&mp.opcode[15],siz,inc_s); + if (inc_d==1 && inc_s==1 && _opacity>=1) { + if (ptrs + siz - 1ptrd + siz - 1) std::memcpy(ptrd,ptrs,siz*sizeof(double)); + else std::memmove(ptrd,ptrs,siz*sizeof(double)); + } else { + if (ptrs + (siz - 1)*inc_sptrd + (siz - 1)*inc_d) { + if (_opacity>=1) while (siz-->0) { *ptrd = *ptrs; ptrd+=inc_d; ptrs+=inc_s; } + else while (siz-->0) { *ptrd = omopacity**ptrd + opacity**ptrs; ptrd+=inc_d; ptrs+=inc_s; } + } else { // Overlapping buffers + CImg buf((unsigned int)siz); + cimg_for(buf,ptr,double) { *ptr = *ptrs; ptrs+=inc_s; } + ptrs = buf; + if (_opacity>=1) while (siz-->0) { *ptrd = *(ptrs++); ptrd+=inc_d; } + else while (siz-->0) { *ptrd = omopacity**ptrd + opacity**(ptrs++); ptrd+=inc_d; } + } + } + } else if (is_doubled && !is_doubles) { // (double*) <- (float*) + double *ptrd = _mp_memcopy_double(mp,(unsigned int)mp.opcode[2],&mp.opcode[8],siz,inc_d); + const float *ptrs = _mp_memcopy_float(mp,&mp.opcode[15],siz,inc_s); + if (_opacity>=1) while (siz-->0) { *ptrd = *ptrs; ptrd+=inc_d; ptrs+=inc_s; } + else while (siz-->0) { *ptrd = omopacity**ptrd + _opacity**ptrs; ptrd+=inc_d; ptrs+=inc_s; } + } else if (!is_doubled && is_doubles) { // (float*) <- (double*) + float *ptrd = _mp_memcopy_float(mp,&mp.opcode[8],siz,inc_d); + const double *ptrs = _mp_memcopy_double(mp,(unsigned int)mp.opcode[3],&mp.opcode[15],siz,inc_s); + if (_opacity>=1) while (siz-->0) { *ptrd = (float)*ptrs; ptrd+=inc_d; ptrs+=inc_s; } + else while (siz-->0) { *ptrd = (float)(omopacity**ptrd + opacity**ptrs); ptrd+=inc_d; ptrs+=inc_s; } + } else { // (float*) <- (float*) + float *ptrd = _mp_memcopy_float(mp,&mp.opcode[8],siz,inc_d); + const float *ptrs = _mp_memcopy_float(mp,&mp.opcode[15],siz,inc_s); + if (inc_d==1 && inc_s==1 && _opacity>=1) { + if (ptrs + siz - 1ptrd + siz - 1) std::memcpy(ptrd,ptrs,siz*sizeof(float)); + else std::memmove(ptrd,ptrs,siz*sizeof(float)); + } else { + if (ptrs + (siz - 1)*inc_sptrd + (siz - 1)*inc_d) { + if (_opacity>=1) while (siz-->0) { *ptrd = *ptrs; ptrd+=inc_d; ptrs+=inc_s; } + else while (siz-->0) { *ptrd = omopacity**ptrd + opacity**ptrs; ptrd+=inc_d; ptrs+=inc_s; } + } else { // Overlapping buffers + CImg buf((unsigned int)siz); + cimg_for(buf,ptr,float) { *ptr = *ptrs; ptrs+=inc_s; } + ptrs = buf; + if (_opacity>=1) while (siz-->0) { *ptrd = *(ptrs++); ptrd+=inc_d; } + else while (siz-->0) { *ptrd = omopacity**ptrd + opacity**(ptrs++); ptrd+=inc_d; } + } + } + } + } + return _mp_arg(1); + } + + static double mp_min(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + double val = _mp_arg(3); + for (unsigned int i = 4; i vals(i_end - 3); + double *p = vals.data(); + for (unsigned int i = 3; ires) res = val; + } + return res; + } + + static double mp_normp(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + if (i_end==4) return cimg::abs(_mp_arg(3)); + const double p = (double)mp.opcode[3]; + double res = 0; + for (unsigned int i = 4; i0?res:0.0; + } + + static double mp_permutations(_cimg_math_parser& mp) { + return cimg::permutations(_mp_arg(2),_mp_arg(3),(bool)_mp_arg(4)); + } + + static double mp_pow(_cimg_math_parser& mp) { + const double v = _mp_arg(2), p = _mp_arg(3); + return std::pow(v,p); + } + + static double mp_pow0_25(_cimg_math_parser& mp) { + const double val = _mp_arg(2); + return std::sqrt(std::sqrt(val)); + } + + static double mp_pow3(_cimg_math_parser& mp) { + const double val = _mp_arg(2); + return val*val*val; + } + + static double mp_pow4(_cimg_math_parser& mp) { + const double val = _mp_arg(2); + return val*val*val*val; + } + + static double mp_print(_cimg_math_parser& mp) { + const double val = _mp_arg(1); + cimg_pragma_openmp(critical) + { + CImg expr(mp.opcode[2] - 3); + const ulongT *ptrs = mp.opcode._data + 3; + cimg_for(expr,ptrd,char) *ptrd = (char)*(ptrs++); + cimg::strellipsize(expr); + cimg::mutex(6); + std::fprintf(cimg::output(),"\n[_cimg_math_parser] %s = %g",expr._data,val); + std::fflush(cimg::output()); + cimg::mutex(6,0); + } + return val; + } + + static double mp_prod(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + double val = _mp_arg(3); + for (unsigned int i = 4; i::nan(); + } + + static double mp_rot3d(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const float x = (float)_mp_arg(2), y = (float)_mp_arg(3), z = (float)_mp_arg(4), theta = (float)_mp_arg(5); + CImg(ptrd,3,3,1,1,true) = CImg::rotation_matrix(x,y,z,theta); + return cimg::type::nan(); + } + + static double mp_round(_cimg_math_parser& mp) { + return cimg::round(_mp_arg(2),_mp_arg(3),(int)_mp_arg(4)); + } + + static double mp_self_add(_cimg_math_parser& mp) { + return _mp_arg(1)+=_mp_arg(2); + } + + static double mp_self_bitwise_and(_cimg_math_parser& mp) { + double &val = _mp_arg(1); + return val = (double)((longT)val & (longT)_mp_arg(2)); + } + + static double mp_self_bitwise_left_shift(_cimg_math_parser& mp) { + double &val = _mp_arg(1); + return val = (double)((longT)val<<(unsigned int)_mp_arg(2)); + } + + static double mp_self_bitwise_or(_cimg_math_parser& mp) { + double &val = _mp_arg(1); + return val = (double)((longT)val | (longT)_mp_arg(2)); + } + + static double mp_self_bitwise_right_shift(_cimg_math_parser& mp) { + double &val = _mp_arg(1); + return val = (double)((longT)val>>(unsigned int)_mp_arg(2)); + } + + static double mp_self_decrement(_cimg_math_parser& mp) { + return --_mp_arg(1); + } + + static double mp_self_increment(_cimg_math_parser& mp) { + return ++_mp_arg(1); + } + + static double mp_self_map_vector_s(_cimg_math_parser& mp) { // Vector += scalar + unsigned int + ptrd = (unsigned int)mp.opcode[1] + 1, + siz = (unsigned int)mp.opcode[2]; + mp_func op = (mp_func)mp.opcode[3]; + CImg l_opcode(1,3); + l_opcode[2] = mp.opcode[4]; // Scalar argument. + l_opcode.swap(mp.opcode); + ulongT &target = mp.opcode[1]; + while (siz-->0) { target = ptrd++; (*op)(mp); } + l_opcode.swap(mp.opcode); + return cimg::type::nan(); + } + + static double mp_self_map_vector_v(_cimg_math_parser& mp) { // Vector += vector + unsigned int + ptrd = (unsigned int)mp.opcode[1] + 1, + siz = (unsigned int)mp.opcode[2], + ptrs = (unsigned int)mp.opcode[4] + 1; + mp_func op = (mp_func)mp.opcode[3]; + CImg l_opcode(1,4); + l_opcode.swap(mp.opcode); + ulongT &target = mp.opcode[1], &argument = mp.opcode[2]; + while (siz-->0) { target = ptrd++; argument = ptrs++; (*op)(mp); } + l_opcode.swap(mp.opcode); + return cimg::type::nan(); + } + + static double mp_self_mul(_cimg_math_parser& mp) { + return _mp_arg(1)*=_mp_arg(2); + } + + static double mp_self_div(_cimg_math_parser& mp) { + return _mp_arg(1)/=_mp_arg(2); + } + + static double mp_self_modulo(_cimg_math_parser& mp) { + double &val = _mp_arg(1); + return val = cimg::mod(val,_mp_arg(2)); + } + + static double mp_self_pow(_cimg_math_parser& mp) { + double &val = _mp_arg(1); + return val = std::pow(val,_mp_arg(2)); + } + + static double mp_self_sub(_cimg_math_parser& mp) { + return _mp_arg(1)-=_mp_arg(2); + } + + static double mp_set_ioff(_cimg_math_parser& mp) { + CImg &img = mp.imgout; + const longT + off = (longT)_mp_arg(2), + whds = (longT)img.size(); + const double val = _mp_arg(1); + if (off>=0 && off &img = mp.imgout; + const int + x = (int)_mp_arg(2), y = (int)_mp_arg(3), + z = (int)_mp_arg(4), c = (int)_mp_arg(5); + const double val = _mp_arg(1); + if (x>=0 && x=0 && y=0 && z=0 && c &img = mp.imgout; + const int + ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], + oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; + const longT + off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(2), + whds = (longT)img.size(); + const double val = _mp_arg(1); + if (off>=0 && off &img = mp.imgout; + const double + ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], + oz = mp.mem[_cimg_mp_slot_z], oc = mp.mem[_cimg_mp_slot_c]; + const int + x = (int)(ox + _mp_arg(2)), y = (int)(oy + _mp_arg(3)), + z = (int)(oz + _mp_arg(4)), c = (int)(oc + _mp_arg(5)); + const double val = _mp_arg(1); + if (x>=0 && x=0 && y=0 && z=0 && c &img = mp.imgout; + const longT + off = (longT)_mp_arg(2), + whd = (longT)img.width()*img.height()*img.depth(); + const T val = (T)_mp_arg(1); + if (off>=0 && off &img = mp.imgout; + const longT + off = (longT)_mp_arg(2), + whd = (longT)img.width()*img.height()*img.depth(); + const double *ptrs = &_mp_arg(1) + 1; + if (off>=0 && off::nan(); + } + + static double mp_set_Ixyz_s(_cimg_math_parser& mp) { + CImg &img = mp.imgout; + const int + x = (int)_mp_arg(2), + y = (int)_mp_arg(3), + z = (int)_mp_arg(4); + const T val = (T)_mp_arg(1); + if (x>=0 && x=0 && y=0 && z &img = mp.imgout; + const int + x = (int)_mp_arg(2), + y = (int)_mp_arg(3), + z = (int)_mp_arg(4); + const double *ptrs = &_mp_arg(1) + 1; + if (x>=0 && x=0 && y=0 && z::nan(); + } + + static double mp_set_Joff_s(_cimg_math_parser& mp) { + CImg &img = mp.imgout; + const int + ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], + oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; + const longT + off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(2), + whd = (longT)img.width()*img.height()*img.depth(); + const T val = (T)_mp_arg(1); + if (off>=0 && off &img = mp.imgout; + const int + ox = (int)mp.mem[_cimg_mp_slot_x], oy = (int)mp.mem[_cimg_mp_slot_y], + oz = (int)mp.mem[_cimg_mp_slot_z], oc = (int)mp.mem[_cimg_mp_slot_c]; + const longT + off = img.offset(ox,oy,oz,oc) + (longT)_mp_arg(2), + whd = (longT)img.width()*img.height()*img.depth(); + const double *ptrs = &_mp_arg(1) + 1; + if (off>=0 && off::nan(); + } + + static double mp_set_Jxyz_s(_cimg_math_parser& mp) { + CImg &img = mp.imgout; + const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z]; + const int + x = (int)(ox + _mp_arg(2)), + y = (int)(oy + _mp_arg(3)), + z = (int)(oz + _mp_arg(4)); + const T val = (T)_mp_arg(1); + if (x>=0 && x=0 && y=0 && z &img = mp.imgout; + const double ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z]; + const int + x = (int)(ox + _mp_arg(2)), + y = (int)(oy + _mp_arg(3)), + z = (int)(oz + _mp_arg(4)); + const double *ptrs = &_mp_arg(1) + 1; + if (x>=0 && x=0 && y=0 && z::nan(); + } + + static double mp_sign(_cimg_math_parser& mp) { + return cimg::sign(_mp_arg(2)); + } + + static double mp_sin(_cimg_math_parser& mp) { + return std::sin(_mp_arg(2)); + } + + static double mp_sinc(_cimg_math_parser& mp) { + return cimg::sinc(_mp_arg(2)); + } + + static double mp_single(_cimg_math_parser& mp) { + const double res = _mp_arg(1); + cimg_pragma_openmp(critical) + { + for (const CImg *const p_end = ++mp.p_code + mp.opcode[2]; + mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + } + --mp.p_code; + return res; + } + + static double mp_sinh(_cimg_math_parser& mp) { + return std::sinh(_mp_arg(2)); + } + + static double mp_solve(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double + *ptr1 = &_mp_arg(2) + 1, + *ptr2 = &_mp_arg(3) + 1; + const unsigned int + k = (unsigned int)mp.opcode[4], + l = (unsigned int)mp.opcode[5], + m = (unsigned int)mp.opcode[6]; + CImg(ptrd,m,k,1,1,true) = CImg(ptr2,m,l,1,1,true).get_solve(CImg(ptr1,k,l,1,1,true)); + return cimg::type::nan(); + } + + static double mp_sort(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const double *const ptrs = &_mp_arg(2) + 1; + const unsigned int + siz = (unsigned int)mp.opcode[3], + chunk_siz = (unsigned int)mp.opcode[5]; + const bool is_increasing = (bool)_mp_arg(4); + CImg(ptrd,chunk_siz,siz/chunk_siz,1,1,true) = CImg(ptrs,chunk_siz,siz/chunk_siz,1,1,true). + get_sort(is_increasing,chunk_siz>1?'y':0); + return cimg::type::nan(); + } + + static double mp_sqr(_cimg_math_parser& mp) { + return cimg::sqr(_mp_arg(2)); + } + + static double mp_sqrt(_cimg_math_parser& mp) { + return std::sqrt(_mp_arg(2)); + } + + static double mp_std(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + CImg vals(i_end - 3); + double *p = vals.data(); + for (unsigned int i = 3; i0) mp.mem[ptrd++] = (double)*(ptrs++); + return cimg::type::nan(); + } + + static double mp_stod(_cimg_math_parser& mp) { + const double *ptrs = &_mp_arg(2); + const unsigned int siz = (unsigned int)mp.opcode[3]; + const bool is_strict = (bool)_mp_arg(4); + if (!siz) return *ptrs>='0' && *ptrs<='9'?*ptrs - '0':cimg::type::nan(); + CImg ss(siz + 1); + double val = cimg::type::nan(); + char sep; + for (unsigned i = 0; i::inf(); err = 1; } + else if (!cimg::strcasecmp(s,"nan")) { val = cimg::type::nan(); err = 1; } + if (err==1 && !is_positive) val = -val; + } +#endif + if (is_strict && err!=1) return cimg::type::nan(); + return val; + } + + static double mp_sub(_cimg_math_parser& mp) { + return _mp_arg(2) - _mp_arg(3); + } + + static double mp_sum(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + double val = _mp_arg(3); + for (unsigned int i = 4; i(ptrs,k,k,1,1,true).trace(); + } + + static double mp_transp(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const double *ptrs = &_mp_arg(2) + 1; + const unsigned int + k = (unsigned int)mp.opcode[3], + l = (unsigned int)mp.opcode[4]; + CImg(ptrd,l,k,1,1,true) = CImg(ptrs,k,l,1,1,true).get_transpose(); + return cimg::type::nan(); + } + + static double mp_u(_cimg_math_parser& mp) { + return cimg::rand(_mp_arg(2),_mp_arg(3)); + } + + static double mp_uppercase(_cimg_math_parser& mp) { + return cimg::uppercase(_mp_arg(2)); + } + + static double mp_variance(_cimg_math_parser& mp) { + const unsigned int i_end = (unsigned int)mp.opcode[2]; + CImg vals(i_end - 3); + double *p = vals.data(); + for (unsigned int i = 3; i::nan(); + } + + static double mp_vector_crop(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const double *const ptrs = &_mp_arg(2) + 1; + const longT + length = (longT)mp.opcode[3], + start = (longT)_mp_arg(4), + sublength = (longT)mp.opcode[5]; + if (start<0 || start + sublength>length) + throw CImgArgumentException("[_cimg_math_parser] CImg<%s>: Value accessor '[]': " + "Out-of-bounds sub-vector request " + "(length: %ld, start: %ld, sub-length: %ld).", + mp.imgin.pixel_type(),length,start,sublength); + std::memcpy(ptrd,ptrs + start,sublength*sizeof(double)); + return cimg::type::nan(); + } + + static double mp_vector_init(_cimg_math_parser& mp) { + unsigned int + ptrs = 4U, + ptrd = (unsigned int)mp.opcode[1] + 1, + siz = (unsigned int)mp.opcode[3]; + switch (mp.opcode[2] - 4) { + case 0 : std::memset(mp.mem._data + ptrd,0,siz*sizeof(double)); break; // 0 values given + case 1 : { const double val = _mp_arg(ptrs); while (siz-->0) mp.mem[ptrd++] = val; } break; + default : while (siz-->0) { mp.mem[ptrd++] = _mp_arg(ptrs++); if (ptrs>=mp.opcode[2]) ptrs = 4U; } + } + return cimg::type::nan(); + } + + static double mp_vector_eq(_cimg_math_parser& mp) { + const double + *ptr1 = &_mp_arg(2) + 1, + *ptr2 = &_mp_arg(4) + 1; + unsigned int p1 = (unsigned int)mp.opcode[3], p2 = (unsigned int)mp.opcode[5], n; + const int N = (int)_mp_arg(6); + const bool case_sensitive = (bool)_mp_arg(7); + bool still_equal = true; + double value; + if (!N) return true; + + // Compare all values. + if (N<0) { + if (p1>0 && p2>0) { // Vector == vector + if (p1!=p2) return false; + if (case_sensitive) + while (still_equal && p1--) still_equal = *(ptr1++)==*(ptr2++); + else + while (still_equal && p1--) + still_equal = cimg::lowercase(*(ptr1++))==cimg::lowercase(*(ptr2++)); + return still_equal; + } else if (p1>0 && !p2) { // Vector == scalar + value = _mp_arg(4); + if (!case_sensitive) value = cimg::lowercase(value); + while (still_equal && p1--) still_equal = *(ptr1++)==value; + return still_equal; + } else if (!p1 && p2>0) { // Scalar == vector + value = _mp_arg(2); + if (!case_sensitive) value = cimg::lowercase(value); + while (still_equal && p2--) still_equal = *(ptr2++)==value; + return still_equal; + } else { // Scalar == scalar + if (case_sensitive) return _mp_arg(2)==_mp_arg(4); + else return cimg::lowercase(_mp_arg(2))==cimg::lowercase(_mp_arg(4)); + } + } + + // Compare only first N values. + if (p1>0 && p2>0) { // Vector == vector + n = cimg::min((unsigned int)N,p1,p2); + if (case_sensitive) + while (still_equal && n--) still_equal = *(ptr1++)==(*ptr2++); + else + while (still_equal && n--) still_equal = cimg::lowercase(*(ptr1++))==cimg::lowercase(*(ptr2++)); + return still_equal; + } else if (p1>0 && !p2) { // Vector == scalar + n = std::min((unsigned int)N,p1); + value = _mp_arg(4); + if (!case_sensitive) value = cimg::lowercase(value); + while (still_equal && n--) still_equal = *(ptr1++)==value; + return still_equal; + } else if (!p1 && p2>0) { // Scalar == vector + n = std::min((unsigned int)N,p2); + value = _mp_arg(2); + if (!case_sensitive) value = cimg::lowercase(value); + while (still_equal && n--) still_equal = *(ptr2++)==value; + return still_equal; + } // Scalar == scalar + if (case_sensitive) return _mp_arg(2)==_mp_arg(4); + return cimg::lowercase(_mp_arg(2))==cimg::lowercase(_mp_arg(4)); + } + + static double mp_vector_off(_cimg_math_parser& mp) { + const unsigned int + ptr = (unsigned int)mp.opcode[2] + 1, + siz = (unsigned int)mp.opcode[3]; + const int off = (int)_mp_arg(4); + return off>=0 && off<(int)siz?mp.mem[ptr + off]:cimg::type::nan(); + } + + static double mp_vector_map_sv(_cimg_math_parser& mp) { // Operator(scalar,vector) + unsigned int + siz = (unsigned int)mp.opcode[2], + ptrs = (unsigned int)mp.opcode[5] + 1; + double *ptrd = &_mp_arg(1) + 1; + mp_func op = (mp_func)mp.opcode[3]; + CImg l_opcode(4); + l_opcode[2] = mp.opcode[4]; // Scalar argument1 + l_opcode.swap(mp.opcode); + ulongT &argument2 = mp.opcode[3]; + while (siz-->0) { argument2 = ptrs++; *(ptrd++) = (*op)(mp); } + l_opcode.swap(mp.opcode); + return cimg::type::nan(); + } + + static double mp_vector_map_v(_cimg_math_parser& mp) { // Operator(vector) + unsigned int + siz = (unsigned int)mp.opcode[2], + ptrs = (unsigned int)mp.opcode[4] + 1; + double *ptrd = &_mp_arg(1) + 1; + mp_func op = (mp_func)mp.opcode[3]; + CImg l_opcode(1,3); + l_opcode.swap(mp.opcode); + ulongT &argument = mp.opcode[2]; + while (siz-->0) { argument = ptrs++; *(ptrd++) = (*op)(mp); } + l_opcode.swap(mp.opcode); + return cimg::type::nan(); + } + + static double mp_vector_map_vs(_cimg_math_parser& mp) { // Operator(vector,scalar) + unsigned int + siz = (unsigned int)mp.opcode[2], + ptrs = (unsigned int)mp.opcode[4] + 1; + double *ptrd = &_mp_arg(1) + 1; + mp_func op = (mp_func)mp.opcode[3]; + CImg l_opcode(1,4); + l_opcode[3] = mp.opcode[5]; // Scalar argument2 + l_opcode.swap(mp.opcode); + ulongT &argument1 = mp.opcode[2]; + while (siz-->0) { argument1 = ptrs++; *(ptrd++) = (*op)(mp); } + l_opcode.swap(mp.opcode); + return cimg::type::nan(); + } + + static double mp_vector_map_vss(_cimg_math_parser& mp) { // Operator(vector,scalar,scalar) + unsigned int + siz = (unsigned int)mp.opcode[2], + ptrs = (unsigned int)mp.opcode[4] + 1; + double *ptrd = &_mp_arg(1) + 1; + mp_func op = (mp_func)mp.opcode[3]; + CImg l_opcode(1,5); + l_opcode[3] = mp.opcode[5]; // Scalar argument2 + l_opcode[4] = mp.opcode[6]; // Scalar argument3 + l_opcode.swap(mp.opcode); + ulongT &argument1 = mp.opcode[2]; + while (siz-->0) { argument1 = ptrs++; *(ptrd++) = (*op)(mp); } + l_opcode.swap(mp.opcode); + return cimg::type::nan(); + } + + static double mp_vector_map_vv(_cimg_math_parser& mp) { // Operator(vector,vector) + unsigned int + siz = (unsigned int)mp.opcode[2], + ptrs1 = (unsigned int)mp.opcode[4] + 1, + ptrs2 = (unsigned int)mp.opcode[5] + 1; + double *ptrd = &_mp_arg(1) + 1; + mp_func op = (mp_func)mp.opcode[3]; + CImg l_opcode(1,4); + l_opcode.swap(mp.opcode); + ulongT &argument1 = mp.opcode[2], &argument2 = mp.opcode[3]; + while (siz-->0) { argument1 = ptrs1++; argument2 = ptrs2++; *(ptrd++) = (*op)(mp); } + l_opcode.swap(mp.opcode); + return cimg::type::nan(); + } + + static double mp_vector_neq(_cimg_math_parser& mp) { + return !mp_vector_eq(mp); + } + + static double mp_vector_print(_cimg_math_parser& mp) { + cimg_pragma_openmp(critical) + { + CImg expr(mp.opcode[2] - 4); + const ulongT *ptrs = mp.opcode._data + 4; + cimg_for(expr,ptrd,char) *ptrd = (char)*(ptrs++); + cimg::strellipsize(expr); + unsigned int + ptr = (unsigned int)mp.opcode[1] + 1, + siz0 = (unsigned int)mp.opcode[3], + siz = siz0; + cimg::mutex(6); + std::fprintf(cimg::output(),"\n[_cimg_math_parser] %s = [ ",expr._data); + unsigned int count = 0; + while (siz-->0) { + if (count>=64 && siz>=64) { + std::fprintf(cimg::output(),"...,"); + ptr = (unsigned int)mp.opcode[1] + 1 + siz0 - 64; + siz = 64; + } else std::fprintf(cimg::output(),"%g%s",mp.mem[ptr++],siz?",":""); + ++count; + } + std::fprintf(cimg::output()," ] (size: %u)",siz0); + std::fflush(cimg::output()); + cimg::mutex(6,0); + } + return cimg::type::nan(); + } + + static double mp_vector_resize(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const unsigned int p1 = (unsigned int)mp.opcode[2], p2 = (unsigned int)mp.opcode[4]; + const int + interpolation = (int)_mp_arg(5), + boundary_conditions = (int)_mp_arg(6); + if (p2) { // Resize vector + const double *const ptrs = &_mp_arg(3) + 1; + CImg(ptrd,p1,1,1,1,true) = CImg(ptrs,p2,1,1,1,true). + get_resize(p1,1,1,1,interpolation,boundary_conditions); + } else { // Resize scalar + const double value = _mp_arg(3); + CImg(ptrd,p1,1,1,1,true) = CImg(1,1,1,1,value).resize(p1,1,1,1,interpolation, + boundary_conditions); + } + return cimg::type::nan(); + } + + static double mp_vector_reverse(_cimg_math_parser& mp) { + double *const ptrd = &_mp_arg(1) + 1; + const double *const ptrs = &_mp_arg(2) + 1; + const unsigned int p1 = (unsigned int)mp.opcode[3]; + CImg(ptrd,p1,1,1,1,true) = CImg(ptrs,p1,1,1,1,true).get_mirror('x'); + return cimg::type::nan(); + } + + static double mp_vector_set_off(_cimg_math_parser& mp) { + const unsigned int + ptr = (unsigned int)mp.opcode[2] + 1, + siz = (unsigned int)mp.opcode[3]; + const int off = (int)_mp_arg(4); + if (off>=0 && off<(int)siz) mp.mem[ptr + off] = _mp_arg(5); + return _mp_arg(5); + } + + static double mp_whiledo(_cimg_math_parser& mp) { + const ulongT + mem_body = mp.opcode[1], + mem_cond = mp.opcode[2]; + const CImg + *const p_cond = ++mp.p_code, + *const p_body = p_cond + mp.opcode[3], + *const p_end = p_body + mp.opcode[4]; + const unsigned int vsiz = (unsigned int)mp.opcode[5]; + bool is_cond = false; + if (mp.opcode[6]) { // Set default value for result and condition if necessary + if (vsiz) CImg(&mp.mem[mem_body] + 1,vsiz,1,1,1,true).fill(cimg::type::nan()); + else mp.mem[mem_body] = cimg::type::nan(); + } + if (mp.opcode[7]) mp.mem[mem_cond] = 0; + const unsigned int _break_type = mp.break_type; + mp.break_type = 0; + do { + for (mp.p_code = p_cond; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; + is_cond = (bool)mp.mem[mem_cond]; + if (is_cond && !mp.break_type) // Evaluate body + for (mp.p_code = p_body; mp.p_code_data; + const ulongT target = mp.opcode[1]; + mp.mem[target] = _cimg_mp_defunc(mp); + } + if (mp.break_type==1) break; else if (mp.break_type==2) mp.break_type = 0; + } while (is_cond); + + mp.break_type = _break_type; + mp.p_code = p_end - 1; + return mp.mem[mem_body]; + } + + static double mp_Ioff(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int + boundary_conditions = (unsigned int)_mp_arg(3), + vsiz = (unsigned int)mp.opcode[4]; + const CImg &img = mp.imgin; + const longT + off = (longT)_mp_arg(2), + whd = (longT)img.width()*img.height()*img.depth(); + const T *ptrs; + if (off>=0 && off::nan(); + } + if (img._data) switch (boundary_conditions) { + case 3 : { // Mirror + const longT whd2 = 2*whd, moff = cimg::mod(off,whd2); + ptrs = &img[moff::nan(); + } + case 2 : // Periodic + ptrs = &img[cimg::mod(off,whd)]; + cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return cimg::type::nan(); + case 1 : // Neumann + ptrs = off<0?&img[0]:&img[whd - 1]; + cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return cimg::type::nan(); + default : // Dirichlet + std::memset(ptrd,0,vsiz*sizeof(double)); + return cimg::type::nan(); + } + std::memset(ptrd,0,vsiz*sizeof(double)); + return cimg::type::nan(); + } + + static double mp_Ixyz(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int + interpolation = (unsigned int)_mp_arg(5), + boundary_conditions = (unsigned int)_mp_arg(6), + vsiz = (unsigned int)mp.opcode[7]; + const CImg &img = mp.imgin; + const double x = _mp_arg(2), y = _mp_arg(3), z = _mp_arg(4); + const ulongT whd = (ulongT)img._width*img._height*img._depth; + const T *ptrs; + if (interpolation==0) switch (boundary_conditions) { // Nearest neighbor interpolation + case 3 : { // Mirror + const int + w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(), + mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2), mz = cimg::mod((int)z,d2), + cx = mx::nan(); + } + + static double mp_Joff(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int + boundary_conditions = (unsigned int)_mp_arg(3), + vsiz = (unsigned int)mp.opcode[4]; + const CImg &img = mp.imgin; + const int + ox = (int)mp.mem[_cimg_mp_slot_x], + oy = (int)mp.mem[_cimg_mp_slot_y], + oz = (int)mp.mem[_cimg_mp_slot_z]; + const longT + off = img.offset(ox,oy,oz) + (longT)_mp_arg(2), + whd = (longT)img.width()*img.height()*img.depth(); + const T *ptrs; + if (off>=0 && off::nan(); + } + if (img._data) switch (boundary_conditions) { + case 3 : { // Mirror + const longT whd2 = 2*whd, moff = cimg::mod(off,whd2); + ptrs = &img[moff::nan(); + } + case 2 : // Periodic + ptrs = &img[cimg::mod(off,whd)]; + cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return cimg::type::nan(); + case 1 : // Neumann + ptrs = off<0?&img[0]:&img[whd - 1]; + cimg_for_inC(img,0,vsiz - 1,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return cimg::type::nan(); + default : // Dirichlet + std::memset(ptrd,0,vsiz*sizeof(double)); + return cimg::type::nan(); + } + std::memset(ptrd,0,vsiz*sizeof(double)); + return cimg::type::nan(); + } + + static double mp_Jxyz(_cimg_math_parser& mp) { + double *ptrd = &_mp_arg(1) + 1; + const unsigned int + interpolation = (unsigned int)_mp_arg(5), + boundary_conditions = (unsigned int)_mp_arg(6), + vsiz = (unsigned int)mp.opcode[7]; + const CImg &img = mp.imgin; + const double + ox = mp.mem[_cimg_mp_slot_x], oy = mp.mem[_cimg_mp_slot_y], oz = mp.mem[_cimg_mp_slot_z], + x = ox + _mp_arg(2), y = oy + _mp_arg(3), z = oz + _mp_arg(4); + const ulongT whd = (ulongT)img._width*img._height*img._depth; + const T *ptrs; + if (interpolation==0) switch (boundary_conditions) { // Nearest neighbor interpolation + case 3 : { // Mirror + const int + w2 = 2*img.width(), h2 = 2*img.height(), d2 = 2*img.depth(), + mx = cimg::mod((int)x,w2), my = cimg::mod((int)y,h2), mz = cimg::mod((int)z,d2), + cx = mx::nan(); + } + +#undef _mp_arg + + }; // struct _cimg_math_parser {} + + //! Compute the square value of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its square value \f$I_{(x,y,z,c)}^2\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + \par Example + \code + const CImg img("reference.jpg"); + (img,img.get_sqr().normalize(0,255)).display(); + \endcode + \image html ref_sqr.jpg + **/ + CImg& sqr() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=524288)) + cimg_rof(*this,ptrd,T) { const T val = *ptrd; *ptrd = (T)(val*val); }; + return *this; + } + + //! Compute the square value of each pixel value \newinstance. + CImg get_sqr() const { + return CImg(*this,false).sqr(); + } + + //! Compute the square root of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its square root \f$\sqrt{I_{(x,y,z,c)}}\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + \par Example + \code + const CImg img("reference.jpg"); + (img,img.get_sqrt().normalize(0,255)).display(); + \endcode + \image html ref_sqrt.jpg + **/ + CImg& sqrt() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=8192)) + cimg_rof(*this,ptrd,T) *ptrd = (T)std::sqrt((double)*ptrd); + return *this; + } + + //! Compute the square root of each pixel value \newinstance. + CImg get_sqrt() const { + return CImg(*this,false).sqrt(); + } + + //! Compute the exponential of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its exponential \f$e^{I_{(x,y,z,c)}}\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + CImg& exp() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=4096)) + cimg_rof(*this,ptrd,T) *ptrd = (T)std::exp((double)*ptrd); + return *this; + } + + //! Compute the exponential of each pixel value \newinstance. + CImg get_exp() const { + return CImg(*this,false).exp(); + } + + //! Compute the logarithm of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its logarithm + \f$\mathrm{log}_{e}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + CImg& log() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=262144)) + cimg_rof(*this,ptrd,T) *ptrd = (T)std::log((double)*ptrd); + return *this; + } + + //! Compute the logarithm of each pixel value \newinstance. + CImg get_log() const { + return CImg(*this,false).log(); + } + + //! Compute the base-2 logarithm of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its base-2 logarithm + \f$\mathrm{log}_{2}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + CImg& log2() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=4096)) + cimg_rof(*this,ptrd,T) *ptrd = (T)cimg::log2((double)*ptrd); + return *this; + } + + //! Compute the base-10 logarithm of each pixel value \newinstance. + CImg get_log2() const { + return CImg(*this,false).log2(); + } + + //! Compute the base-10 logarithm of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its base-10 logarithm + \f$\mathrm{log}_{10}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + CImg& log10() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=4096)) + cimg_rof(*this,ptrd,T) *ptrd = (T)std::log10((double)*ptrd); + return *this; + } + + //! Compute the base-10 logarithm of each pixel value \newinstance. + CImg get_log10() const { + return CImg(*this,false).log10(); + } + + //! Compute the absolute value of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its absolute value \f$|I_{(x,y,z,c)}|\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + CImg& abs() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=524288)) + cimg_rof(*this,ptrd,T) *ptrd = cimg::abs(*ptrd); + return *this; + } + + //! Compute the absolute value of each pixel value \newinstance. + CImg get_abs() const { + return CImg(*this,false).abs(); + } + + //! Compute the sign of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its sign + \f$\mathrm{sign}(I_{(x,y,z,c)})\f$. + \note + - The sign is set to: + - \c 1 if pixel value is strictly positive. + - \c -1 if pixel value is strictly negative. + - \c 0 if pixel value is equal to \c 0. + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + CImg& sign() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=32768)) + cimg_rof(*this,ptrd,T) *ptrd = cimg::sign(*ptrd); + return *this; + } + + //! Compute the sign of each pixel value \newinstance. + CImg get_sign() const { + return CImg(*this,false).sign(); + } + + //! Compute the cosine of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its cosine \f$\cos(I_{(x,y,z,c)})\f$. + \note + - Pixel values are regarded as being in \e radian. + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + CImg& cos() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=8192)) + cimg_rof(*this,ptrd,T) *ptrd = (T)std::cos((double)*ptrd); + return *this; + } + + //! Compute the cosine of each pixel value \newinstance. + CImg get_cos() const { + return CImg(*this,false).cos(); + } + + //! Compute the sine of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its sine \f$\sin(I_{(x,y,z,c)})\f$. + \note + - Pixel values are regarded as being in \e radian. + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + CImg& sin() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=8192)) + cimg_rof(*this,ptrd,T) *ptrd = (T)std::sin((double)*ptrd); + return *this; + } + + //! Compute the sine of each pixel value \newinstance. + CImg get_sin() const { + return CImg(*this,false).sin(); + } + + //! Compute the sinc of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its sinc + \f$\mathrm{sinc}(I_{(x,y,z,c)})\f$. + \note + - Pixel values are regarded as being exin \e radian. + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + CImg& sinc() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=2048)) + cimg_rof(*this,ptrd,T) *ptrd = (T)cimg::sinc((double)*ptrd); + return *this; + } + + //! Compute the sinc of each pixel value \newinstance. + CImg get_sinc() const { + return CImg(*this,false).sinc(); + } + + //! Compute the tangent of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its tangent \f$\tan(I_{(x,y,z,c)})\f$. + \note + - Pixel values are regarded as being exin \e radian. + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + CImg& tan() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=2048)) + cimg_rof(*this,ptrd,T) *ptrd = (T)std::tan((double)*ptrd); + return *this; + } + + //! Compute the tangent of each pixel value \newinstance. + CImg get_tan() const { + return CImg(*this,false).tan(); + } + + //! Compute the hyperbolic cosine of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic cosine + \f$\mathrm{cosh}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + CImg& cosh() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=2048)) + cimg_rof(*this,ptrd,T) *ptrd = (T)std::cosh((double)*ptrd); + return *this; + } + + //! Compute the hyperbolic cosine of each pixel value \newinstance. + CImg get_cosh() const { + return CImg(*this,false).cosh(); + } + + //! Compute the hyperbolic sine of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic sine + \f$\mathrm{sinh}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + CImg& sinh() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=2048)) + cimg_rof(*this,ptrd,T) *ptrd = (T)std::sinh((double)*ptrd); + return *this; + } + + //! Compute the hyperbolic sine of each pixel value \newinstance. + CImg get_sinh() const { + return CImg(*this,false).sinh(); + } + + //! Compute the hyperbolic tangent of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its hyperbolic tangent + \f$\mathrm{tanh}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + CImg& tanh() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=2048)) + cimg_rof(*this,ptrd,T) *ptrd = (T)std::tanh((double)*ptrd); + return *this; + } + + //! Compute the hyperbolic tangent of each pixel value \newinstance. + CImg get_tanh() const { + return CImg(*this,false).tanh(); + } + + //! Compute the arccosine of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arccosine + \f$\mathrm{acos}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + CImg& acos() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=8192)) + cimg_rof(*this,ptrd,T) *ptrd = (T)std::acos((double)*ptrd); + return *this; + } + + //! Compute the arccosine of each pixel value \newinstance. + CImg get_acos() const { + return CImg(*this,false).acos(); + } + + //! Compute the arcsine of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arcsine + \f$\mathrm{asin}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + CImg& asin() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=8192)) + cimg_rof(*this,ptrd,T) *ptrd = (T)std::asin((double)*ptrd); + return *this; + } + + //! Compute the arcsine of each pixel value \newinstance. + CImg get_asin() const { + return CImg(*this,false).asin(); + } + + //! Compute the arctangent of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arctangent + \f$\mathrm{atan}(I_{(x,y,z,c)})\f$. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + **/ + CImg& atan() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=8192)) + cimg_rof(*this,ptrd,T) *ptrd = (T)std::atan((double)*ptrd); + return *this; + } + + //! Compute the arctangent of each pixel value \newinstance. + CImg get_atan() const { + return CImg(*this,false).atan(); + } + + //! Compute the arctangent2 of each pixel value. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its arctangent2 + \f$\mathrm{atan2}(I_{(x,y,z,c)})\f$. + \param img Image whose pixel values specify the second argument of the \c atan2() function. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + \par Example + \code + const CImg + img_x(100,100,1,1,"x-w/2",false), // Define an horizontal centered gradient, from '-width/2' to 'width/2'. + img_y(100,100,1,1,"y-h/2",false), // Define a vertical centered gradient, from '-height/2' to 'height/2'. + img_atan2 = img_y.get_atan2(img_x); // Compute atan2(y,x) for each pixel value. + (img_x,img_y,img_atan2).display(); + \endcode + **/ + template + CImg& atan2(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return atan2(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg get_atan2(const CImg& img) const { + return CImg(*this,false).atan2(img); + } + + //! In-place pointwise multiplication. + /** + Compute the pointwise multiplication between the image instance and the specified input image \c img. + \param img Input image, as the second operand of the multiplication. + \note + - Similar to operator+=(const CImg&), except that it performs a pointwise multiplication + instead of an addition. + - It does \e not perform a \e matrix multiplication. For this purpose, use operator*=(const CImg&) instead. + \par Example + \code + CImg + img("reference.jpg"), + shade(img.width,img.height(),1,1,"-(x-w/2)^2-(y-h/2)^2",false); + shade.normalize(0,1); + (img,shade,img.get_mul(shade)).display(); + \endcode + **/ + template + CImg& mul(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return mul(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg<_cimg_Tt> get_mul(const CImg& img) const { + return CImg<_cimg_Tt>(*this,false).mul(img); + } + + //! In-place pointwise division. + /** + Similar to mul(const CImg&), except that it performs a pointwise division instead of a multiplication. + **/ + template + CImg& div(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return div(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg<_cimg_Tt> get_div(const CImg& img) const { + return CImg<_cimg_Tt>(*this,false).div(img); + } + + //! Raise each pixel value to a specified power. + /** + Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by its power \f$I_{(x,y,z,c)}^p\f$. + \param p Exponent value. + \note + - The \inplace of this method statically casts the computed values to the pixel type \c T. + - The \newinstance returns a \c CImg image, if the pixel type \c T is \e not float-valued. + \par Example + \code + const CImg + img0("reference.jpg"), // Load reference color image. + img1 = (img0/255).pow(1.8)*=255, // Compute gamma correction, with gamma = 1.8. + img2 = (img0/255).pow(0.5)*=255; // Compute gamma correction, with gamma = 0.5. + (img0,img1,img2).display(); + \endcode + **/ + CImg& pow(const double p) { + if (is_empty()) return *this; + if (p==-4) { + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=32768)) + cimg_rof(*this,ptrd,T) { const T val = *ptrd; *ptrd = (T)(1.0/(val*val*val*val)); } + return *this; + } + if (p==-3) { + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=32768)) + cimg_rof(*this,ptrd,T) { const T val = *ptrd; *ptrd = (T)(1.0/(val*val*val)); } + return *this; + } + if (p==-2) { + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=32768)) + cimg_rof(*this,ptrd,T) { const T val = *ptrd; *ptrd = (T)(1.0/(val*val)); } + return *this; + } + if (p==-1) { + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=32768)) + cimg_rof(*this,ptrd,T) { const T val = *ptrd; *ptrd = (T)(1.0/val); } + return *this; + } + if (p==-0.5) { + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=8192)) + cimg_rof(*this,ptrd,T) { const T val = *ptrd; *ptrd = (T)(1/std::sqrt((double)val)); } + return *this; + } + if (p==0) return fill((T)1); + if (p==0.25) return sqrt().sqrt(); + if (p==0.5) return sqrt(); + if (p==1) return *this; + if (p==2) return sqr(); + if (p==3) { + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=262144)) + cimg_rof(*this,ptrd,T) { const T val = *ptrd; *ptrd = val*val*val; } + return *this; + } + if (p==4) { + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=131072)) + cimg_rof(*this,ptrd,T) { const T val = *ptrd; *ptrd = val*val*val*val; } + return *this; + } + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=1024)) + cimg_rof(*this,ptrd,T) *ptrd = (T)std::pow((double)*ptrd,p); + return *this; + } + + //! Raise each pixel value to a specified power \newinstance. + CImg get_pow(const double p) const { + return CImg(*this,false).pow(p); + } + + //! Raise each pixel value to a power, specified from an expression. + /** + Similar to operator+=(const char*), except it performs a pointwise exponentiation instead of an addition. + **/ + CImg& pow(const char *const expression) { + return pow((+*this)._fill(expression,true,true,0,0,"pow",this)); + } + + //! Raise each pixel value to a power, specified from an expression \newinstance. + CImg get_pow(const char *const expression) const { + return CImg(*this,false).pow(expression); + } + + //! Raise each pixel value to a power, pointwisely specified from another image. + /** + Similar to operator+=(const CImg& img), except that it performs an exponentiation instead of an addition. + **/ + template + CImg& pow(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return pow(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg get_pow(const CImg& img) const { + return CImg(*this,false).pow(img); + } + + //! Compute the bitwise left rotation of each pixel value. + /** + Similar to operator<<=(unsigned int), except that it performs a left rotation instead of a left shift. + **/ + CImg& rol(const unsigned int n=1) { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=32768)) + cimg_rof(*this,ptrd,T) *ptrd = (T)cimg::rol(*ptrd,n); + return *this; + } + + //! Compute the bitwise left rotation of each pixel value \newinstance. + CImg get_rol(const unsigned int n=1) const { + return (+*this).rol(n); + } + + //! Compute the bitwise left rotation of each pixel value. + /** + Similar to operator<<=(const char*), except that it performs a left rotation instead of a left shift. + **/ + CImg& rol(const char *const expression) { + return rol((+*this)._fill(expression,true,true,0,0,"rol",this)); + } + + //! Compute the bitwise left rotation of each pixel value \newinstance. + CImg get_rol(const char *const expression) const { + return (+*this).rol(expression); + } + + //! Compute the bitwise left rotation of each pixel value. + /** + Similar to operator<<=(const CImg&), except that it performs a left rotation instead of a left shift. + **/ + template + CImg& rol(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return rol(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg get_rol(const CImg& img) const { + return (+*this).rol(img); + } + + //! Compute the bitwise right rotation of each pixel value. + /** + Similar to operator>>=(unsigned int), except that it performs a right rotation instead of a right shift. + **/ + CImg& ror(const unsigned int n=1) { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=32768)) + cimg_rof(*this,ptrd,T) *ptrd = (T)cimg::ror(*ptrd,n); + return *this; + } + + //! Compute the bitwise right rotation of each pixel value \newinstance. + CImg get_ror(const unsigned int n=1) const { + return (+*this).ror(n); + } + + //! Compute the bitwise right rotation of each pixel value. + /** + Similar to operator>>=(const char*), except that it performs a right rotation instead of a right shift. + **/ + CImg& ror(const char *const expression) { + return ror((+*this)._fill(expression,true,true,0,0,"ror",this)); + } + + //! Compute the bitwise right rotation of each pixel value \newinstance. + CImg get_ror(const char *const expression) const { + return (+*this).ror(expression); + } + + //! Compute the bitwise right rotation of each pixel value. + /** + Similar to operator>>=(const CImg&), except that it performs a right rotation instead of a right shift. + **/ + template + CImg& ror(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return ror(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg get_ror(const CImg& img) const { + return (+*this).ror(img); + } + + //! Pointwise min operator between instance image and a value. + /** + \param val Value used as the reference argument of the min operator. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{min}(I_{(x,y,z,c)},\mathrm{val})\f$. + **/ + CImg& min(const T& val) { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=65536)) + cimg_rof(*this,ptrd,T) *ptrd = std::min(*ptrd,val); + return *this; + } + + //! Pointwise min operator between instance image and a value \newinstance. + CImg get_min(const T& val) const { + return (+*this).min(val); + } + + //! Pointwise min operator between two images. + /** + \param img Image used as the reference argument of the min operator. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{min}(I_{(x,y,z,c)},\mathrm{img}_{(x,y,z,c)})\f$. + **/ + template + CImg& min(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return min(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg<_cimg_Tt> get_min(const CImg& img) const { + return CImg<_cimg_Tt>(*this,false).min(img); + } + + //! Pointwise min operator between an image and an expression. + /** + \param expression Math formula as a C-string. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{min}(I_{(x,y,z,c)},\mathrm{expr}_{(x,y,z,c)})\f$. + **/ + CImg& min(const char *const expression) { + return min((+*this)._fill(expression,true,true,0,0,"min",this)); + } + + //! Pointwise min operator between an image and an expression \newinstance. + CImg get_min(const char *const expression) const { + return CImg(*this,false).min(expression); + } + + //! Pointwise max operator between instance image and a value. + /** + \param val Value used as the reference argument of the max operator. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{max}(I_{(x,y,z,c)},\mathrm{val})\f$. + **/ + CImg& max(const T& val) { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=65536)) + cimg_rof(*this,ptrd,T) *ptrd = std::max(*ptrd,val); + return *this; + } + + //! Pointwise max operator between instance image and a value \newinstance. + CImg get_max(const T& val) const { + return (+*this).max(val); + } + + //! Pointwise max operator between two images. + /** + \param img Image used as the reference argument of the max operator. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{max}(I_{(x,y,z,c)},\mathrm{img}_{(x,y,z,c)})\f$. + **/ + template + CImg& max(const CImg& img) { + const ulongT siz = size(), isiz = img.size(); + if (siz && isiz) { + if (is_overlapped(img)) return max(+img); + T *ptrd = _data, *const ptre = _data + siz; + if (siz>isiz) for (ulongT n = siz/isiz; n; --n) + for (const t *ptrs = img._data, *ptrs_end = ptrs + isiz; ptrs + CImg<_cimg_Tt> get_max(const CImg& img) const { + return CImg<_cimg_Tt>(*this,false).max(img); + } + + //! Pointwise max operator between an image and an expression. + /** + \param expression Math formula as a C-string. + \note Replace each pixel value \f$I_{(x,y,z,c)}\f$ of the image instance by + \f$\mathrm{max}(I_{(x,y,z,c)},\mathrm{expr}_{(x,y,z,c)})\f$. + **/ + CImg& max(const char *const expression) { + return max((+*this)._fill(expression,true,true,0,0,"max",this)); + } + + //! Pointwise max operator between an image and an expression \newinstance. + CImg get_max(const char *const expression) const { + return CImg(*this,false).max(expression); + } + + //! Return a reference to the minimum pixel value. + /** + **/ + T& min() { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "min(): Empty instance.", + cimg_instance); + T *ptr_min = _data; + T min_value = *ptr_min; + cimg_for(*this,ptrs,T) if (*ptrsmax_value) max_value = *(ptr_max=ptrs); + return *ptr_max; + } + + //! Return a reference to the maximum pixel value \const. + const T& max() const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "max(): Empty instance.", + cimg_instance); + const T *ptr_max = _data; + T max_value = *ptr_max; + cimg_for(*this,ptrs,T) if (*ptrs>max_value) max_value = *(ptr_max=ptrs); + return *ptr_max; + } + + //! Return a reference to the minimum pixel value as well as the maximum pixel value. + /** + \param[out] max_val Maximum pixel value. + **/ + template + T& min_max(t& max_val) { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "min_max(): Empty instance.", + cimg_instance); + T *ptr_min = _data; + T min_value = *ptr_min, max_value = min_value; + cimg_for(*this,ptrs,T) { + const T val = *ptrs; + if (valmax_value) max_value = val; + } + max_val = (t)max_value; + return *ptr_min; + } + + //! Return a reference to the minimum pixel value as well as the maximum pixel value \const. + template + const T& min_max(t& max_val) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "min_max(): Empty instance.", + cimg_instance); + const T *ptr_min = _data; + T min_value = *ptr_min, max_value = min_value; + cimg_for(*this,ptrs,T) { + const T val = *ptrs; + if (valmax_value) max_value = val; + } + max_val = (t)max_value; + return *ptr_min; + } + + //! Return a reference to the maximum pixel value as well as the minimum pixel value. + /** + \param[out] min_val Minimum pixel value. + **/ + template + T& max_min(t& min_val) { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "max_min(): Empty instance.", + cimg_instance); + T *ptr_max = _data; + T max_value = *ptr_max, min_value = max_value; + cimg_for(*this,ptrs,T) { + const T val = *ptrs; + if (val>max_value) { max_value = val; ptr_max = ptrs; } + if (val + const T& max_min(t& min_val) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "max_min(): Empty instance.", + cimg_instance); + const T *ptr_max = _data; + T max_value = *ptr_max, min_value = max_value; + cimg_for(*this,ptrs,T) { + const T val = *ptrs; + if (val>max_value) { max_value = val; ptr_max = ptrs; } + if (val arr(*this); + ulongT l = 0, ir = size() - 1; + for ( ; ; ) { + if (ir<=l + 1) { + if (ir==l + 1 && arr[ir]>1; + cimg::swap(arr[mid],arr[l + 1]); + if (arr[l]>arr[ir]) cimg::swap(arr[l],arr[ir]); + if (arr[l + 1]>arr[ir]) cimg::swap(arr[l + 1],arr[ir]); + if (arr[l]>arr[l + 1]) cimg::swap(arr[l],arr[l + 1]); + ulongT i = l + 1, j = ir; + const T pivot = arr[l + 1]; + for ( ; ; ) { + do ++i; while (arr[i]pivot); + if (j=k) ir = j - 1; + if (j<=k) l = i; + } + } + } + + //! Return the median pixel value. + /** + **/ + T median() const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "median(): Empty instance.", + cimg_instance); + const ulongT s = size(); + switch (s) { + case 1 : return _data[0]; + case 2 : return cimg::median(_data[0],_data[1]); + case 3 : return cimg::median(_data[0],_data[1],_data[2]); + case 5 : return cimg::median(_data[0],_data[1],_data[2],_data[3],_data[4]); + case 7 : return cimg::median(_data[0],_data[1],_data[2],_data[3],_data[4],_data[5],_data[6]); + case 9 : return cimg::median(_data[0],_data[1],_data[2],_data[3],_data[4],_data[5],_data[6],_data[7],_data[8]); + case 13 : return cimg::median(_data[0],_data[1],_data[2],_data[3],_data[4],_data[5],_data[6],_data[7],_data[8], + _data[9],_data[10],_data[11],_data[12]); + } + const T res = kth_smallest(s>>1); + return (s%2)?res:(T)((res + kth_smallest((s>>1) - 1))/2); + } + + //! Return the product of all the pixel values. + /** + **/ + double product() const { + if (is_empty()) return 0; + double res = 1; + cimg_for(*this,ptrs,T) res*=(double)*ptrs; + return res; + } + + //! Return the sum of all the pixel values. + /** + **/ + double sum() const { + double res = 0; + cimg_for(*this,ptrs,T) res+=(double)*ptrs; + return res; + } + + //! Return the average pixel value. + /** + **/ + double mean() const { + double res = 0; + cimg_for(*this,ptrs,T) res+=(double)*ptrs; + return res/size(); + } + + //! Return the variance of the pixel values. + /** + \param variance_method Method used to estimate the variance. Can be: + - \c 0: Second moment, computed as + \f$1/N \sum\limits_{k=1}^{N} (x_k - \bar x)^2 = + 1/N \left( \sum\limits_{k=1}^N x_k^2 - \left( \sum\limits_{k=1}^N x_k \right)^2 / N \right)\f$ + with \f$ \bar x = 1/N \sum\limits_{k=1}^N x_k \f$. + - \c 1: Best unbiased estimator, computed as \f$\frac{1}{N - 1} \sum\limits_{k=1}^{N} (x_k - \bar x)^2 \f$. + - \c 2: Least median of squares. + - \c 3: Least trimmed of squares. + **/ + double variance(const unsigned int variance_method=1) const { + double foo; + return variance_mean(variance_method,foo); + } + + //! Return the variance as well as the average of the pixel values. + /** + \param variance_method Method used to estimate the variance (see variance(const unsigned int) const). + \param[out] mean Average pixel value. + **/ + template + double variance_mean(const unsigned int variance_method, t& mean) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "variance_mean(): Empty instance.", + cimg_instance); + + double variance = 0, average = 0; + const ulongT siz = size(); + switch (variance_method) { + case 0 : { // Least mean square (standard definition) + double S = 0, S2 = 0; + cimg_for(*this,ptrs,T) { const double val = (double)*ptrs; S+=val; S2+=val*val; } + variance = (S2 - S*S/siz)/siz; + average = S; + } break; + case 1 : { // Least mean square (robust definition) + double S = 0, S2 = 0; + cimg_for(*this,ptrs,T) { const double val = (double)*ptrs; S+=val; S2+=val*val; } + variance = siz>1?(S2 - S*S/siz)/(siz - 1):0; + average = S; + } break; + case 2 : { // Least Median of Squares (MAD) + CImg buf(*this,false); + buf.sort(); + const ulongT siz2 = siz>>1; + const double med_i = (double)buf[siz2]; + cimg_for(buf,ptrs,Tfloat) { + const double val = (double)*ptrs; *ptrs = (Tfloat)cimg::abs(val - med_i); average+=val; + } + buf.sort(); + const double sig = (double)(1.4828*buf[siz2]); + variance = sig*sig; + } break; + default : { // Least trimmed of Squares + CImg buf(*this,false); + const ulongT siz2 = siz>>1; + cimg_for(buf,ptrs,Tfloat) { + const double val = (double)*ptrs; (*ptrs)=(Tfloat)((*ptrs)*val); average+=val; + } + buf.sort(); + double a = 0; + const Tfloat *ptrs = buf._data; + for (ulongT j = 0; j0?variance:0; + } + + //! Return estimated variance of the noise. + /** + \param variance_method Method used to compute the variance (see variance(const unsigned int) const). + \note Because of structures such as edges in images it is + recommanded to use a robust variance estimation. The variance of the + noise is estimated by computing the variance of the Laplacian \f$(\Delta + I)^2 \f$ scaled by a factor \f$c\f$ insuring \f$ c E[(\Delta I)^2]= + \sigma^2\f$ where \f$\sigma\f$ is the noise variance. + **/ + double variance_noise(const unsigned int variance_method=2) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "variance_noise(): Empty instance.", + cimg_instance); + + const ulongT siz = size(); + if (!siz || !_data) return 0; + if (variance_method>1) { // Compute a scaled version of the Laplacian. + CImg tmp(*this); + if (_depth==1) { + const double cste = 1.0/std::sqrt(20.0); // Depends on how the Laplacian is computed. + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=262144 && _spectrum>=2)) + cimg_forC(*this,c) { + CImg_3x3(I,T); + cimg_for3x3(*this,x,y,0,c,I,T) { + tmp(x,y,c) = cste*((double)Inc + (double)Ipc + (double)Icn + + (double)Icp - 4*(double)Icc); + } + } + } else { + const double cste = 1.0/std::sqrt(42.0); // Depends on how the Laplacian is computed. + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=262144 && _spectrum>=2)) + cimg_forC(*this,c) { + CImg_3x3x3(I,T); + cimg_for3x3x3(*this,x,y,z,c,I,T) { + tmp(x,y,z,c) = cste*( + (double)Incc + (double)Ipcc + (double)Icnc + (double)Icpc + + (double)Iccn + (double)Iccp - 6*(double)Iccc); + } + } + } + return tmp.variance(variance_method); + } + + // Version that doesn't need intermediate images. + double variance = 0, S = 0, S2 = 0; + if (_depth==1) { + const double cste = 1.0/std::sqrt(20.0); + CImg_3x3(I,T); + cimg_forC(*this,c) cimg_for3x3(*this,x,y,0,c,I,T) { + const double val = cste*((double)Inc + (double)Ipc + + (double)Icn + (double)Icp - 4*(double)Icc); + S+=val; S2+=val*val; + } + } else { + const double cste = 1.0/std::sqrt(42.0); + CImg_3x3x3(I,T); + cimg_forC(*this,c) cimg_for3x3x3(*this,x,y,z,c,I,T) { + const double val = cste * + ((double)Incc + (double)Ipcc + (double)Icnc + + (double)Icpc + + (double)Iccn + (double)Iccp - 6*(double)Iccc); + S+=val; S2+=val*val; + } + } + if (variance_method) variance = siz>1?(S2 - S*S/siz)/(siz - 1):0; + else variance = (S2 - S*S/siz)/siz; + return variance>0?variance:0; + } + + //! Compute the MSE (Mean-Squared Error) between two images. + /** + \param img Image used as the second argument of the MSE operator. + **/ + template + double MSE(const CImg& img) const { + if (img.size()!=size()) + throw CImgArgumentException(_cimg_instance + "MSE(): Instance and specified image (%u,%u,%u,%u,%p) have different dimensions.", + cimg_instance, + img._width,img._height,img._depth,img._spectrum,img._data); + double vMSE = 0; + const t* ptr2 = img._data; + cimg_for(*this,ptr1,T) { + const double diff = (double)*ptr1 - (double)*(ptr2++); + vMSE+=diff*diff; + } + const ulongT siz = img.size(); + if (siz) vMSE/=siz; + return vMSE; + } + + //! Compute the PSNR (Peak Signal-to-Noise Ratio) between two images. + /** + \param img Image used as the second argument of the PSNR operator. + \param max_value Maximum theoretical value of the signal. + **/ + template + double PSNR(const CImg& img, const double max_value=255) const { + const double vMSE = (double)std::sqrt(MSE(img)); + return (vMSE!=0)?(double)(20*std::log10(max_value/vMSE)):(double)(cimg::type::max()); + } + + //! Evaluate math formula. + /** + \param expression Math formula, as a C-string. + \param x Value of the pre-defined variable \c x. + \param y Value of the pre-defined variable \c y. + \param z Value of the pre-defined variable \c z. + \param c Value of the pre-defined variable \c c. + \param list_inputs A list of input images attached to the specified math formula. + \param[out] list_outputs A pointer to a list of output images attached to the specified math formula. + **/ + double eval(const char *const expression, + const double x=0, const double y=0, const double z=0, const double c=0, + const CImgList *const list_inputs=0, CImgList *const list_outputs=0) { + return _eval(this,expression,x,y,z,c,list_inputs,list_outputs); + } + + //! Evaluate math formula \const. + double eval(const char *const expression, + const double x=0, const double y=0, const double z=0, const double c=0, + const CImgList *const list_inputs=0, CImgList *const list_outputs=0) const { + return _eval(0,expression,x,y,z,c,list_inputs,list_outputs); + } + + double _eval(CImg *const img_output, const char *const expression, + const double x, const double y, const double z, const double c, + const CImgList *const list_inputs, CImgList *const list_outputs) const { + if (!expression) return 0; + if (!expression[1]) switch (*expression) { // Single-char optimization. + case 'w' : return (double)_width; + case 'h' : return (double)_height; + case 'd' : return (double)_depth; + case 's' : return (double)_spectrum; + case 'r' : return (double)_is_shared; + } + _cimg_math_parser mp(expression + (*expression=='>' || *expression=='<' || + *expression=='*' || *expression==':'),"eval", + *this,img_output,list_inputs,list_outputs,false); + const double val = mp(x,y,z,c); + mp.end(); + return val; + } + + //! Evaluate math formula. + /** + \param[out] output Contains values of output vector returned by the evaluated expression + (or is empty if the returned type is scalar). + \param expression Math formula, as a C-string. + \param x Value of the pre-defined variable \c x. + \param y Value of the pre-defined variable \c y. + \param z Value of the pre-defined variable \c z. + \param c Value of the pre-defined variable \c c. + \param list_inputs A list of input images attached to the specified math formula. + \param[out] list_outputs A pointer to a list of output images attached to the specified math formula. + **/ + template + void eval(CImg &output, const char *const expression, + const double x=0, const double y=0, const double z=0, const double c=0, + const CImgList *const list_inputs=0, CImgList *const list_outputs=0) { + _eval(output,this,expression,x,y,z,c,list_inputs,list_outputs); + } + + //! Evaluate math formula \const. + template + void eval(CImg& output, const char *const expression, + const double x=0, const double y=0, const double z=0, const double c=0, + const CImgList *const list_inputs=0, CImgList *const list_outputs=0) const { + _eval(output,0,expression,x,y,z,c,list_inputs,list_outputs); + } + + template + void _eval(CImg& output, CImg *const img_output, const char *const expression, + const double x, const double y, const double z, const double c, + const CImgList *const list_inputs, CImgList *const list_outputs) const { + if (!expression) { output.assign(1); *output = 0; } + if (!expression[1]) switch (*expression) { // Single-char optimization. + case 'w' : output.assign(1); *output = (t)_width; + case 'h' : output.assign(1); *output = (t)_height; + case 'd' : output.assign(1); *output = (t)_depth; + case 's' : output.assign(1); *output = (t)_spectrum; + case 'r' : output.assign(1); *output = (t)_is_shared; + } + _cimg_math_parser mp(expression + (*expression=='>' || *expression=='<' || + *expression=='*' || *expression==':'),"eval", + *this,img_output,list_inputs,list_outputs,false); + output.assign(1,std::max(1U,mp.result_dim)); + mp(x,y,z,c,output._data); + mp.end(); + } + + //! Evaluate math formula on a set of variables. + /** + \param expression Math formula, as a C-string. + \param xyzc Set of values (x,y,z,c) used for the evaluation. + \param list_inputs A list of input images attached to the specified math formula. + \param[out] list_outputs A pointer to a list of output images attached to the specified math formula. + **/ + template + CImg eval(const char *const expression, const CImg& xyzc, + const CImgList *const list_inputs=0, CImgList *const list_outputs=0) { + return _eval(this,expression,xyzc,list_inputs,list_outputs); + } + + //! Evaluate math formula on a set of variables \const. + template + CImg eval(const char *const expression, const CImg& xyzc, + const CImgList *const list_inputs=0, CImgList *const list_outputs=0) const { + return _eval(0,expression,xyzc,list_inputs,list_outputs); + } + + template + CImg _eval(CImg *const output, const char *const expression, const CImg& xyzc, + const CImgList *const list_inputs=0, CImgList *const list_outputs=0) const { + CImg res(1,xyzc.size()/4); + if (!expression) return res.fill(0); + _cimg_math_parser mp(expression,"eval",*this,output,list_inputs,list_outputs,false); +#ifdef cimg_use_openmp + cimg_pragma_openmp(parallel if (res._height>=512)) + { + _cimg_math_parser + _mp = omp_get_thread_num()?mp:_cimg_math_parser(), + &lmp = omp_get_thread_num()?_mp:mp; + cimg_pragma_openmp(for) + for (unsigned int i = 0; i[min; max; mean; variance; xmin; ymin; zmin; cmin; xmax; ymax; zmax; cmax; sum; product]. + **/ + CImg get_stats(const unsigned int variance_method=1) const { + if (is_empty()) return CImg(); + const T *const p_end = end(), *pm = _data, *pM = _data; + double S = 0, S2 = 0, P = 1; + const ulongT siz = size(); + T m = *pm, M = *pM; + + cimg_pragma_openmp(parallel reduction(+:S,S2) reduction(*:P) cimg_openmp_if(siz>=131072)) { + const T *lpm = _data, *lpM = _data; + T lm = *lpm, lM = *lpM; + cimg_pragma_openmp(for) + for (const T *ptrs = _data; ptrslM) { lM = val; lpM = ptrs; } + S+=_val; + S2+=_val*_val; + P*=_val; + } + cimg_pragma_openmp(critical) { + if (lmM || (lM==M && lpM1?(S2 - S*S/siz)/(siz - 1):0): + variance(variance_method)), + variance_value = _variance_value>0?_variance_value:0; + int + xm = 0, ym = 0, zm = 0, cm = 0, + xM = 0, yM = 0, zM = 0, cM = 0; + contains(*pm,xm,ym,zm,cm); + contains(*pM,xM,yM,zM,cM); + return CImg(1,14).fill((double)m,(double)M,mean_value,variance_value, + (double)xm,(double)ym,(double)zm,(double)cm, + (double)xM,(double)yM,(double)zM,(double)cM, + S,P); + } + + //! Compute statistics vector from the pixel values \inplace. + CImg& stats(const unsigned int variance_method=1) { + return get_stats(variance_method).move_to(*this); + } + + //@} + //------------------------------------- + // + //! \name Vector / Matrix Operations + //@{ + //------------------------------------- + + //! Compute norm of the image, viewed as a matrix. + /** + \param magnitude_type Norm type. Can be: + - \c -1: Linf-norm + - \c 0: L2-norm + - \c 1: L1-norm + **/ + double magnitude(const int magnitude_type=2) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "magnitude(): Empty instance.", + cimg_instance); + double res = 0; + switch (magnitude_type) { + case -1 : { + cimg_for(*this,ptrs,T) { const double val = (double)cimg::abs(*ptrs); if (val>res) res = val; } + } break; + case 1 : { + cimg_for(*this,ptrs,T) res+=(double)cimg::abs(*ptrs); + } break; + default : { + cimg_for(*this,ptrs,T) res+=(double)cimg::sqr(*ptrs); + res = (double)std::sqrt(res); + } + } + return res; + } + + //! Compute the trace of the image, viewed as a matrix. + /** + **/ + double trace() const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "trace(): Empty instance.", + cimg_instance); + double res = 0; + cimg_forX(*this,k) res+=(double)(*this)(k,k); + return res; + } + + //! Compute the determinant of the image, viewed as a matrix. + /** + **/ + double det() const { + if (is_empty() || _width!=_height || _depth!=1 || _spectrum!=1) + throw CImgInstanceException(_cimg_instance + "det(): Instance is not a square matrix.", + cimg_instance); + + switch (_width) { + case 1 : return (double)((*this)(0,0)); + case 2 : return (double)((*this)(0,0))*(double)((*this)(1,1)) - (double)((*this)(0,1))*(double)((*this)(1,0)); + case 3 : { + const double + a = (double)_data[0], d = (double)_data[1], g = (double)_data[2], + b = (double)_data[3], e = (double)_data[4], h = (double)_data[5], + c = (double)_data[6], f = (double)_data[7], i = (double)_data[8]; + return i*a*e - a*h*f - i*b*d + b*g*f + c*d*h - c*g*e; + } + default : { + CImg lu(*this); + CImg indx; + bool d; + lu._LU(indx,d); + double res = d?(double)1:(double)-1; + cimg_forX(lu,i) res*=lu(i,i); + return res; + } + } + } + + //! Compute the dot product between instance and argument, viewed as matrices. + /** + \param img Image used as a second argument of the dot product. + **/ + template + double dot(const CImg& img) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "dot(): Empty instance.", + cimg_instance); + if (!img) + throw CImgArgumentException(_cimg_instance + "dot(): Empty specified image.", + cimg_instance); + + const ulongT nb = std::min(size(),img.size()); + double res = 0; + for (ulongT off = 0; off get_vector_at(const unsigned int x, const unsigned int y=0, const unsigned int z=0) const { + CImg res; + if (res._height!=_spectrum) res.assign(1,_spectrum); + const ulongT whd = (ulongT)_width*_height*_depth; + const T *ptrs = data(x,y,z); + T *ptrd = res._data; + cimg_forC(*this,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return res; + } + + //! Get (square) matrix-valued pixel located at specified position. + /** + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \note - The spectrum() of the image must be a square. + **/ + CImg get_matrix_at(const unsigned int x=0, const unsigned int y=0, const unsigned int z=0) const { + const int n = (int)std::sqrt((double)_spectrum); + const T *ptrs = data(x,y,z,0); + const ulongT whd = (ulongT)_width*_height*_depth; + CImg res(n,n); + T *ptrd = res._data; + cimg_forC(*this,c) { *(ptrd++) = *ptrs; ptrs+=whd; } + return res; + } + + //! Get tensor-valued pixel located at specified position. + /** + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + **/ + CImg get_tensor_at(const unsigned int x, const unsigned int y=0, const unsigned int z=0) const { + const T *ptrs = data(x,y,z,0); + const ulongT whd = (ulongT)_width*_height*_depth; + if (_spectrum==6) + return tensor(*ptrs,*(ptrs + whd),*(ptrs + 2*whd),*(ptrs + 3*whd),*(ptrs + 4*whd),*(ptrs + 5*whd)); + if (_spectrum==3) + return tensor(*ptrs,*(ptrs + whd),*(ptrs + 2*whd)); + return tensor(*ptrs); + } + + //! Set vector-valued pixel at specified position. + /** + \param vec Vector to put on the instance image. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + **/ + template + CImg& set_vector_at(const CImg& vec, const unsigned int x, const unsigned int y=0, const unsigned int z=0) { + if (x<_width && y<_height && z<_depth) { + const t *ptrs = vec._data; + const ulongT whd = (ulongT)_width*_height*_depth; + T *ptrd = data(x,y,z); + for (unsigned int k = std::min((unsigned int)vec.size(),_spectrum); k; --k) { + *ptrd = (T)*(ptrs++); ptrd+=whd; + } + } + return *this; + } + + //! Set (square) matrix-valued pixel at specified position. + /** + \param mat Matrix to put on the instance image. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + **/ + template + CImg& set_matrix_at(const CImg& mat, const unsigned int x=0, const unsigned int y=0, const unsigned int z=0) { + return set_vector_at(mat,x,y,z); + } + + //! Set tensor-valued pixel at specified position. + /** + \param ten Tensor to put on the instance image. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + **/ + template + CImg& set_tensor_at(const CImg& ten, const unsigned int x=0, const unsigned int y=0, const unsigned int z=0) { + T *ptrd = data(x,y,z,0); + const ulongT siz = (ulongT)_width*_height*_depth; + if (ten._height==2) { + *ptrd = (T)ten[0]; ptrd+=siz; + *ptrd = (T)ten[1]; ptrd+=siz; + *ptrd = (T)ten[3]; + } + else { + *ptrd = (T)ten[0]; ptrd+=siz; + *ptrd = (T)ten[1]; ptrd+=siz; + *ptrd = (T)ten[2]; ptrd+=siz; + *ptrd = (T)ten[4]; ptrd+=siz; + *ptrd = (T)ten[5]; ptrd+=siz; + *ptrd = (T)ten[8]; + } + return *this; + } + + //! Unroll pixel values along axis \c y. + /** + \note Equivalent to \code unroll('y'); \endcode. + **/ + CImg& vector() { + return unroll('y'); + } + + //! Unroll pixel values along axis \c y \newinstance. + CImg get_vector() const { + return get_unroll('y'); + } + + //! Resize image to become a scalar square matrix. + /** + **/ + CImg& matrix() { + const ulongT siz = size(); + switch (siz) { + case 1 : break; + case 4 : _width = _height = 2; break; + case 9 : _width = _height = 3; break; + case 16 : _width = _height = 4; break; + case 25 : _width = _height = 5; break; + case 36 : _width = _height = 6; break; + case 49 : _width = _height = 7; break; + case 64 : _width = _height = 8; break; + case 81 : _width = _height = 9; break; + case 100 : _width = _height = 10; break; + default : { + ulongT i = 11, i2 = i*i; + while (i2 get_matrix() const { + return (+*this).matrix(); + } + + //! Resize image to become a symmetric tensor. + /** + **/ + CImg& tensor() { + return get_tensor().move_to(*this); + } + + //! Resize image to become a symmetric tensor \newinstance. + CImg get_tensor() const { + CImg res; + const ulongT siz = size(); + switch (siz) { + case 1 : break; + case 3 : + res.assign(2,2); + res(0,0) = (*this)(0); + res(1,0) = res(0,1) = (*this)(1); + res(1,1) = (*this)(2); + break; + case 6 : + res.assign(3,3); + res(0,0) = (*this)(0); + res(1,0) = res(0,1) = (*this)(1); + res(2,0) = res(0,2) = (*this)(2); + res(1,1) = (*this)(3); + res(2,1) = res(1,2) = (*this)(4); + res(2,2) = (*this)(5); + break; + default : + throw CImgInstanceException(_cimg_instance + "tensor(): Invalid instance size (does not define a 1x1, 2x2 or 3x3 tensor).", + cimg_instance); + } + return res; + } + + //! Resize image to become a diagonal matrix. + /** + \note Transform the image as a diagonal matrix so that each of its initial value becomes a diagonal coefficient. + **/ + CImg& diagonal() { + return get_diagonal().move_to(*this); + } + + //! Resize image to become a diagonal matrix \newinstance. + CImg get_diagonal() const { + if (is_empty()) return *this; + const unsigned int siz = (unsigned int)size(); + CImg res(siz,siz,1,1,0); + cimg_foroff(*this,off) res((unsigned int)off,(unsigned int)off) = (*this)[off]; + return res; + } + + //! Replace the image by an identity matrix. + /** + \note If the instance image is not square, it is resized to a square matrix using its maximum + dimension as a reference. + **/ + CImg& identity_matrix() { + return identity_matrix(std::max(_width,_height)).move_to(*this); + } + + //! Replace the image by an identity matrix \newinstance. + CImg get_identity_matrix() const { + return identity_matrix(std::max(_width,_height)); + } + + //! Fill image with a linear sequence of values. + /** + \param a0 Starting value of the sequence. + \param a1 Ending value of the sequence. + **/ + CImg& sequence(const T& a0, const T& a1) { + if (is_empty()) return *this; + const ulongT siz = size() - 1; + T* ptr = _data; + if (siz) { + const double delta = (double)a1 - (double)a0; + cimg_foroff(*this,l) *(ptr++) = (T)(a0 + delta*l/siz); + } else *ptr = a0; + return *this; + } + + //! Fill image with a linear sequence of values \newinstance. + CImg get_sequence(const T& a0, const T& a1) const { + return (+*this).sequence(a0,a1); + } + + //! Transpose the image, viewed as a matrix. + /** + \note Equivalent to \code permute_axes("yxzc"); \endcode + **/ + CImg& transpose() { + if (_width==1) { _width = _height; _height = 1; return *this; } + if (_height==1) { _height = _width; _width = 1; return *this; } + if (_width==_height) { + cimg_forYZC(*this,y,z,c) for (int x = y; x get_transpose() const { + return get_permute_axes("yxzc"); + } + + //! Compute the cross product between two \c 1x3 images, viewed as 3d vectors. + /** + \param img Image used as the second argument of the cross product. + \note The first argument of the cross product is \c *this. + **/ + template + CImg& cross(const CImg& img) { + if (_width!=1 || _height<3 || img._width!=1 || img._height<3) + throw CImgInstanceException(_cimg_instance + "cross(): Instance and/or specified image (%u,%u,%u,%u,%p) are not 3d vectors.", + cimg_instance, + img._width,img._height,img._depth,img._spectrum,img._data); + + const T x = (*this)[0], y = (*this)[1], z = (*this)[2]; + (*this)[0] = (T)(y*img[2] - z*img[1]); + (*this)[1] = (T)(z*img[0] - x*img[2]); + (*this)[2] = (T)(x*img[1] - y*img[0]); + return *this; + } + + //! Compute the cross product between two \c 1x3 images, viewed as 3d vectors \newinstance. + template + CImg<_cimg_Tt> get_cross(const CImg& img) const { + return CImg<_cimg_Tt>(*this).cross(img); + } + + //! Invert the instance image, viewed as a matrix. + /** + \param use_LU Choose the inverting algorithm. Can be: + - \c true: LU-based matrix inversion. + - \c false: SVD-based matrix inversion. + **/ + CImg& invert(const bool use_LU=true) { + if (_width!=_height || _depth!=1 || _spectrum!=1) + throw CImgInstanceException(_cimg_instance + "invert(): Instance is not a square matrix.", + cimg_instance); +#ifdef cimg_use_lapack + int INFO = (int)use_LU, N = _width, LWORK = 4*N, *const IPIV = new int[N]; + Tfloat + *const lapA = new Tfloat[N*N], + *const WORK = new Tfloat[LWORK]; + cimg_forXY(*this,k,l) lapA[k*N + l] = (Tfloat)((*this)(k,l)); + cimg::getrf(N,lapA,IPIV,INFO); + if (INFO) + cimg::warn(_cimg_instance + "invert(): LAPACK function dgetrf_() returned error code %d.", + cimg_instance, + INFO); + else { + cimg::getri(N,lapA,IPIV,WORK,LWORK,INFO); + if (INFO) + cimg::warn(_cimg_instance + "invert(): LAPACK function dgetri_() returned error code %d.", + cimg_instance, + INFO); + } + if (!INFO) cimg_forXY(*this,k,l) (*this)(k,l) = (T)(lapA[k*N + l]); else fill(0); + delete[] IPIV; delete[] lapA; delete[] WORK; +#else + const double dete = _width>3?-1.0:det(); + if (dete!=0.0 && _width==2) { + const double + a = _data[0], c = _data[1], + b = _data[2], d = _data[3]; + _data[0] = (T)(d/dete); _data[1] = (T)(-c/dete); + _data[2] = (T)(-b/dete); _data[3] = (T)(a/dete); + } else if (dete!=0.0 && _width==3) { + const double + a = _data[0], d = _data[1], g = _data[2], + b = _data[3], e = _data[4], h = _data[5], + c = _data[6], f = _data[7], i = _data[8]; + _data[0] = (T)((i*e-f*h)/dete), _data[1] = (T)((g*f-i*d)/dete), _data[2] = (T)((d*h-g*e)/dete); + _data[3] = (T)((h*c-i*b)/dete), _data[4] = (T)((i*a-c*g)/dete), _data[5] = (T)((g*b-a*h)/dete); + _data[6] = (T)((b*f-e*c)/dete), _data[7] = (T)((d*c-a*f)/dete), _data[8] = (T)((a*e-d*b)/dete); + } else { + if (use_LU) { // LU-based inverse computation + CImg A(*this), indx, col(1,_width); + bool d; + A._LU(indx,d); + cimg_forX(*this,j) { + col.fill(0); + col(j) = 1; + col._solve(A,indx); + cimg_forX(*this,i) (*this)(j,i) = (T)col(i); + } + } else { // SVD-based inverse computation + CImg U(_width,_width), S(1,_width), V(_width,_width); + SVD(U,S,V,false); + U.transpose(); + cimg_forY(S,k) if (S[k]!=0) S[k]=1/S[k]; + S.diagonal(); + *this = V*S*U; + } + } +#endif + return *this; + } + + //! Invert the instance image, viewed as a matrix \newinstance. + CImg get_invert(const bool use_LU=true) const { + return CImg(*this,false).invert(use_LU); + } + + //! Compute the Moore-Penrose pseudo-inverse of the instance image, viewed as a matrix. + /** + **/ + CImg& pseudoinvert() { + return get_pseudoinvert().move_to(*this); + } + + //! Compute the Moore-Penrose pseudo-inverse of the instance image, viewed as a matrix \newinstance. + CImg get_pseudoinvert() const { + CImg U, S, V; + SVD(U,S,V); + const Tfloat tolerance = (sizeof(Tfloat)<=4?5.96e-8f:1.11e-16f)*std::max(_width,_height)*S.max(); + cimg_forX(V,x) { + const Tfloat s = S(x), invs = s>tolerance?1/s:0; + cimg_forY(V,y) V(x,y)*=invs; + } + return V*U.transpose(); + } + + //! Solve a system of linear equations. + /** + \param A Matrix of the linear system. + \note Solve \c AX=B where \c B=*this. + **/ + template + CImg& solve(const CImg& A) { + if (_depth!=1 || _spectrum!=1 || _height!=A._height || A._depth!=1 || A._spectrum!=1) + throw CImgArgumentException(_cimg_instance + "solve(): Instance and specified matrix (%u,%u,%u,%u,%p) have " + "incompatible dimensions.", + cimg_instance, + A._width,A._height,A._depth,A._spectrum,A._data); + typedef _cimg_Ttfloat Ttfloat; + if (A._width==A._height) { // Classical linear system + if (_width!=1) { + CImg res(_width,A._width); + cimg_forX(*this,i) res.draw_image(i,get_column(i).solve(A)); + return res.move_to(*this); + } +#ifdef cimg_use_lapack + char TRANS = 'N'; + int INFO, N = _height, LWORK = 4*N, *const IPIV = new int[N]; + Ttfloat + *const lapA = new Ttfloat[N*N], + *const lapB = new Ttfloat[N], + *const WORK = new Ttfloat[LWORK]; + cimg_forXY(A,k,l) lapA[k*N + l] = (Ttfloat)(A(k,l)); + cimg_forY(*this,i) lapB[i] = (Ttfloat)((*this)(i)); + cimg::getrf(N,lapA,IPIV,INFO); + if (INFO) + cimg::warn(_cimg_instance + "solve(): LAPACK library function dgetrf_() returned error code %d.", + cimg_instance, + INFO); + + if (!INFO) { + cimg::getrs(TRANS,N,lapA,IPIV,lapB,INFO); + if (INFO) + cimg::warn(_cimg_instance + "solve(): LAPACK library function dgetrs_() returned error code %d.", + cimg_instance, + INFO); + } + if (!INFO) cimg_forY(*this,i) (*this)(i) = (T)(lapB[i]); else fill(0); + delete[] IPIV; delete[] lapA; delete[] lapB; delete[] WORK; +#else + CImg lu(A,false); + CImg indx; + bool d; + lu._LU(indx,d); + _solve(lu,indx); +#endif + } else { // Least-square solution for non-square systems. +#ifdef cimg_use_lapack + if (_width!=1) { + CImg res(_width,A._width); + cimg_forX(*this,i) res.draw_image(i,get_column(i).solve(A)); + return res.move_to(*this); + } + char TRANS = 'N'; + int INFO, N = A._width, M = A._height, LWORK = -1, LDA = M, LDB = M, NRHS = _width; + Ttfloat WORK_QUERY; + Ttfloat + * const lapA = new Ttfloat[M*N], + * const lapB = new Ttfloat[M*NRHS]; + cimg::sgels(TRANS, M, N, NRHS, lapA, LDA, lapB, LDB, &WORK_QUERY, LWORK, INFO); + LWORK = (int) WORK_QUERY; + Ttfloat *const WORK = new Ttfloat[LWORK]; + cimg_forXY(A,k,l) lapA[k*M + l] = (Ttfloat)(A(k,l)); + cimg_forXY(*this,k,l) lapB[k*M + l] = (Ttfloat)((*this)(k,l)); + cimg::sgels(TRANS, M, N, NRHS, lapA, LDA, lapB, LDB, WORK, LWORK, INFO); + if (INFO != 0) + cimg::warn(_cimg_instance + "solve(): LAPACK library function sgels() returned error code %d.", + cimg_instance, + INFO); + assign(NRHS, N); + if (!INFO) + cimg_forXY(*this,k,l) (*this)(k,l) = (T)lapB[k*M + l]; + else + assign(A.get_pseudoinvert()*(*this)); + delete[] lapA; delete[] lapB; delete[] WORK; +#else + assign(A.get_pseudoinvert()*(*this)); +#endif + } + return *this; + } + + //! Solve a system of linear equations \newinstance. + template + CImg<_cimg_Ttfloat> get_solve(const CImg& A) const { + return CImg<_cimg_Ttfloat>(*this,false).solve(A); + } + + template + CImg& _solve(const CImg& A, const CImg& indx) { + typedef _cimg_Ttfloat Ttfloat; + const int N = (int)size(); + int ii = -1; + Ttfloat sum; + for (int i = 0; i=0) for (int j = ii; j<=i - 1; ++j) sum-=A(j,i)*(*this)(j); + else if (sum!=0) ii = i; + (*this)(i) = (T)sum; + } + for (int i = N - 1; i>=0; --i) { + sum = (*this)(i); + for (int j = i + 1; j + CImg& solve_tridiagonal(const CImg& A) { + const unsigned int siz = (unsigned int)size(); + if (A._width!=3 || A._height!=siz) + throw CImgArgumentException(_cimg_instance + "solve_tridiagonal(): Instance and tridiagonal matrix " + "(%u,%u,%u,%u,%p) have incompatible dimensions.", + cimg_instance, + A._width,A._height,A._depth,A._spectrum,A._data); + typedef _cimg_Ttfloat Ttfloat; + const Ttfloat epsilon = 1e-4f; + CImg B = A.get_column(1), V(*this,false); + for (int i = 1; i<(int)siz; ++i) { + const Ttfloat m = A(0,i)/(B[i - 1]?B[i - 1]:epsilon); + B[i] -= m*A(2,i - 1); + V[i] -= m*V[i - 1]; + } + (*this)[siz - 1] = (T)(V[siz - 1]/(B[siz - 1]?B[siz - 1]:epsilon)); + for (int i = (int)siz - 2; i>=0; --i) (*this)[i] = (T)((V[i] - A(2,i)*(*this)[i + 1])/(B[i]?B[i]:epsilon)); + return *this; + } + + //! Solve a tridiagonal system of linear equations \newinstance. + template + CImg<_cimg_Ttfloat> get_solve_tridiagonal(const CImg& A) const { + return CImg<_cimg_Ttfloat>(*this,false).solve_tridiagonal(A); + } + + //! Compute eigenvalues and eigenvectors of the instance image, viewed as a matrix. + /** + \param[out] val Vector of the estimated eigenvalues, in decreasing order. + \param[out] vec Matrix of the estimated eigenvectors, sorted by columns. + **/ + template + const CImg& eigen(CImg& val, CImg &vec) const { + if (is_empty()) { val.assign(); vec.assign(); } + else { + if (_width!=_height || _depth>1 || _spectrum>1) + throw CImgInstanceException(_cimg_instance + "eigen(): Instance is not a square matrix.", + cimg_instance); + + if (val.size()<(ulongT)_width) val.assign(1,_width); + if (vec.size()<(ulongT)_width*_width) vec.assign(_width,_width); + switch (_width) { + case 1 : { val[0] = (t)(*this)[0]; vec[0] = (t)1; } break; + case 2 : { + const double a = (*this)[0], b = (*this)[1], c = (*this)[2], d = (*this)[3], e = a + d; + double f = e*e - 4*(a*d - b*c); + if (f<0) + cimg::warn(_cimg_instance + "eigen(): Complex eigenvalues found.", + cimg_instance); + + f = std::sqrt(f); + const double + l1 = 0.5*(e - f), + l2 = 0.5*(e + f), + b2 = b*b, + norm1 = std::sqrt(cimg::sqr(l2 - a) + b2), + norm2 = std::sqrt(cimg::sqr(l1 - a) + b2); + val[0] = (t)l2; + val[1] = (t)l1; + if (norm1>0) { vec(0,0) = (t)(b/norm1); vec(0,1) = (t)((l2 - a)/norm1); } else { vec(0,0) = 1; vec(0,1) = 0; } + if (norm2>0) { vec(1,0) = (t)(b/norm2); vec(1,1) = (t)((l1 - a)/norm2); } else { vec(1,0) = 1; vec(1,1) = 0; } + } break; + default : + throw CImgInstanceException(_cimg_instance + "eigen(): Eigenvalues computation of general matrices is limited " + "to 2x2 matrices.", + cimg_instance); + } + } + return *this; + } + + //! Compute eigenvalues and eigenvectors of the instance image, viewed as a matrix. + /** + \return A list of two images [val; vec], whose meaning is similar as in eigen(CImg&,CImg&) const. + **/ + CImgList get_eigen() const { + CImgList res(2); + eigen(res[0],res[1]); + return res; + } + + //! Compute eigenvalues and eigenvectors of the instance image, viewed as a symmetric matrix. + /** + \param[out] val Vector of the estimated eigenvalues, in decreasing order. + \param[out] vec Matrix of the estimated eigenvectors, sorted by columns. + **/ + template + const CImg& symmetric_eigen(CImg& val, CImg& vec) const { + if (is_empty()) { val.assign(); vec.assign(); } + else { +#ifdef cimg_use_lapack + char JOB = 'V', UPLO = 'U'; + int N = _width, LWORK = 4*N, INFO; + Tfloat + *const lapA = new Tfloat[N*N], + *const lapW = new Tfloat[N], + *const WORK = new Tfloat[LWORK]; + cimg_forXY(*this,k,l) lapA[k*N + l] = (Tfloat)((*this)(k,l)); + cimg::syev(JOB,UPLO,N,lapA,lapW,WORK,LWORK,INFO); + if (INFO) + cimg::warn(_cimg_instance + "symmetric_eigen(): LAPACK library function dsyev_() returned error code %d.", + cimg_instance, + INFO); + + val.assign(1,N); + vec.assign(N,N); + if (!INFO) { + cimg_forY(val,i) val(i) = (T)lapW[N - 1 -i]; + cimg_forXY(vec,k,l) vec(k,l) = (T)(lapA[(N - 1 - k)*N + l]); + } else { val.fill(0); vec.fill(0); } + delete[] lapA; delete[] lapW; delete[] WORK; +#else + if (_width!=_height || _depth>1 || _spectrum>1) + throw CImgInstanceException(_cimg_instance + "eigen(): Instance is not a square matrix.", + cimg_instance); + + val.assign(1,_width); + if (vec._data) vec.assign(_width,_width); + if (_width<3) { + eigen(val,vec); + if (_width==2) { vec[1] = -vec[2]; vec[3] = vec[0]; } // Force orthogonality for 2x2 matrices. + return *this; + } + CImg V(_width,_width); + Tfloat M = 0, m = (Tfloat)min_max(M), maxabs = cimg::max((Tfloat)1.0f,cimg::abs(m),cimg::abs(M)); + (CImg(*this,false)/=maxabs).SVD(vec,val,V,false); + if (maxabs!=1) val*=maxabs; + + bool is_ambiguous = false; + float eig = 0; + cimg_forY(val,p) { // check for ambiguous cases. + if (val[p]>eig) eig = (float)val[p]; + t scal = 0; + cimg_forY(vec,y) scal+=vec(p,y)*V(p,y); + if (cimg::abs(scal)<0.9f) is_ambiguous = true; + if (scal<0) val[p] = -val[p]; + } + if (is_ambiguous) { + ++(eig*=2); + SVD(vec,val,V,false,40,eig); + val-=eig; + } + CImg permutations; // sort eigenvalues in decreasing order + CImg tmp(_width); + val.sort(permutations,false); + cimg_forY(vec,k) { + cimg_forY(permutations,y) tmp(y) = vec(permutations(y),k); + std::memcpy(vec.data(0,k),tmp._data,sizeof(t)*_width); + } +#endif + } + return *this; + } + + //! Compute eigenvalues and eigenvectors of the instance image, viewed as a symmetric matrix. + /** + \return A list of two images [val; vec], whose meaning are similar as in + symmetric_eigen(CImg&,CImg&) const. + **/ + CImgList get_symmetric_eigen() const { + CImgList res(2); + symmetric_eigen(res[0],res[1]); + return res; + } + + //! Sort pixel values and get sorting permutations. + /** + \param[out] permutations Permutation map used for the sorting. + \param is_increasing Tells if pixel values are sorted in an increasing (\c true) or decreasing (\c false) way. + **/ + template + CImg& sort(CImg& permutations, const bool is_increasing=true) { + permutations.assign(_width,_height,_depth,_spectrum); + if (is_empty()) return *this; + cimg_foroff(permutations,off) permutations[off] = (t)off; + return _quicksort(0,size() - 1,permutations,is_increasing,true); + } + + //! Sort pixel values and get sorting permutations \newinstance. + template + CImg get_sort(CImg& permutations, const bool is_increasing=true) const { + return (+*this).sort(permutations,is_increasing); + } + + //! Sort pixel values. + /** + \param is_increasing Tells if pixel values are sorted in an increasing (\c true) or decreasing (\c false) way. + \param axis Tells if the value sorting must be done along a specific axis. Can be: + - \c 0: All pixel values are sorted, independently on their initial position. + - \c 'x': Image columns are sorted, according to the first value in each column. + - \c 'y': Image rows are sorted, according to the first value in each row. + - \c 'z': Image slices are sorted, according to the first value in each slice. + - \c 'c': Image channels are sorted, according to the first value in each channel. + **/ + CImg& sort(const bool is_increasing=true, const char axis=0) { + if (is_empty()) return *this; + CImg perm; + switch (cimg::lowercase(axis)) { + case 0 : + _quicksort(0,size() - 1,perm,is_increasing,false); + break; + case 'x' : { + perm.assign(_width); + get_crop(0,0,0,0,_width - 1,0,0,0).sort(perm,is_increasing); + CImg img(*this,false); + cimg_forXYZC(*this,x,y,z,c) (*this)(x,y,z,c) = img(perm[x],y,z,c); + } break; + case 'y' : { + perm.assign(_height); + get_crop(0,0,0,0,0,_height - 1,0,0).sort(perm,is_increasing); + CImg img(*this,false); + cimg_forXYZC(*this,x,y,z,c) (*this)(x,y,z,c) = img(x,perm[y],z,c); + } break; + case 'z' : { + perm.assign(_depth); + get_crop(0,0,0,0,0,0,_depth - 1,0).sort(perm,is_increasing); + CImg img(*this,false); + cimg_forXYZC(*this,x,y,z,c) (*this)(x,y,z,c) = img(x,y,perm[z],c); + } break; + case 'c' : { + perm.assign(_spectrum); + get_crop(0,0,0,0,0,0,0,_spectrum - 1).sort(perm,is_increasing); + CImg img(*this,false); + cimg_forXYZC(*this,x,y,z,c) (*this)(x,y,z,c) = img(x,y,z,perm[c]); + } break; + default : + throw CImgArgumentException(_cimg_instance + "sort(): Invalid specified axis '%c' " + "(should be { x | y | z | c }).", + cimg_instance,axis); + } + return *this; + } + + //! Sort pixel values \newinstance. + CImg get_sort(const bool is_increasing=true, const char axis=0) const { + return (+*this).sort(is_increasing,axis); + } + + template + CImg& _quicksort(const long indm, const long indM, CImg& permutations, + const bool is_increasing, const bool is_permutations) { + if (indm(*this)[mid]) { + cimg::swap((*this)[indm],(*this)[mid]); + if (is_permutations) cimg::swap(permutations[indm],permutations[mid]); + } + if ((*this)[mid]>(*this)[indM]) { + cimg::swap((*this)[indM],(*this)[mid]); + if (is_permutations) cimg::swap(permutations[indM],permutations[mid]); + } + if ((*this)[indm]>(*this)[mid]) { + cimg::swap((*this)[indm],(*this)[mid]); + if (is_permutations) cimg::swap(permutations[indm],permutations[mid]); + } + } else { + if ((*this)[indm]<(*this)[mid]) { + cimg::swap((*this)[indm],(*this)[mid]); + if (is_permutations) cimg::swap(permutations[indm],permutations[mid]); + } + if ((*this)[mid]<(*this)[indM]) { + cimg::swap((*this)[indM],(*this)[mid]); + if (is_permutations) cimg::swap(permutations[indM],permutations[mid]); + } + if ((*this)[indm]<(*this)[mid]) { + cimg::swap((*this)[indm],(*this)[mid]); + if (is_permutations) cimg::swap(permutations[indm],permutations[mid]); + } + } + if (indM - indm>=3) { + const T pivot = (*this)[mid]; + long i = indm, j = indM; + if (is_increasing) { + do { + while ((*this)[i]pivot) --j; + if (i<=j) { + if (is_permutations) cimg::swap(permutations[i],permutations[j]); + cimg::swap((*this)[i++],(*this)[j--]); + } + } while (i<=j); + } else { + do { + while ((*this)[i]>pivot) ++i; + while ((*this)[j] A; // Input matrix (assumed to contain some values). + CImg<> U,S,V; + A.SVD(U,S,V) + \endcode + **/ + template + const CImg& SVD(CImg& U, CImg& S, CImg& V, const bool sorting=true, + const unsigned int max_iteration=40, const float lambda=0) const { + if (is_empty()) { U.assign(); S.assign(); V.assign(); } + else { + U = *this; + if (lambda!=0) { + const unsigned int delta = std::min(U._width,U._height); + for (unsigned int i = 0; i rv1(_width); + t anorm = 0, c, f, g = 0, h, s, scale = 0; + int l = 0, nm = 0; + + cimg_forX(U,i) { + l = i + 1; rv1[i] = scale*g; g = s = scale = 0; + if (i=0?-1:1)*std::sqrt(s)); h=f*g-s; U(i,i) = f-g; + for (int j = l; j=0?-1:1)*std::sqrt(s)); h = f*g-s; U(l,i) = f-g; + for (int k = l; k=0; --i) { + if (i=0; --i) { + l = i + 1; g = S[i]; + for (int j = l; j=0; --k) { + for (unsigned int its = 0; its=1; --l) { + nm = l - 1; + if ((cimg::abs(rv1[l]) + anorm)==anorm) { flag = false; break; } + if ((cimg::abs(S[nm]) + anorm)==anorm) break; + } + if (flag) { + c = 0; s = 1; + for (int i = l; i<=k; ++i) { + f = s*rv1[i]; rv1[i] = c*rv1[i]; + if ((cimg::abs(f) + anorm)==anorm) break; + g = S[i]; h = cimg::_hypot(f,g); S[i] = h; h = 1/h; c = g*h; s = -f*h; + cimg_forY(U,j) { const t y = U(nm,j), z = U(i,j); U(nm,j) = y*c + z*s; U(i,j) = z*c - y*s; } + } + } + + const t z = S[k]; + if (l==k) { if (z<0) { S[k] = -z; cimg_forX(U,j) V(k,j) = -V(k,j); } break; } + nm = k - 1; + t x = S[l], y = S[nm]; + g = rv1[nm]; h = rv1[k]; + f = ((y - z)*(y + z)+(g - h)*(g + h))/std::max((t)1e-25,2*h*y); + g = cimg::_hypot(f,(t)1); + f = ((x - z)*(x + z)+h*((y/(f + (f>=0?g:-g))) - h))/std::max((t)1e-25,x); + c = s = 1; + for (int j = l; j<=nm; ++j) { + const int i = j + 1; + g = rv1[i]; h = s*g; g = c*g; + t y = S[i]; + t z = cimg::_hypot(f,h); + rv1[j] = z; c = f/std::max((t)1e-25,z); s = h/std::max((t)1e-25,z); + f = x*c + g*s; g = g*c - x*s; h = y*s; y*=c; + cimg_forX(U,jj) { const t x = V(j,jj), z = V(i,jj); V(j,jj) = x*c + z*s; V(i,jj) = z*c - x*s; } + z = cimg::_hypot(f,h); S[j] = z; + if (z) { z = 1/std::max((t)1e-25,z); c = f*z; s = h*z; } + f = c*g + s*y; x = c*y - s*g; + cimg_forY(U,jj) { const t y = U(j,jj); z = U(i,jj); U(j,jj) = y*c + z*s; U(i,jj) = z*c - y*s; } + } + rv1[l] = 0; rv1[k]=f; S[k]=x; + } + } + + if (sorting) { + CImg permutations; + CImg tmp(_width); + S.sort(permutations,false); + cimg_forY(U,k) { + cimg_forY(permutations,y) tmp(y) = U(permutations(y),k); + std::memcpy(U.data(0,k),tmp._data,sizeof(t)*_width); + } + cimg_forY(V,k) { + cimg_forY(permutations,y) tmp(y) = V(permutations(y),k); + std::memcpy(V.data(0,k),tmp._data,sizeof(t)*_width); + } + } + } + return *this; + } + + //! Compute the SVD of the instance image, viewed as a general matrix. + /** + \return A list of three images [U; S; V], whose meaning is similar as in + SVD(CImg&,CImg&,CImg&,bool,unsigned int,float) const. + **/ + CImgList get_SVD(const bool sorting=true, + const unsigned int max_iteration=40, const float lambda=0) const { + CImgList res(3); + SVD(res[0],res[1],res[2],sorting,max_iteration,lambda); + return res; + } + + // [internal] Compute the LU decomposition of a permuted matrix. + template + CImg& _LU(CImg& indx, bool& d) { + const int N = width(); + int imax = 0; + CImg vv(N); + indx.assign(N); + d = true; + cimg_forX(*this,i) { + Tfloat vmax = 0; + cimg_forX(*this,j) { + const Tfloat tmp = cimg::abs((*this)(j,i)); + if (tmp>vmax) vmax = tmp; + } + if (vmax==0) { indx.fill(0); return fill(0); } + vv[i] = 1/vmax; + } + cimg_forX(*this,j) { + for (int i = 0; i=vmax) { vmax=tmp; imax=i; } + } + if (j!=imax) { + cimg_forX(*this,k) cimg::swap((*this)(k,imax),(*this)(k,j)); + d =!d; + vv[imax] = vv[j]; + } + indx[j] = (t)imax; + if ((*this)(j,j)==0) (*this)(j,j) = (T)1e-20; + if (j + static CImg dijkstra(const tf& distance, const unsigned int nb_nodes, + const unsigned int starting_node, const unsigned int ending_node, + CImg& previous_node) { + if (starting_node>=nb_nodes) + throw CImgArgumentException("CImg<%s>::dijkstra(): Specified indice of starting node %u is higher " + "than number of nodes %u.", + pixel_type(),starting_node,nb_nodes); + CImg dist(1,nb_nodes,1,1,cimg::type::max()); + dist(starting_node) = 0; + previous_node.assign(1,nb_nodes,1,1,(t)-1); + previous_node(starting_node) = (t)starting_node; + CImg Q(nb_nodes); + cimg_forX(Q,u) Q(u) = (unsigned int)u; + cimg::swap(Q(starting_node),Q(0)); + unsigned int sizeQ = nb_nodes; + while (sizeQ) { + // Update neighbors from minimal vertex + const unsigned int umin = Q(0); + if (umin==ending_node) sizeQ = 0; + else { + const T dmin = dist(umin); + const T infty = cimg::type::max(); + for (unsigned int q = 1; qdist(Q(left))) || + (rightdist(Q(right)));) { + if (right + static CImg dijkstra(const tf& distance, const unsigned int nb_nodes, + const unsigned int starting_node, const unsigned int ending_node=~0U) { + CImg foo; + return dijkstra(distance,nb_nodes,starting_node,ending_node,foo); + } + + //! Return minimal path in a graph, using the Dijkstra algorithm. + /** + \param starting_node Indice of the starting node. + \param ending_node Indice of the ending node. + \param previous_node Array that gives the previous node indice in the path to the starting node + (optional parameter). + \return Array of distances of each node to the starting node. + \note image instance corresponds to the adjacency matrix of the graph. + **/ + template + CImg& dijkstra(const unsigned int starting_node, const unsigned int ending_node, + CImg& previous_node) { + return get_dijkstra(starting_node,ending_node,previous_node).move_to(*this); + } + + //! Return minimal path in a graph, using the Dijkstra algorithm \newinstance. + template + CImg get_dijkstra(const unsigned int starting_node, const unsigned int ending_node, + CImg& previous_node) const { + if (_width!=_height || _depth!=1 || _spectrum!=1) + throw CImgInstanceException(_cimg_instance + "dijkstra(): Instance is not a graph adjacency matrix.", + cimg_instance); + + return dijkstra(*this,_width,starting_node,ending_node,previous_node); + } + + //! Return minimal path in a graph, using the Dijkstra algorithm. + CImg& dijkstra(const unsigned int starting_node, const unsigned int ending_node=~0U) { + return get_dijkstra(starting_node,ending_node).move_to(*this); + } + + //! Return minimal path in a graph, using the Dijkstra algorithm \newinstance. + CImg get_dijkstra(const unsigned int starting_node, const unsigned int ending_node=~0U) const { + CImg foo; + return get_dijkstra(starting_node,ending_node,foo); + } + + //! Return an image containing the ascii codes of the specified string. + /** + \param str input C-string to encode as an image. + \param is_last_zero Tells if the ending \c '0' character appear in the resulting image. + \param is_shared Return result that shares its buffer with \p str. + **/ + static CImg string(const char *const str, const bool is_last_zero=true, const bool is_shared=false) { + if (!str) return CImg(); + return CImg(str,(unsigned int)std::strlen(str) + (is_last_zero?1:0),1,1,1,is_shared); + } + + //! Return a \c 1x1 image containing specified value. + /** + \param a0 First vector value. + **/ + static CImg vector(const T& a0) { + CImg r(1,1); + r[0] = a0; + return r; + } + + //! Return a \c 1x2 image containing specified values. + /** + \param a0 First vector value. + \param a1 Second vector value. + **/ + static CImg vector(const T& a0, const T& a1) { + CImg r(1,2); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; + return r; + } + + //! Return a \c 1x3 image containing specified values. + /** + \param a0 First vector value. + \param a1 Second vector value. + \param a2 Third vector value. + **/ + static CImg vector(const T& a0, const T& a1, const T& a2) { + CImg r(1,3); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; + return r; + } + + //! Return a \c 1x4 image containing specified values. + /** + \param a0 First vector value. + \param a1 Second vector value. + \param a2 Third vector value. + \param a3 Fourth vector value. + **/ + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3) { + CImg r(1,4); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; + return r; + } + + //! Return a \c 1x5 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4) { + CImg r(1,5); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; + return r; + } + + //! Return a \c 1x6 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5) { + CImg r(1,6); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5; + return r; + } + + //! Return a \c 1x7 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6) { + CImg r(1,7); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; + *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; + return r; + } + + //! Return a \c 1x8 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7) { + CImg r(1,8); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; + *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; + return r; + } + + //! Return a \c 1x9 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8) { + CImg r(1,9); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; + *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; + *(ptr++) = a8; + return r; + } + + //! Return a \c 1x10 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9) { + CImg r(1,10); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; + *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; + *(ptr++) = a8; *(ptr++) = a9; + return r; + } + + //! Return a \c 1x11 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10) { + CImg r(1,11); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; + *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; + *(ptr++) = a8; *(ptr++) = a9; *(ptr++) = a10; + return r; + } + + //! Return a \c 1x12 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11) { + CImg r(1,12); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; + *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; + *(ptr++) = a8; *(ptr++) = a9; *(ptr++) = a10; *(ptr++) = a11; + return r; + } + + //! Return a \c 1x13 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12) { + CImg r(1,13); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; + *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; + *(ptr++) = a8; *(ptr++) = a9; *(ptr++) = a10; *(ptr++) = a11; + *(ptr++) = a12; + return r; + } + + //! Return a \c 1x14 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12, const T& a13) { + CImg r(1,14); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; + *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; + *(ptr++) = a8; *(ptr++) = a9; *(ptr++) = a10; *(ptr++) = a11; + *(ptr++) = a12; *(ptr++) = a13; + return r; + } + + //! Return a \c 1x15 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12, const T& a13, const T& a14) { + CImg r(1,15); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; + *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; + *(ptr++) = a8; *(ptr++) = a9; *(ptr++) = a10; *(ptr++) = a11; + *(ptr++) = a12; *(ptr++) = a13; *(ptr++) = a14; + return r; + } + + //! Return a \c 1x16 image containing specified values. + static CImg vector(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12, const T& a13, const T& a14, const T& a15) { + CImg r(1,16); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; + *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; + *(ptr++) = a8; *(ptr++) = a9; *(ptr++) = a10; *(ptr++) = a11; + *(ptr++) = a12; *(ptr++) = a13; *(ptr++) = a14; *(ptr++) = a15; + return r; + } + + //! Return a 1x1 matrix containing specified coefficients. + /** + \param a0 First matrix value. + \note Equivalent to vector(const T&). + **/ + static CImg matrix(const T& a0) { + return vector(a0); + } + + //! Return a 2x2 matrix containing specified coefficients. + /** + \param a0 First matrix value. + \param a1 Second matrix value. + \param a2 Third matrix value. + \param a3 Fourth matrix value. + **/ + static CImg matrix(const T& a0, const T& a1, + const T& a2, const T& a3) { + CImg r(2,2); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; + *(ptr++) = a2; *(ptr++) = a3; + return r; + } + + //! Return a 3x3 matrix containing specified coefficients. + /** + \param a0 First matrix value. + \param a1 Second matrix value. + \param a2 Third matrix value. + \param a3 Fourth matrix value. + \param a4 Fifth matrix value. + \param a5 Sixth matrix value. + \param a6 Seventh matrix value. + \param a7 Eighth matrix value. + \param a8 Nineth matrix value. + **/ + static CImg matrix(const T& a0, const T& a1, const T& a2, + const T& a3, const T& a4, const T& a5, + const T& a6, const T& a7, const T& a8) { + CImg r(3,3); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; + *(ptr++) = a3; *(ptr++) = a4; *(ptr++) = a5; + *(ptr++) = a6; *(ptr++) = a7; *(ptr++) = a8; + return r; + } + + //! Return a 4x4 matrix containing specified coefficients. + static CImg matrix(const T& a0, const T& a1, const T& a2, const T& a3, + const T& a4, const T& a5, const T& a6, const T& a7, + const T& a8, const T& a9, const T& a10, const T& a11, + const T& a12, const T& a13, const T& a14, const T& a15) { + CImg r(4,4); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; + *(ptr++) = a4; *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; + *(ptr++) = a8; *(ptr++) = a9; *(ptr++) = a10; *(ptr++) = a11; + *(ptr++) = a12; *(ptr++) = a13; *(ptr++) = a14; *(ptr++) = a15; + return r; + } + + //! Return a 5x5 matrix containing specified coefficients. + static CImg matrix(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, + const T& a5, const T& a6, const T& a7, const T& a8, const T& a9, + const T& a10, const T& a11, const T& a12, const T& a13, const T& a14, + const T& a15, const T& a16, const T& a17, const T& a18, const T& a19, + const T& a20, const T& a21, const T& a22, const T& a23, const T& a24) { + CImg r(5,5); T *ptr = r._data; + *(ptr++) = a0; *(ptr++) = a1; *(ptr++) = a2; *(ptr++) = a3; *(ptr++) = a4; + *(ptr++) = a5; *(ptr++) = a6; *(ptr++) = a7; *(ptr++) = a8; *(ptr++) = a9; + *(ptr++) = a10; *(ptr++) = a11; *(ptr++) = a12; *(ptr++) = a13; *(ptr++) = a14; + *(ptr++) = a15; *(ptr++) = a16; *(ptr++) = a17; *(ptr++) = a18; *(ptr++) = a19; + *(ptr++) = a20; *(ptr++) = a21; *(ptr++) = a22; *(ptr++) = a23; *(ptr++) = a24; + return r; + } + + //! Return a 1x1 symmetric matrix containing specified coefficients. + /** + \param a0 First matrix value. + \note Equivalent to vector(const T&). + **/ + static CImg tensor(const T& a0) { + return matrix(a0); + } + + //! Return a 2x2 symmetric matrix tensor containing specified coefficients. + static CImg tensor(const T& a0, const T& a1, const T& a2) { + return matrix(a0,a1,a1,a2); + } + + //! Return a 3x3 symmetric matrix containing specified coefficients. + static CImg tensor(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4, const T& a5) { + return matrix(a0,a1,a2,a1,a3,a4,a2,a4,a5); + } + + //! Return a 1x1 diagonal matrix containing specified coefficients. + static CImg diagonal(const T& a0) { + return matrix(a0); + } + + //! Return a 2x2 diagonal matrix containing specified coefficients. + static CImg diagonal(const T& a0, const T& a1) { + return matrix(a0,0,0,a1); + } + + //! Return a 3x3 diagonal matrix containing specified coefficients. + static CImg diagonal(const T& a0, const T& a1, const T& a2) { + return matrix(a0,0,0,0,a1,0,0,0,a2); + } + + //! Return a 4x4 diagonal matrix containing specified coefficients. + static CImg diagonal(const T& a0, const T& a1, const T& a2, const T& a3) { + return matrix(a0,0,0,0,0,a1,0,0,0,0,a2,0,0,0,0,a3); + } + + //! Return a 5x5 diagonal matrix containing specified coefficients. + static CImg diagonal(const T& a0, const T& a1, const T& a2, const T& a3, const T& a4) { + return matrix(a0,0,0,0,0,0,a1,0,0,0,0,0,a2,0,0,0,0,0,a3,0,0,0,0,0,a4); + } + + //! Return a NxN identity matrix. + /** + \param N Dimension of the matrix. + **/ + static CImg identity_matrix(const unsigned int N) { + CImg res(N,N,1,1,0); + cimg_forX(res,x) res(x,x) = 1; + return res; + } + + //! Return a N-numbered sequence vector from \p a0 to \p a1. + /** + \param N Size of the resulting vector. + \param a0 Starting value of the sequence. + \param a1 Ending value of the sequence. + **/ + static CImg sequence(const unsigned int N, const T& a0, const T& a1) { + if (N) return CImg(1,N).sequence(a0,a1); + return CImg(); + } + + //! Return a 3x3 rotation matrix from an { axis + angle } or a quaternion. + /** + \param x X-coordinate of the rotation axis, or first quaternion coordinate. + \param y Y-coordinate of the rotation axis, or second quaternion coordinate. + \param z Z-coordinate of the rotation axis, or third quaternion coordinate. + \param w Angle of the rotation axis (in degree), or fourth quaternion coordinate. + \param is_quaternion Tell is the four arguments denotes a set { axis + angle } or a quaternion (x,y,z,w). + **/ + static CImg rotation_matrix(const float x, const float y, const float z, const float w, + const bool is_quaternion=false) { + double X, Y, Z, W, N; + if (is_quaternion) { + N = std::sqrt((double)x*x + (double)y*y + (double)z*z + (double)w*w); + if (N>0) { X = x/N; Y = y/N; Z = z/N; W = w/N; } + else { X = Y = Z = 0; W = 1; } + return CImg::matrix((T)(X*X + Y*Y - Z*Z - W*W),(T)(2*Y*Z - 2*X*W),(T)(2*X*Z + 2*Y*W), + (T)(2*X*W + 2*Y*Z),(T)(X*X - Y*Y + Z*Z - W*W),(T)(2*Z*W - 2*X*Y), + (T)(2*Y*W - 2*X*Z),(T)(2*X*Y + 2*Z*W),(T)(X*X - Y*Y - Z*Z + W*W)); + } + N = cimg::hypot((double)x,(double)y,(double)z); + if (N>0) { X = x/N; Y = y/N; Z = z/N; } + else { X = Y = 0; Z = 1; } + const double ang = w*cimg::PI/180, c = std::cos(ang), omc = 1 - c, s = std::sin(ang); + return CImg::matrix((T)(X*X*omc + c),(T)(X*Y*omc - Z*s),(T)(X*Z*omc + Y*s), + (T)(X*Y*omc + Z*s),(T)(Y*Y*omc + c),(T)(Y*Z*omc - X*s), + (T)(X*Z*omc - Y*s),(T)(Y*Z*omc + X*s),(T)(Z*Z*omc + c)); + } + + //@} + //----------------------------------- + // + //! \name Value Manipulation + //@{ + //----------------------------------- + + //! Fill all pixel values with specified value. + /** + \param val Fill value. + **/ + CImg& fill(const T& val) { + if (is_empty()) return *this; + if (val && sizeof(T)!=1) cimg_for(*this,ptrd,T) *ptrd = val; + else std::memset(_data,(int)(ulongT)val,sizeof(T)*size()); // Double cast to allow val to be (void*) + return *this; + } + + //! Fill all pixel values with specified value \newinstance. + CImg get_fill(const T& val) const { + return CImg(_width,_height,_depth,_spectrum).fill(val); + } + + //! Fill sequentially all pixel values with specified values. + /** + \param val0 First fill value. + \param val1 Second fill value. + **/ + CImg& fill(const T& val0, const T& val1) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 1; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 2; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 3; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 4; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 5; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 6; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 7; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 8; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 9; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 10; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 11; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10, + val11); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, + const T& val12) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 12; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, + const T& val12) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10, + val11,val12); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, + const T& val12, const T& val13) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 13; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, + const T& val12, const T& val13) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10, + val11,val12,val13); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, + const T& val12, const T& val13, const T& val14) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 14; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, + const T& val12, const T& val13, const T& val14) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10, + val11,val12,val13,val14); + } + + //! Fill sequentially all pixel values with specified values \overloading. + CImg& fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, + const T& val12, const T& val13, const T& val14, const T& val15) { + if (is_empty()) return *this; + T *ptrd, *ptre = end() - 15; + for (ptrd = _data; ptrd get_fill(const T& val0, const T& val1, const T& val2, const T& val3, const T& val4, const T& val5, + const T& val6, const T& val7, const T& val8, const T& val9, const T& val10, const T& val11, + const T& val12, const T& val13, const T& val14, const T& val15) const { + return CImg(_width,_height,_depth,_spectrum).fill(val0,val1,val2,val3,val4,val5,val6,val7,val8,val9,val10, + val11,val12,val13,val14,val15); + } + + //! Fill sequentially pixel values according to a given expression. + /** + \param expression C-string describing a math formula, or a sequence of values. + \param repeat_values In case a list of values is provided, tells if this list must be repeated for the filling. + \param allow_formula Tells that mathematical formulas are authorized for the filling. + \param list_inputs In case of a mathematical expression, attach a list of images to the specified expression. + \param[out] list_outputs In case of a math expression, list of images atatched to the specified expression. + **/ + CImg& fill(const char *const expression, const bool repeat_values, const bool allow_formula=true, + const CImgList *const list_inputs=0, CImgList *const list_outputs=0) { + return _fill(expression,repeat_values,allow_formula,list_inputs,list_outputs,"fill",0); + } + + CImg& _fill(const char *const expression, const bool repeat_values, bool allow_formula, + const CImgList *const list_inputs, CImgList *const list_outputs, + const char *const calling_function, const CImg *provides_copy) { + if (is_empty() || !expression || !*expression) return *this; + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + CImg is_error; + bool is_value_sequence = false; + + if (allow_formula) { + + // Try to pre-detect regular value sequence to avoid exception thrown by _cimg_math_parser. + double value; + char sep; + const int err = cimg_sscanf(expression,"%lf %c",&value,&sep); + if (err==1 || (err==2 && sep==',')) { + if (err==1) return fill((T)value); + else is_value_sequence = true; + } + + // Try to fill values according to a formula. + cimg_abort_init; + if (!is_value_sequence) try { + CImg base = provides_copy?provides_copy->get_shared():get_shared(); + _cimg_math_parser mp(expression + (*expression=='>' || *expression=='<' || + *expression=='*' || *expression==':'), + calling_function,base,this,list_inputs,list_outputs,true); + if (!provides_copy && expression && *expression!='>' && *expression!='<' && *expression!=':' && + mp.need_input_copy) + base.assign().assign(*this); // Needs input copy + + bool do_in_parallel = false; +#ifdef cimg_use_openmp + cimg_openmp_if(*expression=='*' || *expression==':' || + (mp.is_parallelizable && _width>=320 && _height*_depth*_spectrum>=2)) + do_in_parallel = true; +#endif + if (mp.result_dim) { // Vector-valued expression + const unsigned int N = std::min(mp.result_dim,_spectrum); + const ulongT whd = (ulongT)_width*_height*_depth; + T *ptrd = *expression=='<'?_data + _width*_height*_depth - 1:_data; + if (*expression=='<') { + CImg res(1,mp.result_dim); + cimg_rofYZ(*this,y,z) { + cimg_abort_test(); + cimg_rofX(*this,x) { + mp(x,y,z,0,res._data); + const double *ptrs = res._data; + T *_ptrd = ptrd--; for (unsigned int n = N; n>0; --n) { *_ptrd = (T)(*ptrs++); _ptrd+=whd; } + } + } + } else if (*expression=='>' || !do_in_parallel) { + CImg res(1,mp.result_dim); + cimg_forYZ(*this,y,z) { + cimg_abort_test(); + cimg_forX(*this,x) { + mp(x,y,z,0,res._data); + const double *ptrs = res._data; + T *_ptrd = ptrd++; for (unsigned int n = N; n>0; --n) { *_ptrd = (T)(*ptrs++); _ptrd+=whd; } + } + } + } else { +#ifdef cimg_use_openmp + cimg_pragma_openmp(parallel) + { + _cimg_math_parser + _mp = omp_get_thread_num()?mp:_cimg_math_parser(), + &lmp = omp_get_thread_num()?_mp:mp; + lmp.is_fill = true; + cimg_pragma_openmp(for collapse(2)) + cimg_forYZ(*this,y,z) cimg_abort_try { + cimg_abort_test(); + CImg res(1,lmp.result_dim); + T *ptrd = data(0,y,z,0); + cimg_forX(*this,x) { + lmp(x,y,z,0,res._data); + const double *ptrs = res._data; + T *_ptrd = ptrd++; for (unsigned int n = N; n>0; --n) { *_ptrd = (T)(*ptrs++); _ptrd+=whd; } + } + } cimg_abort_catch() cimg_abort_catch_fill() + } +#endif + } + + } else { // Scalar-valued expression + T *ptrd = *expression=='<'?end() - 1:_data; + if (*expression=='<') + cimg_rofYZC(*this,y,z,c) { cimg_abort_test(); cimg_rofX(*this,x) *(ptrd--) = (T)mp(x,y,z,c); } + else if (*expression=='>' || !do_in_parallel) + cimg_forYZC(*this,y,z,c) { cimg_abort_test(); cimg_forX(*this,x) *(ptrd++) = (T)mp(x,y,z,c); } + else { +#ifdef cimg_use_openmp + cimg_pragma_openmp(parallel) + { + _cimg_math_parser + _mp = omp_get_thread_num()?mp:_cimg_math_parser(), + &lmp = omp_get_thread_num()?_mp:mp; + lmp.is_fill = true; + cimg_pragma_openmp(for collapse(3)) + cimg_forYZC(*this,y,z,c) cimg_abort_try { + cimg_abort_test(); + T *ptrd = data(0,y,z,c); + cimg_forX(*this,x) *ptrd++ = (T)lmp(x,y,z,c); + } cimg_abort_catch() cimg_abort_catch_fill() + } +#endif + } + } + mp.end(); + } catch (CImgException& e) { CImg::string(e._message).move_to(is_error); } + } + + // Try to fill values according to a value sequence. + if (!allow_formula || is_value_sequence || is_error) { + CImg item(256); + char sep = 0; + const char *nexpression = expression; + ulongT nb = 0; + const ulongT siz = size(); + T *ptrd = _data; + for (double val = 0; *nexpression && nb0 && cimg_sscanf(item,"%lf",&val)==1 && (sep==',' || sep==';' || err==1)) { + nexpression+=std::strlen(item) + (err>1); + *(ptrd++) = (T)val; + } else break; + } + cimg::exception_mode(omode); + if (nb get_fill(const char *const expression, const bool repeat_values, const bool allow_formula=true, + const CImgList *const list_inputs=0, CImgList *const list_outputs=0) const { + return (+*this).fill(expression,repeat_values,allow_formula,list_inputs,list_outputs); + } + + //! Fill sequentially pixel values according to the values found in another image. + /** + \param values Image containing the values used for the filling. + \param repeat_values In case there are less values than necessary in \c values, tells if these values must be + repeated for the filling. + **/ + template + CImg& fill(const CImg& values, const bool repeat_values=true) { + if (is_empty() || !values) return *this; + T *ptrd = _data, *ptre = ptrd + size(); + for (t *ptrs = values._data, *ptrs_end = ptrs + values.size(); ptrs + CImg get_fill(const CImg& values, const bool repeat_values=true) const { + return repeat_values?CImg(_width,_height,_depth,_spectrum).fill(values,repeat_values): + (+*this).fill(values,repeat_values); + } + + //! Fill pixel values along the X-axis at a specified pixel position. + /** + \param y Y-coordinate of the filled column. + \param z Z-coordinate of the filled column. + \param c C-coordinate of the filled column. + \param a0 First fill value. + **/ + CImg& fillX(const unsigned int y, const unsigned int z, const unsigned int c, const int a0, ...) { +#define _cimg_fill1(x,y,z,c,off,siz,t) { \ + va_list ap; va_start(ap,a0); T *ptrd = data(x,y,z,c); *ptrd = (T)a0; \ + for (unsigned int k = 1; k& fillX(const unsigned int y, const unsigned int z, const unsigned int c, const double a0, ...) { + if (y<_height && z<_depth && c<_spectrum) _cimg_fill1(0,y,z,c,1,_width,double); + return *this; + } + + //! Fill pixel values along the Y-axis at a specified pixel position. + /** + \param x X-coordinate of the filled row. + \param z Z-coordinate of the filled row. + \param c C-coordinate of the filled row. + \param a0 First fill value. + **/ + CImg& fillY(const unsigned int x, const unsigned int z, const unsigned int c, const int a0, ...) { + if (x<_width && z<_depth && c<_spectrum) _cimg_fill1(x,0,z,c,_width,_height,int); + return *this; + } + + //! Fill pixel values along the Y-axis at a specified pixel position \overloading. + CImg& fillY(const unsigned int x, const unsigned int z, const unsigned int c, const double a0, ...) { + if (x<_width && z<_depth && c<_spectrum) _cimg_fill1(x,0,z,c,_width,_height,double); + return *this; + } + + //! Fill pixel values along the Z-axis at a specified pixel position. + /** + \param x X-coordinate of the filled slice. + \param y Y-coordinate of the filled slice. + \param c C-coordinate of the filled slice. + \param a0 First fill value. + **/ + CImg& fillZ(const unsigned int x, const unsigned int y, const unsigned int c, const int a0, ...) { + const ulongT wh = (ulongT)_width*_height; + if (x<_width && y<_height && c<_spectrum) _cimg_fill1(x,y,0,c,wh,_depth,int); + return *this; + } + + //! Fill pixel values along the Z-axis at a specified pixel position \overloading. + CImg& fillZ(const unsigned int x, const unsigned int y, const unsigned int c, const double a0, ...) { + const ulongT wh = (ulongT)_width*_height; + if (x<_width && y<_height && c<_spectrum) _cimg_fill1(x,y,0,c,wh,_depth,double); + return *this; + } + + //! Fill pixel values along the C-axis at a specified pixel position. + /** + \param x X-coordinate of the filled channel. + \param y Y-coordinate of the filled channel. + \param z Z-coordinate of the filled channel. + \param a0 First filling value. + **/ + CImg& fillC(const unsigned int x, const unsigned int y, const unsigned int z, const int a0, ...) { + const ulongT whd = (ulongT)_width*_height*_depth; + if (x<_width && y<_height && z<_depth) _cimg_fill1(x,y,z,0,whd,_spectrum,int); + return *this; + } + + //! Fill pixel values along the C-axis at a specified pixel position \overloading. + CImg& fillC(const unsigned int x, const unsigned int y, const unsigned int z, const double a0, ...) { + const ulongT whd = (ulongT)_width*_height*_depth; + if (x<_width && y<_height && z<_depth) _cimg_fill1(x,y,z,0,whd,_spectrum,double); + return *this; + } + + //! Discard specified sequence of values in the image buffer, along a specific axis. + /** + \param values Sequence of values to discard. + \param axis Axis along which the values are discarded. If set to \c 0 (default value) + the method does it for all the buffer values and returns a one-column vector. + \note Discarded values will change the image geometry, so the resulting image + is returned as a one-column vector. + **/ + template + CImg& discard(const CImg& values, const char axis=0) { + if (is_empty() || !values) return *this; + return get_discard(values,axis).move_to(*this); + } + + template + CImg get_discard(const CImg& values, const char axis=0) const { + CImg res; + if (!values) return +*this; + if (is_empty()) return res; + const ulongT vsiz = values.size(); + const char _axis = cimg::lowercase(axis); + ulongT j = 0; + unsigned int k = 0; + int i0 = 0; + res.assign(width(),height(),depth(),spectrum()); + switch (_axis) { + case 'x' : { + cimg_forX(*this,i) { + if ((*this)(i)!=(T)values[j]) { + if (j) --i; + res.draw_image(k,get_columns(i0,i)); + k+=i - i0 + 1; i0 = i + 1; j = 0; + } else { ++j; if (j>=vsiz) { j = 0; i0 = i + 1; } } + } + if (i0=vsiz) { j = 0; i0 = i + 1; } } + } + if (i0=vsiz) { j = 0; i0 = i + 1; } } + } + if (i0=vsiz) { j = 0; i0 = i + 1; } } + } + if (i0=vsiz) { j = 0; i0 = (int)i + 1; }} + } + const ulongT siz = size(); + if ((ulongT)i0& discard(const char axis=0) { + return get_discard(axis).move_to(*this); + } + + //! Discard neighboring duplicates in the image buffer, along the specified axis \newinstance. + CImg get_discard(const char axis=0) const { + CImg res; + if (is_empty()) return res; + const char _axis = cimg::lowercase(axis); + T current = *_data?(T)0:(T)1; + int j = 0; + res.assign(width(),height(),depth(),spectrum()); + switch (_axis) { + case 'x' : { + cimg_forX(*this,i) + if ((*this)(i)!=current) { res.draw_image(j++,get_column(i)); current = (*this)(i); } + res.resize(j,-100,-100,-100,0); + } break; + case 'y' : { + cimg_forY(*this,i) + if ((*this)(0,i)!=current) { res.draw_image(0,j++,get_row(i)); current = (*this)(0,i); } + res.resize(-100,j,-100,-100,0); + } break; + case 'z' : { + cimg_forZ(*this,i) + if ((*this)(0,0,i)!=current) { res.draw_image(0,0,j++,get_slice(i)); current = (*this)(0,0,i); } + res.resize(-100,-100,j,-100,0); + } break; + case 'c' : { + cimg_forC(*this,i) + if ((*this)(0,0,0,i)!=current) { res.draw_image(0,0,0,j++,get_channel(i)); current = (*this)(0,0,0,i); } + res.resize(-100,-100,-100,j,0); + } break; + default : { + res.unroll('y'); + cimg_foroff(*this,i) + if ((*this)[i]!=current) res[j++] = current = (*this)[i]; + res.resize(-100,j,-100,-100,0); + } + } + return res; + } + + //! Invert endianness of all pixel values. + /** + **/ + CImg& invert_endianness() { + cimg::invert_endianness(_data,size()); + return *this; + } + + //! Invert endianness of all pixel values \newinstance. + CImg get_invert_endianness() const { + return (+*this).invert_endianness(); + } + + //! Fill image with random values in specified range. + /** + \param val_min Minimal authorized random value. + \param val_max Maximal authorized random value. + \note Random variables are uniformely distributed in [val_min,val_max]. + **/ + CImg& rand(const T& val_min, const T& val_max) { + const float delta = (float)val_max - (float)val_min + (cimg::type::is_float()?0:1); + if (cimg::type::is_float()) cimg_for(*this,ptrd,T) *ptrd = (T)(val_min + cimg::rand()*delta); + else cimg_for(*this,ptrd,T) *ptrd = std::min(val_max,(T)(val_min + cimg::rand()*delta)); + return *this; + } + + //! Fill image with random values in specified range \newinstance. + CImg get_rand(const T& val_min, const T& val_max) const { + return (+*this).rand(val_min,val_max); + } + + //! Round pixel values. + /** + \param y Rounding precision. + \param rounding_type Rounding type. Can be: + - \c -1: Backward. + - \c 0: Nearest. + - \c 1: Forward. + **/ + CImg& round(const double y=1, const int rounding_type=0) { + if (y>0) + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=8192)) + cimg_rof(*this,ptrd,T) *ptrd = cimg::round(*ptrd,y,rounding_type); + return *this; + } + + //! Round pixel values \newinstance. + CImg get_round(const double y=1, const unsigned int rounding_type=0) const { + return (+*this).round(y,rounding_type); + } + + //! Add random noise to pixel values. + /** + \param sigma Amplitude of the random additive noise. If \p sigma<0, it stands for a percentage of the + global value range. + \param noise_type Type of additive noise (can be \p 0=gaussian, \p 1=uniform, \p 2=Salt and Pepper, + \p 3=Poisson or \p 4=Rician). + \return A reference to the modified image instance. + \note + - For Poisson noise (\p noise_type=3), parameter \p sigma is ignored, as Poisson noise only depends on + the image value itself. + - Function \p CImg::get_noise() is also defined. It returns a non-shared modified copy of the image instance. + \par Example + \code + const CImg img("reference.jpg"), res = img.get_noise(40); + (img,res.normalize(0,255)).display(); + \endcode + \image html ref_noise.jpg + **/ + CImg& noise(const double sigma, const unsigned int noise_type=0) { + if (is_empty()) return *this; + const Tfloat vmin = (Tfloat)cimg::type::min(), vmax = (Tfloat)cimg::type::max(); + Tfloat nsigma = (Tfloat)sigma, m = 0, M = 0; + if (nsigma==0 && noise_type!=3) return *this; + if (nsigma<0 || noise_type==2) m = (Tfloat)min_max(M); + if (nsigma<0) nsigma = (Tfloat)(-nsigma*(M-m)/100.0); + switch (noise_type) { + case 0 : { // Gaussian noise + cimg_rof(*this,ptrd,T) { + Tfloat val = (Tfloat)(*ptrd + nsigma*cimg::grand()); + if (val>vmax) val = vmax; + if (valvmax) val = vmax; + if (val::is_float()?(Tfloat)1:(Tfloat)cimg::type::max(); } + cimg_rof(*this,ptrd,T) if (cimg::rand(100)vmax) val = vmax; + if (val get_noise(const double sigma, const unsigned int noise_type=0) const { + return (+*this).noise(sigma,noise_type); + } + + //! Linearly normalize pixel values. + /** + \param min_value Minimum desired value of the resulting image. + \param max_value Maximum desired value of the resulting image. + \par Example + \code + const CImg img("reference.jpg"), res = img.get_normalize(160,220); + (img,res).display(); + \endcode + \image html ref_normalize2.jpg + **/ + CImg& normalize(const T& min_value, const T& max_value) { + if (is_empty()) return *this; + const T a = min_value get_normalize(const T& min_value, const T& max_value) const { + return CImg(*this,false).normalize((Tfloat)min_value,(Tfloat)max_value); + } + + //! Normalize multi-valued pixels of the image instance, with respect to their L2-norm. + /** + \par Example + \code + const CImg img("reference.jpg"), res = img.get_normalize(); + (img,res.normalize(0,255)).display(); + \endcode + \image html ref_normalize.jpg + **/ + CImg& normalize() { + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=512 && _height*_depth>=16)) + cimg_forYZ(*this,y,z) { + T *ptrd = data(0,y,z,0); + cimg_forX(*this,x) { + const T *ptrs = ptrd; + float n = 0; + cimg_forC(*this,c) { n+=cimg::sqr((float)*ptrs); ptrs+=whd; } + n = (float)std::sqrt(n); + T *_ptrd = ptrd++; + if (n>0) cimg_forC(*this,c) { *_ptrd = (T)(*_ptrd/n); _ptrd+=whd; } + else cimg_forC(*this,c) { *_ptrd = (T)0; _ptrd+=whd; } + } + } + return *this; + } + + //! Normalize multi-valued pixels of the image instance, with respect to their L2-norm \newinstance. + CImg get_normalize() const { + return CImg(*this,false).normalize(); + } + + //! Compute Lp-norm of each multi-valued pixel of the image instance. + /** + \param norm_type Type of computed vector norm (can be \p -1=Linf, or \p greater or equal than 0). + \par Example + \code + const CImg img("reference.jpg"), res = img.get_norm(); + (img,res.normalize(0,255)).display(); + \endcode + \image html ref_norm.jpg + **/ + CImg& norm(const int norm_type=2) { + if (_spectrum==1 && norm_type) return abs(); + return get_norm(norm_type).move_to(*this); + } + + //! Compute L2-norm of each multi-valued pixel of the image instance \newinstance. + CImg get_norm(const int norm_type=2) const { + if (is_empty()) return *this; + if (_spectrum==1 && norm_type) return get_abs(); + const ulongT whd = (ulongT)_width*_height*_depth; + CImg res(_width,_height,_depth); + switch (norm_type) { + case -1 : { // Linf-norm. + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=512 && _height*_depth>=16)) + cimg_forYZ(*this,y,z) { + const ulongT off = (ulongT)offset(0,y,z); + const T *ptrs = _data + off; + Tfloat *ptrd = res._data + off; + cimg_forX(*this,x) { + Tfloat n = 0; + const T *_ptrs = ptrs++; + cimg_forC(*this,c) { const Tfloat val = (Tfloat)cimg::abs(*_ptrs); if (val>n) n = val; _ptrs+=whd; } + *(ptrd++) = n; + } + } + } break; + case 0 : { // L0-norm. + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=512 && _height*_depth>=16)) + cimg_forYZ(*this,y,z) { + const ulongT off = (ulongT)offset(0,y,z); + const T *ptrs = _data + off; + Tfloat *ptrd = res._data + off; + cimg_forX(*this,x) { + unsigned int n = 0; + const T *_ptrs = ptrs++; + cimg_forC(*this,c) { n+=*_ptrs==0?0:1; _ptrs+=whd; } + *(ptrd++) = (Tfloat)n; + } + } + } break; + case 1 : { // L1-norm. + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=512 && _height*_depth>=16)) + cimg_forYZ(*this,y,z) { + const ulongT off = (ulongT)offset(0,y,z); + const T *ptrs = _data + off; + Tfloat *ptrd = res._data + off; + cimg_forX(*this,x) { + Tfloat n = 0; + const T *_ptrs = ptrs++; + cimg_forC(*this,c) { n+=cimg::abs(*_ptrs); _ptrs+=whd; } + *(ptrd++) = n; + } + } + } break; + case 2 : { // L2-norm. + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=512 && _height*_depth>=16)) + cimg_forYZ(*this,y,z) { + const ulongT off = (ulongT)offset(0,y,z); + const T *ptrs = _data + off; + Tfloat *ptrd = res._data + off; + cimg_forX(*this,x) { + Tfloat n = 0; + const T *_ptrs = ptrs++; + cimg_forC(*this,c) { n+=cimg::sqr((Tfloat)*_ptrs); _ptrs+=whd; } + *(ptrd++) = (Tfloat)std::sqrt((Tfloat)n); + } + } + } break; + default : { // Linf-norm. + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=512 && _height*_depth>=16)) + cimg_forYZ(*this,y,z) { + const ulongT off = (ulongT)offset(0,y,z); + const T *ptrs = _data + off; + Tfloat *ptrd = res._data + off; + cimg_forX(*this,x) { + Tfloat n = 0; + const T *_ptrs = ptrs++; + cimg_forC(*this,c) { n+=std::pow(cimg::abs((Tfloat)*_ptrs),(Tfloat)norm_type); _ptrs+=whd; } + *(ptrd++) = (Tfloat)std::pow((Tfloat)n,1/(Tfloat)norm_type); + } + } + } + } + return res; + } + + //! Cut pixel values in specified range. + /** + \param min_value Minimum desired value of the resulting image. + \param max_value Maximum desired value of the resulting image. + \par Example + \code + const CImg img("reference.jpg"), res = img.get_cut(160,220); + (img,res).display(); + \endcode + \image html ref_cut.jpg + **/ + CImg& cut(const T& min_value, const T& max_value) { + if (is_empty()) return *this; + const T a = min_value=32768)) + cimg_rof(*this,ptrd,T) *ptrd = (*ptrdb)?b:*ptrd); + return *this; + } + + //! Cut pixel values in specified range \newinstance. + CImg get_cut(const T& min_value, const T& max_value) const { + return (+*this).cut(min_value,max_value); + } + + //! Uniformly quantize pixel values. + /** + \param nb_levels Number of quantization levels. + \param keep_range Tells if resulting values keep the same range as the original ones. + \par Example + \code + const CImg img("reference.jpg"), res = img.get_quantize(4); + (img,res).display(); + \endcode + \image html ref_quantize.jpg + **/ + CImg& quantize(const unsigned int nb_levels, const bool keep_range=true) { + if (!nb_levels) + throw CImgArgumentException(_cimg_instance + "quantize(): Invalid quantization request with 0 values.", + cimg_instance); + + if (is_empty()) return *this; + Tfloat m, M = (Tfloat)max_min(m), range = M - m; + if (range>0) { + if (keep_range) + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=32768)) + cimg_rof(*this,ptrd,T) { + const unsigned int val = (unsigned int)((*ptrd-m)*nb_levels/range); + *ptrd = (T)(m + std::min(val,nb_levels - 1)*range/nb_levels); + } else + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=32768)) + cimg_rof(*this,ptrd,T) { + const unsigned int val = (unsigned int)((*ptrd-m)*nb_levels/range); + *ptrd = (T)std::min(val,nb_levels - 1); + } + } + return *this; + } + + //! Uniformly quantize pixel values \newinstance. + CImg get_quantize(const unsigned int n, const bool keep_range=true) const { + return (+*this).quantize(n,keep_range); + } + + //! Threshold pixel values. + /** + \param value Threshold value + \param soft_threshold Tells if soft thresholding must be applied (instead of hard one). + \param strict_threshold Tells if threshold value is strict. + \par Example + \code + const CImg img("reference.jpg"), res = img.get_threshold(128); + (img,res.normalize(0,255)).display(); + \endcode + \image html ref_threshold.jpg + **/ + CImg& threshold(const T& value, const bool soft_threshold=false, const bool strict_threshold=false) { + if (is_empty()) return *this; + if (strict_threshold) { + if (soft_threshold) + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=32768)) + cimg_rof(*this,ptrd,T) { + const T v = *ptrd; + *ptrd = v>value?(T)(v-value):v<-(float)value?(T)(v + value):(T)0; + } + else + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=65536)) + cimg_rof(*this,ptrd,T) *ptrd = *ptrd>value?(T)1:(T)0; + } else { + if (soft_threshold) + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=32768)) + cimg_rof(*this,ptrd,T) { + const T v = *ptrd; + *ptrd = v>=value?(T)(v-value):v<=-(float)value?(T)(v + value):(T)0; + } + else + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=65536)) + cimg_rof(*this,ptrd,T) *ptrd = *ptrd>=value?(T)1:(T)0; + } + return *this; + } + + //! Threshold pixel values \newinstance. + CImg get_threshold(const T& value, const bool soft_threshold=false, const bool strict_threshold=false) const { + return (+*this).threshold(value,soft_threshold,strict_threshold); + } + + //! Compute the histogram of pixel values. + /** + \param nb_levels Number of desired histogram levels. + \param min_value Minimum pixel value considered for the histogram computation. + All pixel values lower than \p min_value will not be counted. + \param max_value Maximum pixel value considered for the histogram computation. + All pixel values higher than \p max_value will not be counted. + \note + - The histogram H of an image I is the 1d function where H(x) counts the number of occurences of the value x + in the image I. + - The resulting histogram is always defined in 1d. Histograms of multi-valued images are not multi-dimensional. + \par Example + \code + const CImg img = CImg("reference.jpg").histogram(256); + img.display_graph(0,3); + \endcode + \image html ref_histogram.jpg + **/ + CImg& histogram(const unsigned int nb_levels, const T& min_value, const T& max_value) { + return get_histogram(nb_levels,min_value,max_value).move_to(*this); + } + + //! Compute the histogram of pixel values \overloading. + CImg& histogram(const unsigned int nb_levels) { + return get_histogram(nb_levels).move_to(*this); + } + + //! Compute the histogram of pixel values \newinstance. + CImg get_histogram(const unsigned int nb_levels, const T& min_value, const T& max_value) const { + if (!nb_levels || is_empty()) return CImg(); + const double + vmin = (double)(min_value res(nb_levels,1,1,1,0); + cimg_rof(*this,ptrs,T) { + const T val = *ptrs; + if (val>=vmin && val<=vmax) ++res[val==vmax?nb_levels - 1:(unsigned int)((val - vmin)*nb_levels/(vmax - vmin))]; + } + return res; + } + + //! Compute the histogram of pixel values \newinstance. + CImg get_histogram(const unsigned int nb_levels) const { + if (!nb_levels || is_empty()) return CImg(); + T vmax = 0, vmin = min_max(vmax); + return get_histogram(nb_levels,vmin,vmax); + } + + //! Equalize histogram of pixel values. + /** + \param nb_levels Number of histogram levels used for the equalization. + \param min_value Minimum pixel value considered for the histogram computation. + All pixel values lower than \p min_value will not be counted. + \param max_value Maximum pixel value considered for the histogram computation. + All pixel values higher than \p max_value will not be counted. + \par Example + \code + const CImg img("reference.jpg"), res = img.get_equalize(256); + (img,res).display(); + \endcode + \image html ref_equalize.jpg + **/ + CImg& equalize(const unsigned int nb_levels, const T& min_value, const T& max_value) { + if (!nb_levels || is_empty()) return *this; + const T + vmin = min_value hist = get_histogram(nb_levels,vmin,vmax); + ulongT cumul = 0; + cimg_forX(hist,pos) { cumul+=hist[pos]; hist[pos] = cumul; } + if (!cumul) cumul = 1; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=1048576)) + cimg_rof(*this,ptrd,T) { + const int pos = (int)((*ptrd-vmin)*(nb_levels - 1.)/(vmax-vmin)); + if (pos>=0 && pos<(int)nb_levels) *ptrd = (T)(vmin + (vmax-vmin)*hist[pos]/cumul); + } + return *this; + } + + //! Equalize histogram of pixel values \overloading. + CImg& equalize(const unsigned int nb_levels) { + if (!nb_levels || is_empty()) return *this; + T vmax = 0, vmin = min_max(vmax); + return equalize(nb_levels,vmin,vmax); + } + + //! Equalize histogram of pixel values \newinstance. + CImg get_equalize(const unsigned int nblevels, const T& val_min, const T& val_max) const { + return (+*this).equalize(nblevels,val_min,val_max); + } + + //! Equalize histogram of pixel values \newinstance. + CImg get_equalize(const unsigned int nblevels) const { + return (+*this).equalize(nblevels); + } + + //! Index multi-valued pixels regarding to a specified colormap. + /** + \param colormap Multi-valued colormap used as the basis for multi-valued pixel indexing. + \param dithering Level of dithering (0=disable, 1=standard level). + \param map_indexes Tell if the values of the resulting image are the colormap indices or the colormap vectors. + \note + - \p img.index(colormap,dithering,1) is equivalent to img.index(colormap,dithering,0).map(colormap). + \par Example + \code + const CImg img("reference.jpg"), colormap(3,1,1,3, 0,128,255, 0,128,255, 0,128,255); + const CImg res = img.get_index(colormap,1,true); + (img,res).display(); + \endcode + \image html ref_index.jpg + **/ + template + CImg& index(const CImg& colormap, const float dithering=1, const bool map_indexes=false) { + return get_index(colormap,dithering,map_indexes).move_to(*this); + } + + //! Index multi-valued pixels regarding to a specified colormap \newinstance. + template + CImg::Tuint> + get_index(const CImg& colormap, const float dithering=1, const bool map_indexes=true) const { + if (colormap._spectrum!=_spectrum) + throw CImgArgumentException(_cimg_instance + "index(): Instance and specified colormap (%u,%u,%u,%u,%p) " + "have incompatible dimensions.", + cimg_instance, + colormap._width,colormap._height,colormap._depth,colormap._spectrum,colormap._data); + + typedef typename CImg::Tuint tuint; + if (is_empty()) return CImg(); + const ulongT + whd = (ulongT)_width*_height*_depth, + pwhd = (ulongT)colormap._width*colormap._height*colormap._depth; + CImg res(_width,_height,_depth,map_indexes?_spectrum:1); + tuint *ptrd = res._data; + if (dithering>0) { // Dithered versions. + const float ndithering = cimg::cut(dithering,0,1)/16; + Tfloat valm = 0, valM = (Tfloat)max_min(valm); + if (valm==valM && valm>=0 && valM<=255) { valm = 0; valM = 255; } + CImg cache = get_crop(-1,0,0,0,_width,1,0,_spectrum - 1); + Tfloat *cache_current = cache.data(1,0,0,0), *cache_next = cache.data(1,1,0,0); + const ulongT cwhd = (ulongT)cache._width*cache._height*cache._depth; + switch (_spectrum) { + case 1 : { // Optimized for scalars. + cimg_forYZ(*this,y,z) { + if (yvalM?valM:_val0; + Tfloat distmin = cimg::type::max(); const t *ptrmin0 = colormap._data; + for (const t *ptrp0 = colormap._data, *ptrp_end = ptrp0 + pwhd; ptrp0valM?valM:_val0, + _val1 = (Tfloat)*ptrs1, val1 = _val1valM?valM:_val1; + Tfloat distmin = cimg::type::max(); const t *ptrmin0 = colormap._data; + for (const t *ptrp0 = colormap._data, *ptrp1 = ptrp0 + pwhd, *ptrp_end = ptrp1; ptrp0valM?valM:_val0, + _val1 = (Tfloat)*ptrs1, val1 = _val1valM?valM:_val1, + _val2 = (Tfloat)*ptrs2, val2 = _val2valM?valM:_val2; + Tfloat distmin = cimg::type::max(); const t *ptrmin0 = colormap._data; + for (const t *ptrp0 = colormap._data, *ptrp1 = ptrp0 + pwhd, *ptrp2 = ptrp1 + pwhd, + *ptrp_end = ptrp1; ptrp0::max(); const t *ptrmin = colormap._data; + for (const t *ptrp = colormap._data, *ptrp_end = ptrp + pwhd; ptrpvalM?valM:_val; + dist+=cimg::sqr((*_ptrs=val) - (Tfloat)*_ptrp); _ptrs+=cwhd; _ptrp+=pwhd; + } + if (dist=64 && _height*_depth>=16 && pwhd>=16)) + cimg_forYZ(*this,y,z) { + tuint *ptrd = res.data(0,y,z); + for (const T *ptrs0 = data(0,y,z), *ptrs_end = ptrs0 + _width; ptrs0::max(); const t *ptrmin0 = colormap._data; + for (const t *ptrp0 = colormap._data, *ptrp_end = ptrp0 + pwhd; ptrp0=64 && _height*_depth>=16 && pwhd>=16)) + cimg_forYZ(*this,y,z) { + tuint *ptrd = res.data(0,y,z), *ptrd1 = ptrd + whd; + for (const T *ptrs0 = data(0,y,z), *ptrs1 = ptrs0 + whd, *ptrs_end = ptrs0 + _width; ptrs0::max(); const t *ptrmin0 = colormap._data; + for (const t *ptrp0 = colormap._data, *ptrp1 = ptrp0 + pwhd, *ptrp_end = ptrp1; ptrp0=64 && _height*_depth>=16 && pwhd>=16)) + cimg_forYZ(*this,y,z) { + tuint *ptrd = res.data(0,y,z), *ptrd1 = ptrd + whd, *ptrd2 = ptrd1 + whd; + for (const T *ptrs0 = data(0,y,z), *ptrs1 = ptrs0 + whd, *ptrs2 = ptrs1 + whd, + *ptrs_end = ptrs0 + _width; ptrs0::max(); const t *ptrmin0 = colormap._data; + for (const t *ptrp0 = colormap._data, *ptrp1 = ptrp0 + pwhd, *ptrp2 = ptrp1 + pwhd, + *ptrp_end = ptrp1; ptrp0=64 && _height*_depth>=16 && pwhd>=16)) + cimg_forYZ(*this,y,z) { + tuint *ptrd = res.data(0,y,z); + for (const T *ptrs = data(0,y,z), *ptrs_end = ptrs + _width; ptrs::max(); const t *ptrmin = colormap._data; + for (const t *ptrp = colormap._data, *ptrp_end = ptrp + pwhd; ptrp img("reference.jpg"), + colormap1(3,1,1,3, 0,128,255, 0,128,255, 0,128,255), + colormap2(3,1,1,3, 255,0,0, 0,255,0, 0,0,255), + res = img.get_index(colormap1,0).map(colormap2); + (img,res).display(); + \endcode + \image html ref_map.jpg + **/ + template + CImg& map(const CImg& colormap, const unsigned int boundary_conditions=0) { + return get_map(colormap,boundary_conditions).move_to(*this); + } + + //! Map predefined colormap on the scalar (indexed) image instance \newinstance. + template + CImg get_map(const CImg& colormap, const unsigned int boundary_conditions=0) const { + if (_spectrum!=1 && colormap._spectrum!=1) + throw CImgArgumentException(_cimg_instance + "map(): Instance and specified colormap (%u,%u,%u,%u,%p) " + "have incompatible dimensions.", + cimg_instance, + colormap._width,colormap._height,colormap._depth,colormap._spectrum,colormap._data); + + const ulongT + whd = (ulongT)_width*_height*_depth, + cwhd = (ulongT)colormap._width*colormap._height*colormap._depth, + cwhd2 = 2*cwhd; + CImg res(_width,_height,_depth,colormap._spectrum==1?_spectrum:colormap._spectrum); + switch (colormap._spectrum) { + + case 1 : { // Optimized for scalars + const T *ptrs = _data; + switch (boundary_conditions) { + case 3 : // Mirror + cimg_for(res,ptrd,t) { + const ulongT ind = ((ulongT)*(ptrs++))%cwhd2; + *ptrd = colormap[ind& label(const bool is_high_connectivity=false, const Tfloat tolerance=0) { + return get_label(is_high_connectivity,tolerance).move_to(*this); + } + + //! Label connected components \newinstance. + CImg get_label(const bool is_high_connectivity=false, + const Tfloat tolerance=0) const { + if (is_empty()) return CImg(); + + // Create neighborhood tables. + int dx[13], dy[13], dz[13], nb = 0; + dx[nb] = 1; dy[nb] = 0; dz[nb++] = 0; + dx[nb] = 0; dy[nb] = 1; dz[nb++] = 0; + if (is_high_connectivity) { + dx[nb] = 1; dy[nb] = 1; dz[nb++] = 0; + dx[nb] = 1; dy[nb] = -1; dz[nb++] = 0; + } + if (_depth>1) { // 3d version. + dx[nb] = 0; dy[nb] = 0; dz[nb++]=1; + if (is_high_connectivity) { + dx[nb] = 1; dy[nb] = 1; dz[nb++] = -1; + dx[nb] = 1; dy[nb] = 0; dz[nb++] = -1; + dx[nb] = 1; dy[nb] = -1; dz[nb++] = -1; + dx[nb] = 0; dy[nb] = 1; dz[nb++] = -1; + + dx[nb] = 0; dy[nb] = 1; dz[nb++] = 1; + dx[nb] = 1; dy[nb] = -1; dz[nb++] = 1; + dx[nb] = 1; dy[nb] = 0; dz[nb++] = 1; + dx[nb] = 1; dy[nb] = 1; dz[nb++] = 1; + } + } + return _label(nb,dx,dy,dz,tolerance); + } + + //! Label connected components \overloading. + /** + \param connectivity_mask Mask of the neighboring pixels. + \param tolerance Tolerance used to determine if two neighboring pixels belong to the same region. + **/ + template + CImg& label(const CImg& connectivity_mask, const Tfloat tolerance=0) { + return get_label(connectivity_mask,tolerance).move_to(*this); + } + + //! Label connected components \newinstance. + template + CImg get_label(const CImg& connectivity_mask, + const Tfloat tolerance=0) const { + int nb = 0; + cimg_for(connectivity_mask,ptr,t) if (*ptr) ++nb; + CImg dx(nb,1,1,1,0), dy(nb,1,1,1,0), dz(nb,1,1,1,0); + nb = 0; + cimg_forXYZ(connectivity_mask,x,y,z) if ((x || y || z) && + connectivity_mask(x,y,z)) { + dx[nb] = x; dy[nb] = y; dz[nb++] = z; + } + return _label(nb,dx,dy,dz,tolerance); + } + + CImg _label(const unsigned int nb, const int + *const dx, const int *const dy, const int *const dz, + const Tfloat tolerance) const { + CImg res(_width,_height,_depth,_spectrum); + cimg_forC(*this,c) { + CImg _res = res.get_shared_channel(c); + + // Init label numbers. + ulongT *ptr = _res.data(); + cimg_foroff(_res,p) *(ptr++) = p; + + // For each neighbour-direction, label. + for (unsigned int n = 0; n& _system_strescape() { +#define cimg_system_strescape(c,s) case c : if (p!=ptrs) CImg(ptrs,(unsigned int)(p-ptrs),1,1,1,false).\ + move_to(list); \ + CImg(s,(unsigned int)std::strlen(s),1,1,1,false).move_to(list); ptrs = p + 1; break + CImgList list; + const T *ptrs = _data; + cimg_for(*this,p,T) switch ((int)*p) { + cimg_system_strescape('\\',"\\\\"); + cimg_system_strescape('\"',"\\\""); + cimg_system_strescape('!',"\"\\!\""); + cimg_system_strescape('`',"\\`"); + cimg_system_strescape('$',"\\$"); + } + if (ptrs(ptrs,(unsigned int)(end()-ptrs),1,1,1,false).move_to(list); + return (list>'x').move_to(*this); + } + + //@} + //--------------------------------- + // + //! \name Color Base Management + //@{ + //--------------------------------- + + //! Return colormap \e "default", containing 256 colors entries in RGB. + /** + \return The following \c 256x1x1x3 colormap is returned: + \image html ref_colormap_default.jpg + **/ + static const CImg& default_LUT256() { + static CImg colormap; + cimg::mutex(8); + if (!colormap) { + colormap.assign(1,256,1,3); + for (unsigned int index = 0, r = 16; r<256; r+=32) + for (unsigned int g = 16; g<256; g+=32) + for (unsigned int b = 32; b<256; b+=64) { + colormap(0,index,0) = (Tuchar)r; + colormap(0,index,1) = (Tuchar)g; + colormap(0,index++,2) = (Tuchar)b; + } + } + cimg::mutex(8,0); + return colormap; + } + + //! Return colormap \e "HSV", containing 256 colors entries in RGB. + /** + \return The following \c 256x1x1x3 colormap is returned: + \image html ref_colormap_hsv.jpg + **/ + static const CImg& HSV_LUT256() { + static CImg colormap; + cimg::mutex(8); + if (!colormap) { + CImg tmp(1,256,1,3,1); + tmp.get_shared_channel(0).sequence(0,359); + colormap = tmp.HSVtoRGB(); + } + cimg::mutex(8,0); + return colormap; + } + + //! Return colormap \e "lines", containing 256 colors entries in RGB. + /** + \return The following \c 256x1x1x3 colormap is returned: + \image html ref_colormap_lines.jpg + **/ + static const CImg& lines_LUT256() { + static const unsigned char pal[] = { + 217,62,88,75,1,237,240,12,56,160,165,116,1,1,204,2,15,248,148,185,133,141,46,246,222,116,16,5,207,226, + 17,114,247,1,214,53,238,0,95,55,233,235,109,0,17,54,33,0,90,30,3,0,94,27,19,0,68,212,166,130,0,15,7,119, + 238,2,246,198,0,3,16,10,13,2,25,28,12,6,2,99,18,141,30,4,3,140,12,4,30,233,7,10,0,136,35,160,168,184,20, + 233,0,1,242,83,90,56,180,44,41,0,6,19,207,5,31,214,4,35,153,180,75,21,76,16,202,218,22,17,2,136,71,74, + 81,251,244,148,222,17,0,234,24,0,200,16,239,15,225,102,230,186,58,230,110,12,0,7,129,249,22,241,37,219, + 1,3,254,210,3,212,113,131,197,162,123,252,90,96,209,60,0,17,0,180,249,12,112,165,43,27,229,77,40,195,12, + 87,1,210,148,47,80,5,9,1,137,2,40,57,205,244,40,8,252,98,0,40,43,206,31,187,0,180,1,69,70,227,131,108,0, + 223,94,228,35,248,243,4,16,0,34,24,2,9,35,73,91,12,199,51,1,249,12,103,131,20,224,2,70,32, + 233,1,165,3,8,154,246,233,196,5,0,6,183,227,247,195,208,36,0,0,226,160,210,198,69,153,210,1,23,8,192,2,4, + 137,1,0,52,2,249,241,129,0,0,234,7,238,71,7,32,15,157,157,252,158,2,250,6,13,30,11,162,0,199,21,11,27,224, + 4,157,20,181,111,187,218,3,0,11,158,230,196,34,223,22,248,135,254,210,157,219,0,117,239,3,255,4,227,5,247, + 11,4,3,188,111,11,105,195,2,0,14,1,21,219,192,0,183,191,113,241,1,12,17,248,0,48,7,19,1,254,212,0,239,246, + 0,23,0,250,165,194,194,17,3,253,0,24,6,0,141,167,221,24,212,2,235,243,0,0,205,1,251,133,204,28,4,6,1,10, + 141,21,74,12,236,254,228,19,1,0,214,1,186,13,13,6,13,16,27,209,6,216,11,207,251,59,32,9,155,23,19,235,143, + 116,6,213,6,75,159,23,6,0,228,4,10,245,249,1,7,44,234,4,102,174,0,19,239,103,16,15,18,8,214,22,4,47,244, + 255,8,0,251,173,1,212,252,250,251,252,6,0,29,29,222,233,246,5,149,0,182,180,13,151,0,203,183,0,35,149,0, + 235,246,254,78,9,17,203,73,11,195,0,3,5,44,0,0,237,5,106,6,130,16,214,20,168,247,168,4,207,11,5,1,232,251, + 129,210,116,231,217,223,214,27,45,38,4,177,186,249,7,215,172,16,214,27,249,230,236,2,34,216,217,0,175,30, + 243,225,244,182,20,212,2,226,21,255,20,0,2,13,62,13,191,14,76,64,20,121,4,118,0,216,1,147,0,2,210,1,215, + 95,210,236,225,184,46,0,248,24,11,1,9,141,250,243,9,221,233,160,11,147,2,55,8,23,12,253,9,0,54,0,231,6,3, + 141,8,2,246,9,180,5,11,8,227,8,43,110,242,1,130,5,97,36,10,6,219,86,133,11,108,6,1,5,244,67,19,28,0,174, + 154,16,127,149,252,188,196,196,228,244,9,249,0,0,0,37,170,32,250,0,73,255,23,3,224,234,38,195,198,0,255,87, + 33,221,174,31,3,0,189,228,6,153,14,144,14,108,197,0,9,206,245,254,3,16,253,178,248,0,95,125,8,0,3,168,21, + 23,168,19,50,240,244,185,0,1,144,10,168,31,82,1,13 }; + static const CImg colormap(pal,1,256,1,3,false); + return colormap; + } + + //! Return colormap \e "hot", containing 256 colors entries in RGB. + /** + \return The following \c 256x1x1x3 colormap is returned: + \image html ref_colormap_hot.jpg + **/ + static const CImg& hot_LUT256() { + static CImg colormap; + cimg::mutex(8); + if (!colormap) { + colormap.assign(1,4,1,3,(T)0); + colormap[1] = colormap[2] = colormap[3] = colormap[6] = colormap[7] = colormap[11] = 255; + colormap.resize(1,256,1,3,3); + } + cimg::mutex(8,0); + return colormap; + } + + //! Return colormap \e "cool", containing 256 colors entries in RGB. + /** + \return The following \c 256x1x1x3 colormap is returned: + \image html ref_colormap_cool.jpg + **/ + static const CImg& cool_LUT256() { + static CImg colormap; + cimg::mutex(8); + if (!colormap) colormap.assign(1,2,1,3).fill((T)0,(T)255,(T)255,(T)0,(T)255,(T)255).resize(1,256,1,3,3); + cimg::mutex(8,0); + return colormap; + } + + //! Return colormap \e "jet", containing 256 colors entries in RGB. + /** + \return The following \c 256x1x1x3 colormap is returned: + \image html ref_colormap_jet.jpg + **/ + static const CImg& jet_LUT256() { + static CImg colormap; + cimg::mutex(8); + if (!colormap) { + colormap.assign(1,4,1,3,(T)0); + colormap[2] = colormap[3] = colormap[5] = colormap[6] = colormap[8] = colormap[9] = 255; + colormap.resize(1,256,1,3,3); + } + cimg::mutex(8,0); + return colormap; + } + + //! Return colormap \e "flag", containing 256 colors entries in RGB. + /** + \return The following \c 256x1x1x3 colormap is returned: + \image html ref_colormap_flag.jpg + **/ + static const CImg& flag_LUT256() { + static CImg colormap; + cimg::mutex(8); + if (!colormap) { + colormap.assign(1,4,1,3,(T)0); + colormap[0] = colormap[1] = colormap[5] = colormap[9] = colormap[10] = 255; + colormap.resize(1,256,1,3,0,2); + } + cimg::mutex(8,0); + return colormap; + } + + //! Return colormap \e "cube", containing 256 colors entries in RGB. + /** + \return The following \c 256x1x1x3 colormap is returned: + \image html ref_colormap_cube.jpg + **/ + static const CImg& cube_LUT256() { + static CImg colormap; + cimg::mutex(8); + if (!colormap) { + colormap.assign(1,8,1,3,(T)0); + colormap[1] = colormap[3] = colormap[5] = colormap[7] = + colormap[10] = colormap[11] = colormap[12] = colormap[13] = + colormap[20] = colormap[21] = colormap[22] = colormap[23] = 255; + colormap.resize(1,256,1,3,3); + } + cimg::mutex(8,0); + return colormap; + } + + //! Convert pixel values from sRGB to RGB color spaces. + CImg& sRGBtoRGB() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=32)) + cimg_rof(*this,ptr,T) { + const Tfloat + sval = (Tfloat)*ptr/255, + val = (Tfloat)(sval<=0.04045f?sval/12.92f:std::pow((sval + 0.055f)/(1.055f),2.4f)); + *ptr = (T)cimg::cut(val*255,0,255); + } + return *this; + } + + //! Convert pixel values from sRGB to RGB color spaces \newinstance. + CImg get_sRGBtoRGB() const { + return CImg(*this,false).sRGBtoRGB(); + } + + //! Convert pixel values from RGB to sRGB color spaces. + CImg& RGBtosRGB() { + if (is_empty()) return *this; + cimg_pragma_openmp(parallel for cimg_openmp_if(size()>=32)) + cimg_rof(*this,ptr,T) { + const Tfloat + val = (Tfloat)*ptr/255, + sval = (Tfloat)(val<=0.0031308f?val*12.92f:1.055f*std::pow(val,0.416667f) - 0.055f); + *ptr = (T)cimg::cut(sval*255,0,255); + } + return *this; + } + + //! Convert pixel values from RGB to sRGB color spaces \newinstance. + CImg get_RGBtosRGB() const { + return CImg(*this,false).RGBtosRGB(); + } + + //! Convert pixel values from RGB to HSI color spaces. + CImg& RGBtoHSI() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "RGBtoHSI(): Instance is not a RGB image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=256)) + for (ulongT N = 0; N0) H = B<=G?theta:360 - theta; + if (sum>0) S = 1 - 3*m/sum; + I = sum/(3*255); + p1[N] = (T)cimg::cut(H,0,360); + p2[N] = (T)cimg::cut(S,0,1); + p3[N] = (T)cimg::cut(I,0,1); + } + return *this; + } + + //! Convert pixel values from RGB to HSI color spaces \newinstance. + CImg get_RGBtoHSI() const { + return CImg(*this,false).RGBtoHSI(); + } + + //! Convert pixel values from HSI to RGB color spaces. + CImg& HSItoRGB() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "HSItoRGB(): Instance is not a HSI image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=256)) + for (ulongT N = 0; N get_HSItoRGB() const { + return CImg< Tuchar>(*this,false).HSItoRGB(); + } + + //! Convert pixel values from RGB to HSL color spaces. + CImg& RGBtoHSL() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "RGBtoHSL(): Instance is not a RGB image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=256)) + for (ulongT N = 0; N=6) H-=6; + H*=60; + S = 2*L<=1?(M - m)/(M + m):(M - m)/(2*255 - M - m); + } + p1[N] = (T)cimg::cut(H,0,360); + p2[N] = (T)cimg::cut(S,0,1); + p3[N] = (T)cimg::cut(L,0,1); + } + return *this; + } + + //! Convert pixel values from RGB to HSL color spaces \newinstance. + CImg get_RGBtoHSL() const { + return CImg(*this,false).RGBtoHSL(); + } + + //! Convert pixel values from HSL to RGB color spaces. + CImg& HSLtoRGB() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "HSLtoRGB(): Instance is not a HSL image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=256)) + for (ulongT N = 0; N1?tr - 1:(Tfloat)tr, + ntg = tg<0?tg + 1:tg>1?tg - 1:(Tfloat)tg, + ntb = tb<0?tb + 1:tb>1?tb - 1:(Tfloat)tb, + R = 6*ntr<1?p + (q - p)*6*ntr:2*ntr<1?q:3*ntr<2?p + (q - p)*6*(2.0f/3 - ntr):p, + G = 6*ntg<1?p + (q - p)*6*ntg:2*ntg<1?q:3*ntg<2?p + (q - p)*6*(2.0f/3 - ntg):p, + B = 6*ntb<1?p + (q - p)*6*ntb:2*ntb<1?q:3*ntb<2?p + (q - p)*6*(2.0f/3 - ntb):p; + p1[N] = (T)cimg::cut(255*R,0,255); + p2[N] = (T)cimg::cut(255*G,0,255); + p3[N] = (T)cimg::cut(255*B,0,255); + } + return *this; + } + + //! Convert pixel values from HSL to RGB color spaces \newinstance. + CImg get_HSLtoRGB() const { + return CImg(*this,false).HSLtoRGB(); + } + + //! Convert pixel values from RGB to HSV color spaces. + CImg& RGBtoHSV() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "RGBtoHSV(): Instance is not a RGB image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=256)) + for (ulongT N = 0; N=6) H-=6; + H*=60; + S = (M - m)/M; + } + p1[N] = (T)cimg::cut(H,0,360); + p2[N] = (T)cimg::cut(S,0,1); + p3[N] = (T)cimg::cut(M/255,0,1); + } + return *this; + } + + //! Convert pixel values from RGB to HSV color spaces \newinstance. + CImg get_RGBtoHSV() const { + return CImg(*this,false).RGBtoHSV(); + } + + //! Convert pixel values from HSV to RGB color spaces. + CImg& HSVtoRGB() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "HSVtoRGB(): Instance is not a HSV image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=256)) + for (ulongT N = 0; N get_HSVtoRGB() const { + return CImg(*this,false).HSVtoRGB(); + } + + //! Convert pixel values from RGB to YCbCr color spaces. + CImg& RGBtoYCbCr() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "RGBtoYCbCr(): Instance is not a RGB image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=512)) + for (ulongT N = 0; N get_RGBtoYCbCr() const { + return CImg(*this,false).RGBtoYCbCr(); + } + + //! Convert pixel values from RGB to YCbCr color spaces. + CImg& YCbCrtoRGB() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "YCbCrtoRGB(): Instance is not a YCbCr image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=512)) + for (ulongT N = 0; N get_YCbCrtoRGB() const { + return CImg(*this,false).YCbCrtoRGB(); + } + + //! Convert pixel values from RGB to YUV color spaces. + CImg& RGBtoYUV() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "RGBtoYUV(): Instance is not a RGB image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=16384)) + for (ulongT N = 0; N get_RGBtoYUV() const { + return CImg(*this,false).RGBtoYUV(); + } + + //! Convert pixel values from YUV to RGB color spaces. + CImg& YUVtoRGB() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "YUVtoRGB(): Instance is not a YUV image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=16384)) + for (ulongT N = 0; N get_YUVtoRGB() const { + return CImg< Tuchar>(*this,false).YUVtoRGB(); + } + + //! Convert pixel values from RGB to CMY color spaces. + CImg& RGBtoCMY() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "RGBtoCMY(): Instance is not a RGB image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=2048)) + for (ulongT N = 0; N get_RGBtoCMY() const { + return CImg(*this,false).RGBtoCMY(); + } + + //! Convert pixel values from CMY to RGB color spaces. + CImg& CMYtoRGB() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "CMYtoRGB(): Instance is not a CMY image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=2048)) + for (ulongT N = 0; N get_CMYtoRGB() const { + return CImg(*this,false).CMYtoRGB(); + } + + //! Convert pixel values from CMY to CMYK color spaces. + CImg& CMYtoCMYK() { + return get_CMYtoCMYK().move_to(*this); + } + + //! Convert pixel values from CMY to CMYK color spaces \newinstance. + CImg get_CMYtoCMYK() const { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "CMYtoCMYK(): Instance is not a CMY image.", + cimg_instance); + + CImg res(_width,_height,_depth,4); + const T *ps1 = data(0,0,0,0), *ps2 = data(0,0,0,1), *ps3 = data(0,0,0,2); + Tfloat *pd1 = res.data(0,0,0,0), *pd2 = res.data(0,0,0,1), *pd3 = res.data(0,0,0,2), *pd4 = res.data(0,0,0,3); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=1024)) + for (ulongT N = 0; N=255) C = M = Y = 0; + else { const Tfloat K1 = 255 - K; C = 255*(C - K)/K1; M = 255*(M - K)/K1; Y = 255*(Y - K)/K1; } + pd1[N] = (Tfloat)cimg::cut(C,0,255), + pd2[N] = (Tfloat)cimg::cut(M,0,255), + pd3[N] = (Tfloat)cimg::cut(Y,0,255), + pd4[N] = (Tfloat)cimg::cut(K,0,255); + } + return res; + } + + //! Convert pixel values from CMYK to CMY color spaces. + CImg& CMYKtoCMY() { + return get_CMYKtoCMY().move_to(*this); + } + + //! Convert pixel values from CMYK to CMY color spaces \newinstance. + CImg get_CMYKtoCMY() const { + if (_spectrum!=4) + throw CImgInstanceException(_cimg_instance + "CMYKtoCMY(): Instance is not a CMYK image.", + cimg_instance); + + CImg res(_width,_height,_depth,3); + const T *ps1 = data(0,0,0,0), *ps2 = data(0,0,0,1), *ps3 = data(0,0,0,2), *ps4 = data(0,0,0,3); + Tfloat *pd1 = res.data(0,0,0,0), *pd2 = res.data(0,0,0,1), *pd3 = res.data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=1024)) + for (ulongT N = 0; N& RGBtoXYZ(const bool use_D65=true) { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "RGBtoXYZ(): Instance is not a RGB image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=2048)) + for (ulongT N = 0; N get_RGBtoXYZ(const bool use_D65=true) const { + return CImg(*this,false).RGBtoXYZ(use_D65); + } + + //! Convert pixel values from XYZ to RGB color spaces. + /** + \param use_D65 Tell to use the D65 illuminant (D50 otherwise). + **/ + CImg& XYZtoRGB(const bool use_D65=true) { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "XYZtoRGB(): Instance is not a XYZ image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=2048)) + for (ulongT N = 0; N get_XYZtoRGB(const bool use_D65=true) const { + return CImg(*this,false).XYZtoRGB(use_D65); + } + + //! Convert pixel values from XYZ to Lab color spaces. + CImg& XYZtoLab(const bool use_D65=true) { +#define _cimg_Labf(x) (24389*(x)>216?cimg::cbrt(x):(24389*(x)/27 + 16)/116) + + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "XYZtoLab(): Instance is not a XYZ image.", + cimg_instance); + const CImg white = CImg(1,1,1,3,255).RGBtoXYZ(use_D65); + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=128)) + for (ulongT N = 0; N get_XYZtoLab(const bool use_D65=true) const { + return CImg(*this,false).XYZtoLab(use_D65); + } + + //! Convert pixel values from Lab to XYZ color spaces. + CImg& LabtoXYZ(const bool use_D65=true) { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "LabtoXYZ(): Instance is not a Lab image.", + cimg_instance); + const CImg white = CImg(1,1,1,3,255).RGBtoXYZ(use_D65); + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=128)) + for (ulongT N = 0; N216?cX*cX*cX:(116*cX - 16)*27/24389), + Y = (Tfloat)(27*L>216?cY*cY*cY:27*L/24389), + Z = (Tfloat)(24389*cZ>216?cZ*cZ*cZ:(116*cZ - 16)*27/24389); + p1[N] = (T)(X*white[0]); + p2[N] = (T)(Y*white[1]); + p3[N] = (T)(Z*white[2]); + } + return *this; + } + + //! Convert pixel values from Lab to XYZ color spaces \newinstance. + CImg get_LabtoXYZ(const bool use_D65=true) const { + return CImg(*this,false).LabtoXYZ(use_D65); + } + + //! Convert pixel values from XYZ to xyY color spaces. + CImg& XYZtoxyY() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "XYZtoxyY(): Instance is not a XYZ image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=4096)) + for (ulongT N = 0; N0?sum:1; + p1[N] = (T)(X/nsum); + p2[N] = (T)(Y/nsum); + p3[N] = (T)Y; + } + return *this; + } + + //! Convert pixel values from XYZ to xyY color spaces \newinstance. + CImg get_XYZtoxyY() const { + return CImg(*this,false).XYZtoxyY(); + } + + //! Convert pixel values from xyY pixels to XYZ color spaces. + CImg& xyYtoXYZ() { + if (_spectrum!=3) + throw CImgInstanceException(_cimg_instance + "xyYtoXYZ(): Instance is not a xyY image.", + cimg_instance); + + T *p1 = data(0,0,0,0), *p2 = data(0,0,0,1), *p3 = data(0,0,0,2); + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for cimg_openmp_if(whd>=4096)) + for (ulongT N = 0; N0?py:1; + p1[N] = (T)(px*Y/ny); + p2[N] = (T)Y; + p3[N] = (T)((1 - px - py)*Y/ny); + } + return *this; + } + + //! Convert pixel values from xyY pixels to XYZ color spaces \newinstance. + CImg get_xyYtoXYZ() const { + return CImg(*this,false).xyYtoXYZ(); + } + + //! Convert pixel values from RGB to Lab color spaces. + CImg& RGBtoLab(const bool use_D65=true) { + return RGBtoXYZ(use_D65).XYZtoLab(use_D65); + } + + //! Convert pixel values from RGB to Lab color spaces \newinstance. + CImg get_RGBtoLab(const bool use_D65=true) const { + return CImg(*this,false).RGBtoLab(use_D65); + } + + //! Convert pixel values from Lab to RGB color spaces. + CImg& LabtoRGB(const bool use_D65=true) { + return LabtoXYZ().XYZtoRGB(use_D65); + } + + //! Convert pixel values from Lab to RGB color spaces \newinstance. + CImg get_LabtoRGB(const bool use_D65=true) const { + return CImg(*this,false).LabtoRGB(use_D65); + } + + //! Convert pixel values from RGB to xyY color spaces. + CImg& RGBtoxyY(const bool use_D65=true) { + return RGBtoXYZ(use_D65).XYZtoxyY(); + } + + //! Convert pixel values from RGB to xyY color spaces \newinstance. + CImg get_RGBtoxyY(const bool use_D65=true) const { + return CImg(*this,false).RGBtoxyY(use_D65); + } + + //! Convert pixel values from xyY to RGB color spaces. + CImg& xyYtoRGB(const bool use_D65=true) { + return xyYtoXYZ().XYZtoRGB(use_D65); + } + + //! Convert pixel values from xyY to RGB color spaces \newinstance. + CImg get_xyYtoRGB(const bool use_D65=true) const { + return CImg(*this,false).xyYtoRGB(use_D65); + } + + //! Convert pixel values from RGB to CMYK color spaces. + CImg& RGBtoCMYK() { + return RGBtoCMY().CMYtoCMYK(); + } + + //! Convert pixel values from RGB to CMYK color spaces \newinstance. + CImg get_RGBtoCMYK() const { + return CImg(*this,false).RGBtoCMYK(); + } + + //! Convert pixel values from CMYK to RGB color spaces. + CImg& CMYKtoRGB() { + return CMYKtoCMY().CMYtoRGB(); + } + + //! Convert pixel values from CMYK to RGB color spaces \newinstance. + CImg get_CMYKtoRGB() const { + return CImg(*this,false).CMYKtoRGB(); + } + + //@} + //------------------------------------------ + // + //! \name Geometric / Spatial Manipulation + //@{ + //------------------------------------------ + + static float _cimg_lanczos(const float x) { + if (x<=-2 || x>=2) return 0; + const float a = (float)cimg::PI*x, b = 0.5f*a; + return (float)(x?std::sin(a)*std::sin(b)/(a*b):1); + } + + //! Resize image to new dimensions. + /** + \param size_x Number of columns (new size along the X-axis). + \param size_y Number of rows (new size along the Y-axis). + \param size_z Number of slices (new size along the Z-axis). + \param size_c Number of vector-channels (new size along the C-axis). + \param interpolation_type Method of interpolation: + - -1 = no interpolation: raw memory resizing. + - 0 = no interpolation: additional space is filled according to \p boundary_conditions. + - 1 = nearest-neighbor interpolation. + - 2 = moving average interpolation. + - 3 = linear interpolation. + - 4 = grid interpolation. + - 5 = cubic interpolation. + - 6 = lanczos interpolation. + \param boundary_conditions Type of boundary conditions used if necessary. + \param centering_x Set centering type (only if \p interpolation_type=0). + \param centering_y Set centering type (only if \p interpolation_type=0). + \param centering_z Set centering type (only if \p interpolation_type=0). + \param centering_c Set centering type (only if \p interpolation_type=0). + \note If pd[x,y,z,v]<0, it corresponds to a percentage of the original size (the default value is -100). + **/ + CImg& resize(const int size_x, const int size_y=-100, + const int size_z=-100, const int size_c=-100, + const int interpolation_type=1, const unsigned int boundary_conditions=0, + const float centering_x = 0, const float centering_y = 0, + const float centering_z = 0, const float centering_c = 0) { + if (!size_x || !size_y || !size_z || !size_c) return assign(); + const unsigned int + _sx = (unsigned int)(size_x<0?-size_x*width()/100:size_x), + _sy = (unsigned int)(size_y<0?-size_y*height()/100:size_y), + _sz = (unsigned int)(size_z<0?-size_z*depth()/100:size_z), + _sc = (unsigned int)(size_c<0?-size_c*spectrum()/100:size_c), + sx = _sx?_sx:1, sy = _sy?_sy:1, sz = _sz?_sz:1, sc = _sc?_sc:1; + if (sx==_width && sy==_height && sz==_depth && sc==_spectrum) return *this; + if (is_empty()) return assign(sx,sy,sz,sc,(T)0); + if (interpolation_type==-1 && sx*sy*sz*sc==size()) { + _width = sx; _height = sy; _depth = sz; _spectrum = sc; + return *this; + } + return get_resize(sx,sy,sz,sc,interpolation_type,boundary_conditions, + centering_x,centering_y,centering_z,centering_c).move_to(*this); + } + + //! Resize image to new dimensions \newinstance. + CImg get_resize(const int size_x, const int size_y = -100, + const int size_z = -100, const int size_c = -100, + const int interpolation_type=1, const unsigned int boundary_conditions=0, + const float centering_x = 0, const float centering_y = 0, + const float centering_z = 0, const float centering_c = 0) const { + if (centering_x<0 || centering_x>1 || centering_y<0 || centering_y>1 || + centering_z<0 || centering_z>1 || centering_c<0 || centering_c>1) + throw CImgArgumentException(_cimg_instance + "resize(): Specified centering arguments (%g,%g,%g,%g) are outside range [0,1].", + cimg_instance, + centering_x,centering_y,centering_z,centering_c); + + if (!size_x || !size_y || !size_z || !size_c) return CImg(); + const unsigned int + sx = std::max(1U,(unsigned int)(size_x>=0?size_x:-size_x*width()/100)), + sy = std::max(1U,(unsigned int)(size_y>=0?size_y:-size_y*height()/100)), + sz = std::max(1U,(unsigned int)(size_z>=0?size_z:-size_z*depth()/100)), + sc = std::max(1U,(unsigned int)(size_c>=0?size_c:-size_c*spectrum()/100)); + if (sx==_width && sy==_height && sz==_depth && sc==_spectrum) return +*this; + if (is_empty()) return CImg(sx,sy,sz,sc,(T)0); + CImg res; + switch (interpolation_type) { + + // Raw resizing. + // + case -1 : + std::memcpy(res.assign(sx,sy,sz,sc,(T)0)._data,_data,sizeof(T)*std::min(size(),(ulongT)sx*sy*sz*sc)); + break; + + // No interpolation. + // + case 0 : { + const int + xc = (int)(centering_x*((int)sx - width())), + yc = (int)(centering_y*((int)sy - height())), + zc = (int)(centering_z*((int)sz - depth())), + cc = (int)(centering_c*((int)sc - spectrum())); + + switch (boundary_conditions) { + case 3 : { // Mirror + res.assign(sx,sy,sz,sc); + const int w2 = 2*width(), h2 = 2*height(), d2 = 2*depth(), s2 = 2*spectrum(); + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=65536)) + cimg_forXYZC(res,x,y,z,c) { + const int + mx = cimg::mod(x - xc,w2), my = cimg::mod(y - yc,h2), + mz = cimg::mod(z - zc,d2), mc = cimg::mod(c - cc,s2); + res(x,y,z,c) = (*this)(mx=65536)) + for (int c = c0; c<(int)sc; c+=dc) + for (int z = z0; z<(int)sz; z+=dz) + for (int y = y0; y<(int)sy; y+=dy) + for (int x = x0; x<(int)sx; x+=dx) + res.draw_image(x,y,z,c,*this); + } break; + case 1 : { // Neumann + res.assign(sx,sy,sz,sc).draw_image(xc,yc,zc,cc,*this); + CImg sprite; + if (xc>0) { // X-backward + res.get_crop(xc,yc,zc,cc,xc,yc + height() - 1,zc + depth() - 1,cc + spectrum() - 1).move_to(sprite); + for (int x = xc - 1; x>=0; --x) res.draw_image(x,yc,zc,cc,sprite); + } + if (xc + width()<(int)sx) { // X-forward + res.get_crop(xc + width() - 1,yc,zc,cc,xc + width() - 1,yc + height() - 1, + zc + depth() - 1,cc + spectrum() - 1).move_to(sprite); + for (int x = xc + width(); x<(int)sx; ++x) res.draw_image(x,yc,zc,cc,sprite); + } + if (yc>0) { // Y-backward + res.get_crop(0,yc,zc,cc,sx - 1,yc,zc + depth() - 1,cc + spectrum() - 1).move_to(sprite); + for (int y = yc - 1; y>=0; --y) res.draw_image(0,y,zc,cc,sprite); + } + if (yc + height()<(int)sy) { // Y-forward + res.get_crop(0,yc + height() - 1,zc,cc,sx - 1,yc + height() - 1, + zc + depth() - 1,cc + spectrum() - 1).move_to(sprite); + for (int y = yc + height(); y<(int)sy; ++y) res.draw_image(0,y,zc,cc,sprite); + } + if (zc>0) { // Z-backward + res.get_crop(0,0,zc,cc,sx - 1,sy - 1,zc,cc + spectrum() - 1).move_to(sprite); + for (int z = zc - 1; z>=0; --z) res.draw_image(0,0,z,cc,sprite); + } + if (zc + depth()<(int)sz) { // Z-forward + res.get_crop(0,0,zc +depth() - 1,cc,sx - 1,sy - 1,zc + depth() - 1,cc + spectrum() - 1).move_to(sprite); + for (int z = zc + depth(); z<(int)sz; ++z) res.draw_image(0,0,z,cc,sprite); + } + if (cc>0) { // C-backward + res.get_crop(0,0,0,cc,sx - 1,sy - 1,sz - 1,cc).move_to(sprite); + for (int c = cc - 1; c>=0; --c) res.draw_image(0,0,0,c,sprite); + } + if (cc + spectrum()<(int)sc) { // C-forward + res.get_crop(0,0,0,cc + spectrum() - 1,sx - 1,sy - 1,sz - 1,cc + spectrum() - 1).move_to(sprite); + for (int c = cc + spectrum(); c<(int)sc; ++c) res.draw_image(0,0,0,c,sprite); + } + } break; + default : // Dirichlet + res.assign(sx,sy,sz,sc,(T)0).draw_image(xc,yc,zc,cc,*this); + } + break; + } break; + + // Nearest neighbor interpolation. + // + case 1 : { + res.assign(sx,sy,sz,sc); + CImg off_x(sx), off_y(sy + 1), off_z(sz + 1), off_c(sc + 1); + const ulongT + wh = (ulongT)_width*_height, + whd = (ulongT)_width*_height*_depth, + sxy = (ulongT)sx*sy, + sxyz = (ulongT)sx*sy*sz; + if (sx==_width) off_x.fill(1); + else { + ulongT *poff_x = off_x._data, curr = 0; + cimg_forX(res,x) { + const ulongT old = curr; + curr = (ulongT)((x + 1.0)*_width/sx); + *(poff_x++) = curr - old; + } + } + if (sy==_height) off_y.fill(_width); + else { + ulongT *poff_y = off_y._data, curr = 0; + cimg_forY(res,y) { + const ulongT old = curr; + curr = (ulongT)((y + 1.0)*_height/sy); + *(poff_y++) = _width*(curr - old); + } + *poff_y = 0; + } + if (sz==_depth) off_z.fill(wh); + else { + ulongT *poff_z = off_z._data, curr = 0; + cimg_forZ(res,z) { + const ulongT old = curr; + curr = (ulongT)((z + 1.0)*_depth/sz); + *(poff_z++) = wh*(curr - old); + } + *poff_z = 0; + } + if (sc==_spectrum) off_c.fill(whd); + else { + ulongT *poff_c = off_c._data, curr = 0; + cimg_forC(res,c) { + const ulongT old = curr; + curr = (ulongT)((c + 1.0)*_spectrum/sc); + *(poff_c++) = whd*(curr - old); + } + *poff_c = 0; + } + + T *ptrd = res._data; + const T* ptrc = _data; + const ulongT *poff_c = off_c._data; + for (unsigned int c = 0; c tmp(sx,_height,_depth,_spectrum,0); + for (unsigned int a = _width*sx, b = _width, c = sx, s = 0, t = 0; a; ) { + const unsigned int d = std::min(b,c); + a-=d; b-=d; c-=d; + cimg_forYZC(tmp,y,z,v) tmp(t,y,z,v)+=(Tfloat)(*this)(s,y,z,v)*d; + if (!b) { + cimg_forYZC(tmp,y,z,v) tmp(t,y,z,v)/=_width; + ++t; + b = _width; + } + if (!c) { ++s; c = sx; } + } + tmp.move_to(res); + instance_first = false; + } + if (sy!=_height) { + CImg tmp(sx,sy,_depth,_spectrum,0); + for (unsigned int a = _height*sy, b = _height, c = sy, s = 0, t = 0; a; ) { + const unsigned int d = std::min(b,c); + a-=d; b-=d; c-=d; + if (instance_first) + cimg_forXZC(tmp,x,z,v) tmp(x,t,z,v)+=(Tfloat)(*this)(x,s,z,v)*d; + else + cimg_forXZC(tmp,x,z,v) tmp(x,t,z,v)+=(Tfloat)res(x,s,z,v)*d; + if (!b) { + cimg_forXZC(tmp,x,z,v) tmp(x,t,z,v)/=_height; + ++t; + b = _height; + } + if (!c) { ++s; c = sy; } + } + tmp.move_to(res); + instance_first = false; + } + if (sz!=_depth) { + CImg tmp(sx,sy,sz,_spectrum,0); + for (unsigned int a = _depth*sz, b = _depth, c = sz, s = 0, t = 0; a; ) { + const unsigned int d = std::min(b,c); + a-=d; b-=d; c-=d; + if (instance_first) + cimg_forXYC(tmp,x,y,v) tmp(x,y,t,v)+=(Tfloat)(*this)(x,y,s,v)*d; + else + cimg_forXYC(tmp,x,y,v) tmp(x,y,t,v)+=(Tfloat)res(x,y,s,v)*d; + if (!b) { + cimg_forXYC(tmp,x,y,v) tmp(x,y,t,v)/=_depth; + ++t; + b = _depth; + } + if (!c) { ++s; c = sz; } + } + tmp.move_to(res); + instance_first = false; + } + if (sc!=_spectrum) { + CImg tmp(sx,sy,sz,sc,0); + for (unsigned int a = _spectrum*sc, b = _spectrum, c = sc, s = 0, t = 0; a; ) { + const unsigned int d = std::min(b,c); + a-=d; b-=d; c-=d; + if (instance_first) + cimg_forXYZ(tmp,x,y,z) tmp(x,y,z,t)+=(Tfloat)(*this)(x,y,z,s)*d; + else + cimg_forXYZ(tmp,x,y,z) tmp(x,y,z,t)+=(Tfloat)res(x,y,z,s)*d; + if (!b) { + cimg_forXYZ(tmp,x,y,z) tmp(x,y,z,t)/=_spectrum; + ++t; + b = _spectrum; + } + if (!c) { ++s; c = sc; } + } + tmp.move_to(res); + instance_first = false; + } + } break; + + // Linear interpolation. + // + case 3 : { + CImg off(cimg::max(sx,sy,sz,sc)); + CImg foff(off._width); + CImg resx, resy, resz, resc; + double curr, old; + + if (sx!=_width) { + if (_width==1) get_resize(sx,_height,_depth,_spectrum,1).move_to(resx); + else if (_width>sx) get_resize(sx,_height,_depth,_spectrum,2).move_to(resx); + else { + const double fx = (!boundary_conditions && sx>_width)?(sx>1?(_width - 1.0)/(sx - 1):0): + (double)_width/sx; + resx.assign(sx,_height,_depth,_spectrum); + curr = old = 0; + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forX(resx,x) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(width() - 1.0,curr + fx); + *(poff++) = (unsigned int)curr - (unsigned int)old; + } + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(resx.size()>=65536)) + cimg_forYZC(resx,y,z,c) { + const T *ptrs = data(0,y,z,c), *const ptrsmax = ptrs + _width - 1; + T *ptrd = resx.data(0,y,z,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forX(resx,x) { + const double alpha = *(pfoff++); + const T val1 = *ptrs, val2 = ptrssy) resx.get_resize(sx,sy,_depth,_spectrum,2).move_to(resy); + else { + const double fy = (!boundary_conditions && sy>_height)?(sy>1?(_height - 1.0)/(sy - 1):0): + (double)_height/sy; + resy.assign(sx,sy,_depth,_spectrum); + curr = old = 0; + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forY(resy,y) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(height() - 1.0,curr + fy); + *(poff++) = sx*((unsigned int)curr - (unsigned int)old); + } + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(resy.size()>=65536)) + cimg_forXZC(resy,x,z,c) { + const T *ptrs = resx.data(x,0,z,c), *const ptrsmax = ptrs + (_height - 1)*sx; + T *ptrd = resy.data(x,0,z,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forY(resy,y) { + const double alpha = *(pfoff++); + const T val1 = *ptrs, val2 = ptrssz) resy.get_resize(sx,sy,sz,_spectrum,2).move_to(resz); + else { + const double fz = (!boundary_conditions && sz>_depth)?(sz>1?(_depth - 1.0)/(sz - 1):0): + (double)_depth/sz; + const unsigned int sxy = sx*sy; + resz.assign(sx,sy,sz,_spectrum); + curr = old = 0; + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forZ(resz,z) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(depth() - 1.0,curr + fz); + *(poff++) = sxy*((unsigned int)curr - (unsigned int)old); + } + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(resz.size()>=65536)) + cimg_forXYC(resz,x,y,c) { + const T *ptrs = resy.data(x,y,0,c), *const ptrsmax = ptrs + (_depth - 1)*sxy; + T *ptrd = resz.data(x,y,0,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forZ(resz,z) { + const double alpha = *(pfoff++); + const T val1 = *ptrs, val2 = ptrssc) resz.get_resize(sx,sy,sz,sc,2).move_to(resc); + else { + const double fc = (!boundary_conditions && sc>_spectrum)?(sc>1?(_spectrum - 1.0)/(sc - 1):0): + (double)_spectrum/sc; + const unsigned int sxyz = sx*sy*sz; + resc.assign(sx,sy,sz,sc); + curr = old = 0; + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forC(resc,c) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(spectrum() - 1.0,curr + fc); + *(poff++) = sxyz*((unsigned int)curr - (unsigned int)old); + } + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(resc.size()>=65536)) + cimg_forXYZ(resc,x,y,z) { + const T *ptrs = resz.data(x,y,z,0), *const ptrsmax = ptrs + (_spectrum - 1)*sxyz; + T *ptrd = resc.data(x,y,z,0); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forC(resc,c) { + const double alpha = *(pfoff++); + const T val1 = *ptrs, val2 = ptrs resx, resy, resz, resc; + if (sx!=_width) { + if (sx<_width) get_resize(sx,_height,_depth,_spectrum,1).move_to(resx); + else { + resx.assign(sx,_height,_depth,_spectrum,(T)0); + const int dx = (int)(2*sx), dy = 2*width(); + int err = (int)(dy + centering_x*(sx*dy/width() - dy)), xs = 0; + cimg_forX(resx,x) if ((err-=dy)<=0) { + cimg_forYZC(resx,y,z,c) resx(x,y,z,c) = (*this)(xs,y,z,c); + ++xs; + err+=dx; + } + } + } else resx.assign(*this,true); + + if (sy!=_height) { + if (sy<_height) resx.get_resize(sx,sy,_depth,_spectrum,1).move_to(resy); + else { + resy.assign(sx,sy,_depth,_spectrum,(T)0); + const int dx = (int)(2*sy), dy = 2*height(); + int err = (int)(dy + centering_y*(sy*dy/height() - dy)), ys = 0; + cimg_forY(resy,y) if ((err-=dy)<=0) { + cimg_forXZC(resy,x,z,c) resy(x,y,z,c) = resx(x,ys,z,c); + ++ys; + err+=dx; + } + } + resx.assign(); + } else resy.assign(resx,true); + + if (sz!=_depth) { + if (sz<_depth) resy.get_resize(sx,sy,sz,_spectrum,1).move_to(resz); + else { + resz.assign(sx,sy,sz,_spectrum,(T)0); + const int dx = (int)(2*sz), dy = 2*depth(); + int err = (int)(dy + centering_z*(sz*dy/depth() - dy)), zs = 0; + cimg_forZ(resz,z) if ((err-=dy)<=0) { + cimg_forXYC(resz,x,y,c) resz(x,y,z,c) = resy(x,y,zs,c); + ++zs; + err+=dx; + } + } + resy.assign(); + } else resz.assign(resy,true); + + if (sc!=_spectrum) { + if (sc<_spectrum) resz.get_resize(sx,sy,sz,sc,1).move_to(resc); + else { + resc.assign(sx,sy,sz,sc,(T)0); + const int dx = (int)(2*sc), dy = 2*spectrum(); + int err = (int)(dy + centering_c*(sc*dy/spectrum() - dy)), cs = 0; + cimg_forC(resc,c) if ((err-=dy)<=0) { + cimg_forXYZ(resc,x,y,z) resc(x,y,z,c) = resz(x,y,z,cs); + ++cs; + err+=dx; + } + } + resz.assign(); + } else resc.assign(resz,true); + + return resc._is_shared?(resz._is_shared?(resy._is_shared?(resx._is_shared?(+(*this)):resx):resy):resz):resc; + } break; + + // Cubic interpolation. + // + case 5 : { + const Tfloat vmin = (Tfloat)cimg::type::min(), vmax = (Tfloat)cimg::type::max(); + CImg off(cimg::max(sx,sy,sz,sc)); + CImg foff(off._width); + CImg resx, resy, resz, resc; + double curr, old; + + if (sx!=_width) { + if (_width==1) get_resize(sx,_height,_depth,_spectrum,1).move_to(resx); + else { + if (_width>sx) get_resize(sx,_height,_depth,_spectrum,2).move_to(resx); + else { + const double fx = (!boundary_conditions && sx>_width)?(sx>1?(_width - 1.0)/(sx - 1):0): + (double)_width/sx; + resx.assign(sx,_height,_depth,_spectrum); + curr = old = 0; + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forX(resx,x) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(width() - 1.0,curr + fx); + *(poff++) = (unsigned int)curr - (unsigned int)old; + } + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(resx.size()>=65536)) + cimg_forYZC(resx,y,z,c) { + const T *const ptrs0 = data(0,y,z,c), *ptrs = ptrs0, *const ptrsmax = ptrs + (_width - 2); + T *ptrd = resx.data(0,y,z,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forX(resx,x) { + const double + t = *(pfoff++), + val1 = (double)*ptrs, + val0 = ptrs>ptrs0?(double)*(ptrs - 1):val1, + val2 = ptrs<=ptrsmax?(double)*(ptrs + 1):val1, + val3 = ptrsvmax?vmax:val); + ptrs+=*(poff++); + } + } + } + } + } else resx.assign(*this,true); + + if (sy!=_height) { + if (_height==1) resx.get_resize(sx,sy,_depth,_spectrum,1).move_to(resy); + else { + if (_height>sy) resx.get_resize(sx,sy,_depth,_spectrum,2).move_to(resy); + else { + const double fy = (!boundary_conditions && sy>_height)?(sy>1?(_height - 1.0)/(sy - 1):0): + (double)_height/sy; + resy.assign(sx,sy,_depth,_spectrum); + curr = old = 0; + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forY(resy,y) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(height() - 1.0,curr + fy); + *(poff++) = sx*((unsigned int)curr - (unsigned int)old); + } + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(resy.size()>=65536)) + cimg_forXZC(resy,x,z,c) { + const T *const ptrs0 = resx.data(x,0,z,c), *ptrs = ptrs0, *const ptrsmax = ptrs + (_height - 2)*sx; + T *ptrd = resy.data(x,0,z,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forY(resy,y) { + const double + t = *(pfoff++), + val1 = (double)*ptrs, + val0 = ptrs>ptrs0?(double)*(ptrs - sx):val1, + val2 = ptrs<=ptrsmax?(double)*(ptrs + sx):val1, + val3 = ptrsvmax?vmax:val); + ptrd+=sx; + ptrs+=*(poff++); + } + } + } + } + resx.assign(); + } else resy.assign(resx,true); + + if (sz!=_depth) { + if (_depth==1) resy.get_resize(sx,sy,sz,_spectrum,1).move_to(resz); + else { + if (_depth>sz) resy.get_resize(sx,sy,sz,_spectrum,2).move_to(resz); + else { + const double fz = (!boundary_conditions && sz>_depth)?(sz>1?(_depth - 1.0)/(sz - 1):0): + (double)_depth/sz; + const unsigned int sxy = sx*sy; + resz.assign(sx,sy,sz,_spectrum); + curr = old = 0; + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forZ(resz,z) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(depth() - 1.0,curr + fz); + *(poff++) = sxy*((unsigned int)curr - (unsigned int)old); + } + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(resz.size()>=65536)) + cimg_forXYC(resz,x,y,c) { + const T *const ptrs0 = resy.data(x,y,0,c), *ptrs = ptrs0, *const ptrsmax = ptrs + (_depth - 2)*sxy; + T *ptrd = resz.data(x,y,0,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forZ(resz,z) { + const double + t = *(pfoff++), + val1 = (double)*ptrs, + val0 = ptrs>ptrs0?(double)*(ptrs - sxy):val1, + val2 = ptrs<=ptrsmax?(double)*(ptrs + sxy):val1, + val3 = ptrsvmax?vmax:val); + ptrd+=sxy; + ptrs+=*(poff++); + } + } + } + } + resy.assign(); + } else resz.assign(resy,true); + + if (sc!=_spectrum) { + if (_spectrum==1) resz.get_resize(sx,sy,sz,sc,1).move_to(resc); + else { + if (_spectrum>sc) resz.get_resize(sx,sy,sz,sc,2).move_to(resc); + else { + const double fc = (!boundary_conditions && sc>_spectrum)?(sc>1?(_spectrum - 1.0)/(sc - 1):0): + (double)_spectrum/sc; + const unsigned int sxyz = sx*sy*sz; + resc.assign(sx,sy,sz,sc); + curr = old = 0; + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forC(resc,c) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(spectrum() - 1.0,curr + fc); + *(poff++) = sxyz*((unsigned int)curr - (unsigned int)old); + } + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(resc.size()>=65536)) + cimg_forXYZ(resc,x,y,z) { + const T *const ptrs0 = resz.data(x,y,z,0), *ptrs = ptrs0, *const ptrsmax = ptrs + (_spectrum - 2)*sxyz; + T *ptrd = resc.data(x,y,z,0); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forC(resc,c) { + const double + t = *(pfoff++), + val1 = (double)*ptrs, + val0 = ptrs>ptrs0?(double)*(ptrs - sxyz):val1, + val2 = ptrs<=ptrsmax?(double)*(ptrs + sxyz):val1, + val3 = ptrsvmax?vmax:val); + ptrd+=sxyz; + ptrs+=*(poff++); + } + } + } + } + resz.assign(); + } else resc.assign(resz,true); + + return resc._is_shared?(resz._is_shared?(resy._is_shared?(resx._is_shared?(+(*this)):resx):resy):resz):resc; + } break; + + // Lanczos interpolation. + // + case 6 : { + const double vmin = (double)cimg::type::min(), vmax = (double)cimg::type::max(); + CImg off(cimg::max(sx,sy,sz,sc)); + CImg foff(off._width); + CImg resx, resy, resz, resc; + double curr, old; + + if (sx!=_width) { + if (_width==1) get_resize(sx,_height,_depth,_spectrum,1).move_to(resx); + else { + if (_width>sx) get_resize(sx,_height,_depth,_spectrum,2).move_to(resx); + else { + const double fx = (!boundary_conditions && sx>_width)?(sx>1?(_width - 1.0)/(sx - 1):0): + (double)_width/sx; + resx.assign(sx,_height,_depth,_spectrum); + curr = old = 0; + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forX(resx,x) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(width() - 1.0,curr + fx); + *(poff++) = (unsigned int)curr - (unsigned int)old; + } + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(resx.size()>=65536)) + cimg_forYZC(resx,y,z,c) { + const T *const ptrs0 = data(0,y,z,c), *ptrs = ptrs0, *const ptrsmin = ptrs0 + 1, + *const ptrsmax = ptrs0 + (_width - 2); + T *ptrd = resx.data(0,y,z,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forX(resx,x) { + const double + t = *(pfoff++), + w0 = _cimg_lanczos(t + 2), + w1 = _cimg_lanczos(t + 1), + w2 = _cimg_lanczos(t), + w3 = _cimg_lanczos(t - 1), + w4 = _cimg_lanczos(t - 2), + val2 = (double)*ptrs, + val1 = ptrs>=ptrsmin?(double)*(ptrs - 1):val2, + val0 = ptrs>ptrsmin?(double)*(ptrs - 2):val1, + val3 = ptrs<=ptrsmax?(double)*(ptrs + 1):val2, + val4 = ptrsvmax?vmax:val); + ptrs+=*(poff++); + } + } + } + } + } else resx.assign(*this,true); + + if (sy!=_height) { + if (_height==1) resx.get_resize(sx,sy,_depth,_spectrum,1).move_to(resy); + else { + if (_height>sy) resx.get_resize(sx,sy,_depth,_spectrum,2).move_to(resy); + else { + const double fy = (!boundary_conditions && sy>_height)?(sy>1?(_height - 1.0)/(sy - 1):0): + (double)_height/sy; + resy.assign(sx,sy,_depth,_spectrum); + curr = old = 0; + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forY(resy,y) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(height() - 1.0,curr + fy); + *(poff++) = sx*((unsigned int)curr - (unsigned int)old); + } + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(resy.size()>=65536)) + cimg_forXZC(resy,x,z,c) { + const T *const ptrs0 = resx.data(x,0,z,c), *ptrs = ptrs0, *const ptrsmin = ptrs0 + sx, + *const ptrsmax = ptrs0 + (_height - 2)*sx; + T *ptrd = resy.data(x,0,z,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forY(resy,y) { + const double + t = *(pfoff++), + w0 = _cimg_lanczos(t + 2), + w1 = _cimg_lanczos(t + 1), + w2 = _cimg_lanczos(t), + w3 = _cimg_lanczos(t - 1), + w4 = _cimg_lanczos(t - 2), + val2 = (double)*ptrs, + val1 = ptrs>=ptrsmin?(double)*(ptrs - sx):val2, + val0 = ptrs>ptrsmin?(double)*(ptrs - 2*sx):val1, + val3 = ptrs<=ptrsmax?(double)*(ptrs + sx):val2, + val4 = ptrsvmax?vmax:val); + ptrd+=sx; + ptrs+=*(poff++); + } + } + } + } + resx.assign(); + } else resy.assign(resx,true); + + if (sz!=_depth) { + if (_depth==1) resy.get_resize(sx,sy,sz,_spectrum,1).move_to(resz); + else { + if (_depth>sz) resy.get_resize(sx,sy,sz,_spectrum,2).move_to(resz); + else { + const double fz = (!boundary_conditions && sz>_depth)?(sz>1?(_depth - 1.0)/(sz - 1):0): + (double)_depth/sz; + const unsigned int sxy = sx*sy; + resz.assign(sx,sy,sz,_spectrum); + curr = old = 0; + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forZ(resz,z) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(depth() - 1.0,curr + fz); + *(poff++) = sxy*((unsigned int)curr - (unsigned int)old); + } + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(resz.size()>=65536)) + cimg_forXYC(resz,x,y,c) { + const T *const ptrs0 = resy.data(x,y,0,c), *ptrs = ptrs0, *const ptrsmin = ptrs0 + sxy, + *const ptrsmax = ptrs0 + (_depth - 2)*sxy; + T *ptrd = resz.data(x,y,0,c); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forZ(resz,z) { + const double + t = *(pfoff++), + w0 = _cimg_lanczos(t + 2), + w1 = _cimg_lanczos(t + 1), + w2 = _cimg_lanczos(t), + w3 = _cimg_lanczos(t - 1), + w4 = _cimg_lanczos(t - 2), + val2 = (double)*ptrs, + val1 = ptrs>=ptrsmin?(double)*(ptrs - sxy):val2, + val0 = ptrs>ptrsmin?(double)*(ptrs - 2*sxy):val1, + val3 = ptrs<=ptrsmax?(double)*(ptrs + sxy):val2, + val4 = ptrsvmax?vmax:val); + ptrd+=sxy; + ptrs+=*(poff++); + } + } + } + } + resy.assign(); + } else resz.assign(resy,true); + + if (sc!=_spectrum) { + if (_spectrum==1) resz.get_resize(sx,sy,sz,sc,1).move_to(resc); + else { + if (_spectrum>sc) resz.get_resize(sx,sy,sz,sc,2).move_to(resc); + else { + const double fc = (!boundary_conditions && sc>_spectrum)?(sc>1?(_spectrum - 1.0)/(sc - 1):0): + (double)_spectrum/sc; + const unsigned int sxyz = sx*sy*sz; + resc.assign(sx,sy,sz,sc); + curr = old = 0; + unsigned int *poff = off._data; + double *pfoff = foff._data; + cimg_forC(resc,c) { + *(pfoff++) = curr - (unsigned int)curr; + old = curr; + curr = std::min(spectrum() - 1.0,curr + fc); + *(poff++) = sxyz*((unsigned int)curr - (unsigned int)old); + } + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(resc.size()>=65536)) + cimg_forXYZ(resc,x,y,z) { + const T *const ptrs0 = resz.data(x,y,z,0), *ptrs = ptrs0, *const ptrsmin = ptrs0 + sxyz, + *const ptrsmax = ptrs + (_spectrum - 2)*sxyz; + T *ptrd = resc.data(x,y,z,0); + const unsigned int *poff = off._data; + const double *pfoff = foff._data; + cimg_forC(resc,c) { + const double + t = *(pfoff++), + w0 = _cimg_lanczos(t + 2), + w1 = _cimg_lanczos(t + 1), + w2 = _cimg_lanczos(t), + w3 = _cimg_lanczos(t - 1), + w4 = _cimg_lanczos(t - 2), + val2 = (double)*ptrs, + val1 = ptrs>=ptrsmin?(double)*(ptrs - sxyz):val2, + val0 = ptrs>ptrsmin?(double)*(ptrs - 2*sxyz):val1, + val3 = ptrs<=ptrsmax?(double)*(ptrs + sxyz):val2, + val4 = ptrsvmax?vmax:val); + ptrd+=sxyz; + ptrs+=*(poff++); + } + } + } + } + resz.assign(); + } else resc.assign(resz,true); + + return resc._is_shared?(resz._is_shared?(resy._is_shared?(resx._is_shared?(+(*this)):resx):resy):resz):resc; + } break; + + // Unknow interpolation. + // + default : + throw CImgArgumentException(_cimg_instance + "resize(): Invalid specified interpolation %d " + "(should be { -1=raw | 0=none | 1=nearest | 2=average | 3=linear | 4=grid | " + "5=cubic | 6=lanczos }).", + cimg_instance, + interpolation_type); + } + return res; + } + + //! Resize image to dimensions of another image. + /** + \param src Reference image used for dimensions. + \param interpolation_type Interpolation method. + \param boundary_conditions Boundary conditions. + \param centering_x Set centering type (only if \p interpolation_type=0). + \param centering_y Set centering type (only if \p interpolation_type=0). + \param centering_z Set centering type (only if \p interpolation_type=0). + \param centering_c Set centering type (only if \p interpolation_type=0). + **/ + template + CImg& resize(const CImg& src, + const int interpolation_type=1, const unsigned int boundary_conditions=0, + const float centering_x = 0, const float centering_y = 0, + const float centering_z = 0, const float centering_c = 0) { + return resize(src._width,src._height,src._depth,src._spectrum,interpolation_type,boundary_conditions, + centering_x,centering_y,centering_z,centering_c); + } + + //! Resize image to dimensions of another image \newinstance. + template + CImg get_resize(const CImg& src, + const int interpolation_type=1, const unsigned int boundary_conditions=0, + const float centering_x = 0, const float centering_y = 0, + const float centering_z = 0, const float centering_c = 0) const { + return get_resize(src._width,src._height,src._depth,src._spectrum,interpolation_type,boundary_conditions, + centering_x,centering_y,centering_z,centering_c); + } + + //! Resize image to dimensions of a display window. + /** + \param disp Reference display window used for dimensions. + \param interpolation_type Interpolation method. + \param boundary_conditions Boundary conditions. + \param centering_x Set centering type (only if \p interpolation_type=0). + \param centering_y Set centering type (only if \p interpolation_type=0). + \param centering_z Set centering type (only if \p interpolation_type=0). + \param centering_c Set centering type (only if \p interpolation_type=0). + **/ + CImg& resize(const CImgDisplay& disp, + const int interpolation_type=1, const unsigned int boundary_conditions=0, + const float centering_x = 0, const float centering_y = 0, + const float centering_z = 0, const float centering_c = 0) { + return resize(disp.width(),disp.height(),_depth,_spectrum,interpolation_type,boundary_conditions, + centering_x,centering_y,centering_z,centering_c); + } + + //! Resize image to dimensions of a display window \newinstance. + CImg get_resize(const CImgDisplay& disp, + const int interpolation_type=1, const unsigned int boundary_conditions=0, + const float centering_x = 0, const float centering_y = 0, + const float centering_z = 0, const float centering_c = 0) const { + return get_resize(disp.width(),disp.height(),_depth,_spectrum,interpolation_type,boundary_conditions, + centering_x,centering_y,centering_z,centering_c); + } + + //! Resize image to half-size along XY axes, using an optimized filter. + CImg& resize_halfXY() { + return get_resize_halfXY().move_to(*this); + } + + //! Resize image to half-size along XY axes, using an optimized filter \newinstance. + CImg get_resize_halfXY() const { + if (is_empty()) return *this; + static const Tfloat kernel[9] = { 0.07842776544f, 0.1231940459f, 0.07842776544f, + 0.1231940459f, 0.1935127547f, 0.1231940459f, + 0.07842776544f, 0.1231940459f, 0.07842776544f }; + CImg I(9), res(_width/2,_height/2,_depth,_spectrum); + T *ptrd = res._data; + cimg_forZC(*this,z,c) cimg_for3x3(*this,x,y,z,c,I,T) + if (x%2 && y%2) *(ptrd++) = (T) + (I[0]*kernel[0] + I[1]*kernel[1] + I[2]*kernel[2] + + I[3]*kernel[3] + I[4]*kernel[4] + I[5]*kernel[5] + + I[6]*kernel[6] + I[7]*kernel[7] + I[8]*kernel[8]); + return res; + } + + //! Resize image to double-size, using the Scale2X algorithm. + /** + \note Use anisotropic upscaling algorithm + described here. + **/ + CImg& resize_doubleXY() { + return get_resize_doubleXY().move_to(*this); + } + + //! Resize image to double-size, using the Scale2X algorithm \newinstance. + CImg get_resize_doubleXY() const { +#define _cimg_gs2x_for3(bound,i) \ + for (int i = 0, _p1##i = 0, \ + _n1##i = 1>=(bound)?(int)(bound) - 1:1; \ + _n1##i<(int)(bound) || i==--_n1##i; \ + _p1##i = i++, ++_n1##i, ptrd1+=(res)._width, ptrd2+=(res)._width) + +#define _cimg_gs2x_for3x3(img,x,y,z,c,I,T) \ + _cimg_gs2x_for3((img)._height,y) for (int x = 0, \ + _p1##x = 0, \ + _n1##x = (int)( \ + (I[1] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[3] = I[4] = (T)(img)(0,y,z,c)), \ + (I[7] = (T)(img)(0,_n1##y,z,c)), \ + 1>=(img)._width?(img).width() - 1:1); \ + (_n1##x<(img).width() && ( \ + (I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[5] = (T)(img)(_n1##x,y,z,c)), \ + (I[8] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \ + x==--_n1##x; \ + I[1] = I[2], \ + I[3] = I[4], I[4] = I[5], \ + I[7] = I[8], \ + _p1##x = x++, ++_n1##x) + + if (is_empty()) return *this; + CImg res(_width<<1,_height<<1,_depth,_spectrum); + CImg_3x3(I,T); + cimg_forZC(*this,z,c) { + T + *ptrd1 = res.data(0,0,z,c), + *ptrd2 = ptrd1 + res._width; + _cimg_gs2x_for3x3(*this,x,y,z,c,I,T) { + if (Icp!=Icn && Ipc!=Inc) { + *(ptrd1++) = Ipc==Icp?Ipc:Icc; + *(ptrd1++) = Icp==Inc?Inc:Icc; + *(ptrd2++) = Ipc==Icn?Ipc:Icc; + *(ptrd2++) = Icn==Inc?Inc:Icc; + } else { *(ptrd1++) = Icc; *(ptrd1++) = Icc; *(ptrd2++) = Icc; *(ptrd2++) = Icc; } + } + } + return res; + } + + //! Resize image to triple-size, using the Scale3X algorithm. + /** + \note Use anisotropic upscaling algorithm + described here. + **/ + CImg& resize_tripleXY() { + return get_resize_tripleXY().move_to(*this); + } + + //! Resize image to triple-size, using the Scale3X algorithm \newinstance. + CImg get_resize_tripleXY() const { +#define _cimg_gs3x_for3(bound,i) \ + for (int i = 0, _p1##i = 0, \ + _n1##i = 1>=(bound)?(int)(bound) - 1:1; \ + _n1##i<(int)(bound) || i==--_n1##i; \ + _p1##i = i++, ++_n1##i, ptrd1+=2*(res)._width, ptrd2+=2*(res)._width, ptrd3+=2*(res)._width) + +#define _cimg_gs3x_for3x3(img,x,y,z,c,I,T) \ + _cimg_gs3x_for3((img)._height,y) for (int x = 0, \ + _p1##x = 0, \ + _n1##x = (int)( \ + (I[0] = I[1] = (T)(img)(_p1##x,_p1##y,z,c)), \ + (I[3] = I[4] = (T)(img)(0,y,z,c)), \ + (I[6] = I[7] = (T)(img)(0,_n1##y,z,c)), \ + 1>=(img)._width?(img).width() - 1:1); \ + (_n1##x<(img).width() && ( \ + (I[2] = (T)(img)(_n1##x,_p1##y,z,c)), \ + (I[5] = (T)(img)(_n1##x,y,z,c)), \ + (I[8] = (T)(img)(_n1##x,_n1##y,z,c)),1)) || \ + x==--_n1##x; \ + I[0] = I[1], I[1] = I[2], \ + I[3] = I[4], I[4] = I[5], \ + I[6] = I[7], I[7] = I[8], \ + _p1##x = x++, ++_n1##x) + + if (is_empty()) return *this; + CImg res(3*_width,3*_height,_depth,_spectrum); + CImg_3x3(I,T); + cimg_forZC(*this,z,c) { + T + *ptrd1 = res.data(0,0,z,c), + *ptrd2 = ptrd1 + res._width, + *ptrd3 = ptrd2 + res._width; + _cimg_gs3x_for3x3(*this,x,y,z,c,I,T) { + if (Icp != Icn && Ipc != Inc) { + *(ptrd1++) = Ipc==Icp?Ipc:Icc; + *(ptrd1++) = (Ipc==Icp && Icc!=Inp) || (Icp==Inc && Icc!=Ipp)?Icp:Icc; + *(ptrd1++) = Icp==Inc?Inc:Icc; + *(ptrd2++) = (Ipc==Icp && Icc!=Ipn) || (Ipc==Icn && Icc!=Ipp)?Ipc:Icc; + *(ptrd2++) = Icc; + *(ptrd2++) = (Icp==Inc && Icc!=Inn) || (Icn==Inc && Icc!=Inp)?Inc:Icc; + *(ptrd3++) = Ipc==Icn?Ipc:Icc; + *(ptrd3++) = (Ipc==Icn && Icc!=Inn) || (Icn==Inc && Icc!=Ipn)?Icn:Icc; + *(ptrd3++) = Icn==Inc?Inc:Icc; + } else { + *(ptrd1++) = Icc; *(ptrd1++) = Icc; *(ptrd1++) = Icc; + *(ptrd2++) = Icc; *(ptrd2++) = Icc; *(ptrd2++) = Icc; + *(ptrd3++) = Icc; *(ptrd3++) = Icc; *(ptrd3++) = Icc; + } + } + } + return res; + } + + //! Mirror image content along specified axis. + /** + \param axis Mirror axis + **/ + CImg& mirror(const char axis) { + if (is_empty()) return *this; + T *pf, *pb, *buf = 0; + switch (cimg::lowercase(axis)) { + case 'x' : { + pf = _data; pb = data(_width - 1); + const unsigned int width2 = _width/2; + for (unsigned int yzv = 0; yzv<_height*_depth*_spectrum; ++yzv) { + for (unsigned int x = 0; x get_mirror(const char axis) const { + return (+*this).mirror(axis); + } + + //! Mirror image content along specified axes. + /** + \param axes Mirror axes, as a C-string. + \note \c axes may contains multiple characters, e.g. \c "xyz" + **/ + CImg& mirror(const char *const axes) { + for (const char *s = axes; *s; ++s) mirror(*s); + return *this; + } + + //! Mirror image content along specified axes \newinstance. + CImg get_mirror(const char *const axes) const { + return (+*this).mirror(axes); + } + + //! Shift image content. + /** + \param delta_x Amount of displacement along the X-axis. + \param delta_y Amount of displacement along the Y-axis. + \param delta_z Amount of displacement along the Z-axis. + \param delta_c Amount of displacement along the C-axis. + \param boundary_conditions Border condition. Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + **/ + CImg& shift(const int delta_x, const int delta_y=0, const int delta_z=0, const int delta_c=0, + const unsigned int boundary_conditions=0) { + if (is_empty()) return *this; + if (boundary_conditions==3) + return get_crop(-delta_x,-delta_y,-delta_z,-delta_c, + width() - delta_x - 1, + height() - delta_y - 1, + depth() - delta_z - 1, + spectrum() - delta_c - 1,3).move_to(*this); + if (delta_x) // Shift along X-axis + switch (boundary_conditions) { + case 2 : { // Periodic + const int ml = cimg::mod(-delta_x,width()), ndelta_x = (ml<=width()/2)?ml:(ml-width()); + if (!ndelta_x) return *this; + CImg buf(cimg::abs(ndelta_x)); + if (ndelta_x>0) cimg_forYZC(*this,y,z,c) { + std::memcpy(buf,data(0,y,z,c),ndelta_x*sizeof(T)); + std::memmove(data(0,y,z,c),data(ndelta_x,y,z,c),(_width-ndelta_x)*sizeof(T)); + std::memcpy(data(_width-ndelta_x,y,z,c),buf,ndelta_x*sizeof(T)); + } else cimg_forYZC(*this,y,z,c) { + std::memcpy(buf,data(_width + ndelta_x,y,z,c),-ndelta_x*sizeof(T)); + std::memmove(data(-ndelta_x,y,z,c),data(0,y,z,c),(_width + ndelta_x)*sizeof(T)); + std::memcpy(data(0,y,z,c),buf,-ndelta_x*sizeof(T)); + } + } break; + case 1 : // Neumann + if (delta_x<0) { + const int ndelta_x = (-delta_x>=width())?width() - 1:-delta_x; + if (!ndelta_x) return *this; + cimg_forYZC(*this,y,z,c) { + std::memmove(data(0,y,z,c),data(ndelta_x,y,z,c),(_width-ndelta_x)*sizeof(T)); + T *ptrd = data(_width - 1,y,z,c); + const T val = *ptrd; + for (int l = 0; l=width())?width() - 1:delta_x; + if (!ndelta_x) return *this; + cimg_forYZC(*this,y,z,c) { + std::memmove(data(ndelta_x,y,z,c),data(0,y,z,c),(_width-ndelta_x)*sizeof(T)); + T *ptrd = data(0,y,z,c); + const T val = *ptrd; + for (int l = 0; l=width()) return fill((T)0); + if (delta_x<0) cimg_forYZC(*this,y,z,c) { + std::memmove(data(0,y,z,c),data(-delta_x,y,z,c),(_width + delta_x)*sizeof(T)); + std::memset(data(_width + delta_x,y,z,c),0,-delta_x*sizeof(T)); + } else cimg_forYZC(*this,y,z,c) { + std::memmove(data(delta_x,y,z,c),data(0,y,z,c),(_width-delta_x)*sizeof(T)); + std::memset(data(0,y,z,c),0,delta_x*sizeof(T)); + } + } + + if (delta_y) // Shift along Y-axis + switch (boundary_conditions) { + case 2 : { // Periodic + const int ml = cimg::mod(-delta_y,height()), ndelta_y = (ml<=height()/2)?ml:(ml-height()); + if (!ndelta_y) return *this; + CImg buf(width(),cimg::abs(ndelta_y)); + if (ndelta_y>0) cimg_forZC(*this,z,c) { + std::memcpy(buf,data(0,0,z,c),_width*ndelta_y*sizeof(T)); + std::memmove(data(0,0,z,c),data(0,ndelta_y,z,c),_width*(_height-ndelta_y)*sizeof(T)); + std::memcpy(data(0,_height-ndelta_y,z,c),buf,_width*ndelta_y*sizeof(T)); + } else cimg_forZC(*this,z,c) { + std::memcpy(buf,data(0,_height + ndelta_y,z,c),-ndelta_y*_width*sizeof(T)); + std::memmove(data(0,-ndelta_y,z,c),data(0,0,z,c),_width*(_height + ndelta_y)*sizeof(T)); + std::memcpy(data(0,0,z,c),buf,-ndelta_y*_width*sizeof(T)); + } + } break; + case 1 : // Neumann + if (delta_y<0) { + const int ndelta_y = (-delta_y>=height())?height() - 1:-delta_y; + if (!ndelta_y) return *this; + cimg_forZC(*this,z,c) { + std::memmove(data(0,0,z,c),data(0,ndelta_y,z,c),_width*(_height-ndelta_y)*sizeof(T)); + T *ptrd = data(0,_height-ndelta_y,z,c), *ptrs = data(0,_height - 1,z,c); + for (int l = 0; l=height())?height() - 1:delta_y; + if (!ndelta_y) return *this; + cimg_forZC(*this,z,c) { + std::memmove(data(0,ndelta_y,z,c),data(0,0,z,c),_width*(_height-ndelta_y)*sizeof(T)); + T *ptrd = data(0,1,z,c), *ptrs = data(0,0,z,c); + for (int l = 0; l=height()) return fill((T)0); + if (delta_y<0) cimg_forZC(*this,z,c) { + std::memmove(data(0,0,z,c),data(0,-delta_y,z,c),_width*(_height + delta_y)*sizeof(T)); + std::memset(data(0,_height + delta_y,z,c),0,-delta_y*_width*sizeof(T)); + } else cimg_forZC(*this,z,c) { + std::memmove(data(0,delta_y,z,c),data(0,0,z,c),_width*(_height-delta_y)*sizeof(T)); + std::memset(data(0,0,z,c),0,delta_y*_width*sizeof(T)); + } + } + + if (delta_z) // Shift along Z-axis + switch (boundary_conditions) { + case 2 : { // Periodic + const int ml = cimg::mod(-delta_z,depth()), ndelta_z = (ml<=depth()/2)?ml:(ml-depth()); + if (!ndelta_z) return *this; + CImg buf(width(),height(),cimg::abs(ndelta_z)); + if (ndelta_z>0) cimg_forC(*this,c) { + std::memcpy(buf,data(0,0,0,c),_width*_height*ndelta_z*sizeof(T)); + std::memmove(data(0,0,0,c),data(0,0,ndelta_z,c),_width*_height*(_depth-ndelta_z)*sizeof(T)); + std::memcpy(data(0,0,_depth-ndelta_z,c),buf,_width*_height*ndelta_z*sizeof(T)); + } else cimg_forC(*this,c) { + std::memcpy(buf,data(0,0,_depth + ndelta_z,c),-ndelta_z*_width*_height*sizeof(T)); + std::memmove(data(0,0,-ndelta_z,c),data(0,0,0,c),_width*_height*(_depth + ndelta_z)*sizeof(T)); + std::memcpy(data(0,0,0,c),buf,-ndelta_z*_width*_height*sizeof(T)); + } + } break; + case 1 : // Neumann + if (delta_z<0) { + const int ndelta_z = (-delta_z>=depth())?depth() - 1:-delta_z; + if (!ndelta_z) return *this; + cimg_forC(*this,c) { + std::memmove(data(0,0,0,c),data(0,0,ndelta_z,c),_width*_height*(_depth-ndelta_z)*sizeof(T)); + T *ptrd = data(0,0,_depth-ndelta_z,c), *ptrs = data(0,0,_depth - 1,c); + for (int l = 0; l=depth())?depth() - 1:delta_z; + if (!ndelta_z) return *this; + cimg_forC(*this,c) { + std::memmove(data(0,0,ndelta_z,c),data(0,0,0,c),_width*_height*(_depth-ndelta_z)*sizeof(T)); + T *ptrd = data(0,0,1,c), *ptrs = data(0,0,0,c); + for (int l = 0; l=depth()) return fill((T)0); + if (delta_z<0) cimg_forC(*this,c) { + std::memmove(data(0,0,0,c),data(0,0,-delta_z,c),_width*_height*(_depth + delta_z)*sizeof(T)); + std::memset(data(0,0,_depth + delta_z,c),0,_width*_height*(-delta_z)*sizeof(T)); + } else cimg_forC(*this,c) { + std::memmove(data(0,0,delta_z,c),data(0,0,0,c),_width*_height*(_depth-delta_z)*sizeof(T)); + std::memset(data(0,0,0,c),0,delta_z*_width*_height*sizeof(T)); + } + } + + if (delta_c) // Shift along C-axis + switch (boundary_conditions) { + case 2 : { // Periodic + const int ml = cimg::mod(-delta_c,spectrum()), ndelta_c = (ml<=spectrum()/2)?ml:(ml-spectrum()); + if (!ndelta_c) return *this; + CImg buf(width(),height(),depth(),cimg::abs(ndelta_c)); + if (ndelta_c>0) { + std::memcpy(buf,_data,_width*_height*_depth*ndelta_c*sizeof(T)); + std::memmove(_data,data(0,0,0,ndelta_c),_width*_height*_depth*(_spectrum-ndelta_c)*sizeof(T)); + std::memcpy(data(0,0,0,_spectrum-ndelta_c),buf,_width*_height*_depth*ndelta_c*sizeof(T)); + } else { + std::memcpy(buf,data(0,0,0,_spectrum + ndelta_c),-ndelta_c*_width*_height*_depth*sizeof(T)); + std::memmove(data(0,0,0,-ndelta_c),_data,_width*_height*_depth*(_spectrum + ndelta_c)*sizeof(T)); + std::memcpy(_data,buf,-ndelta_c*_width*_height*_depth*sizeof(T)); + } + } break; + case 1 : // Neumann + if (delta_c<0) { + const int ndelta_c = (-delta_c>=spectrum())?spectrum() - 1:-delta_c; + if (!ndelta_c) return *this; + std::memmove(_data,data(0,0,0,ndelta_c),_width*_height*_depth*(_spectrum-ndelta_c)*sizeof(T)); + T *ptrd = data(0,0,0,_spectrum-ndelta_c), *ptrs = data(0,0,0,_spectrum - 1); + for (int l = 0; l=spectrum())?spectrum() - 1:delta_c; + if (!ndelta_c) return *this; + std::memmove(data(0,0,0,ndelta_c),_data,_width*_height*_depth*(_spectrum-ndelta_c)*sizeof(T)); + T *ptrd = data(0,0,0,1); + for (int l = 0; l=spectrum()) return fill((T)0); + if (delta_c<0) { + std::memmove(_data,data(0,0,0,-delta_c),_width*_height*_depth*(_spectrum + delta_c)*sizeof(T)); + std::memset(data(0,0,0,_spectrum + delta_c),0,_width*_height*_depth*(-delta_c)*sizeof(T)); + } else { + std::memmove(data(0,0,0,delta_c),_data,_width*_height*_depth*(_spectrum-delta_c)*sizeof(T)); + std::memset(_data,0,delta_c*_width*_height*_depth*sizeof(T)); + } + } + return *this; + } + + //! Shift image content \newinstance. + CImg get_shift(const int delta_x, const int delta_y=0, const int delta_z=0, const int delta_c=0, + const unsigned int boundary_conditions=0) const { + return (+*this).shift(delta_x,delta_y,delta_z,delta_c,boundary_conditions); + } + + //! Permute axes order. + /** + \param order Axes permutations, as a C-string of 4 characters. + This function permutes image content regarding the specified axes permutation. + **/ + CImg& permute_axes(const char *const order) { + return get_permute_axes(order).move_to(*this); + } + + //! Permute axes order \newinstance. + CImg get_permute_axes(const char *const order) const { + const T foo = (T)0; + return _permute_axes(order,foo); + } + + template + CImg _permute_axes(const char *const order, const t&) const { + if (is_empty() || !order) return CImg(*this,false); + CImg res; + const T* ptrs = _data; + unsigned char s_code[4] = { 0,1,2,3 }, n_code[4] = { 0 }; + for (unsigned int l = 0; order[l]; ++l) { + int c = cimg::lowercase(order[l]); + if (c!='x' && c!='y' && c!='z' && c!='c') { *s_code = 4; break; } + else { ++n_code[c%=4]; s_code[l] = c; } + } + if (*order && *s_code<4 && *n_code<=1 && n_code[1]<=1 && n_code[2]<=1 && n_code[3]<=1) { + const unsigned int code = (s_code[0]<<12) | (s_code[1]<<8) | (s_code[2]<<4) | (s_code[3]); + ulongT wh, whd; + switch (code) { + case 0x0123 : // xyzc + return +*this; + case 0x0132 : // xycz + res.assign(_width,_height,_spectrum,_depth); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(x,y,c,z,wh,whd) = (t)*(ptrs++); + break; + case 0x0213 : // xzyc + res.assign(_width,_depth,_height,_spectrum); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(x,z,y,c,wh,whd) = (t)*(ptrs++); + break; + case 0x0231 : // xzcy + res.assign(_width,_depth,_spectrum,_height); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(x,z,c,y,wh,whd) = (t)*(ptrs++); + break; + case 0x0312 : // xcyz + res.assign(_width,_spectrum,_height,_depth); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(x,c,y,z,wh,whd) = (t)*(ptrs++); + break; + case 0x0321 : // xczy + res.assign(_width,_spectrum,_depth,_height); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(x,c,z,y,wh,whd) = (t)*(ptrs++); + break; + case 0x1023 : // yxzc + res.assign(_height,_width,_depth,_spectrum); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(y,x,z,c,wh,whd) = (t)*(ptrs++); + break; + case 0x1032 : // yxcz + res.assign(_height,_width,_spectrum,_depth); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(y,x,c,z,wh,whd) = (t)*(ptrs++); + break; + case 0x1203 : // yzxc + res.assign(_height,_depth,_width,_spectrum); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(y,z,x,c,wh,whd) = (t)*(ptrs++); + break; + case 0x1230 : // yzcx + res.assign(_height,_depth,_spectrum,_width); + switch (_width) { + case 1 : { + t *ptr_r = res.data(0,0,0,0); + for (unsigned int siz = _height*_depth*_spectrum; siz; --siz) { + *(ptr_r++) = (t)*(ptrs++); + } + } break; + case 2 : { + t *ptr_r = res.data(0,0,0,0), *ptr_g = res.data(0,0,0,1); + for (unsigned int siz = _height*_depth*_spectrum; siz; --siz) { + *(ptr_r++) = (t)ptrs[0]; + *(ptr_g++) = (t)ptrs[1]; + ptrs+=2; + } + } break; + case 3 : { // Optimization for the classical conversion from interleaved RGB to planar RGB + t *ptr_r = res.data(0,0,0,0), *ptr_g = res.data(0,0,0,1), *ptr_b = res.data(0,0,0,2); + for (unsigned int siz = _height*_depth*_spectrum; siz; --siz) { + *(ptr_r++) = (t)ptrs[0]; + *(ptr_g++) = (t)ptrs[1]; + *(ptr_b++) = (t)ptrs[2]; + ptrs+=3; + } + } break; + case 4 : { // Optimization for the classical conversion from interleaved RGBA to planar RGBA + t + *ptr_r = res.data(0,0,0,0), *ptr_g = res.data(0,0,0,1), + *ptr_b = res.data(0,0,0,2), *ptr_a = res.data(0,0,0,3); + for (unsigned int siz = _height*_depth*_spectrum; siz; --siz) { + *(ptr_r++) = (t)ptrs[0]; + *(ptr_g++) = (t)ptrs[1]; + *(ptr_b++) = (t)ptrs[2]; + *(ptr_a++) = (t)ptrs[3]; + ptrs+=4; + } + } break; + default : { + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(y,z,c,x,wh,whd) = *(ptrs++); + return res; + } + } + break; + case 0x1302 : // ycxz + res.assign(_height,_spectrum,_width,_depth); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(y,c,x,z,wh,whd) = (t)*(ptrs++); + break; + case 0x1320 : // yczx + res.assign(_height,_spectrum,_depth,_width); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(y,c,z,x,wh,whd) = (t)*(ptrs++); + break; + case 0x2013 : // zxyc + res.assign(_depth,_width,_height,_spectrum); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(z,x,y,c,wh,whd) = (t)*(ptrs++); + break; + case 0x2031 : // zxcy + res.assign(_depth,_width,_spectrum,_height); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(z,x,c,y,wh,whd) = (t)*(ptrs++); + break; + case 0x2103 : // zyxc + res.assign(_depth,_height,_width,_spectrum); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(z,y,x,c,wh,whd) = (t)*(ptrs++); + break; + case 0x2130 : // zycx + res.assign(_depth,_height,_spectrum,_width); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(z,y,c,x,wh,whd) = (t)*(ptrs++); + break; + case 0x2301 : // zcxy + res.assign(_depth,_spectrum,_width,_height); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(z,c,x,y,wh,whd) = (t)*(ptrs++); + break; + case 0x2310 : // zcyx + res.assign(_depth,_spectrum,_height,_width); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(z,c,y,x,wh,whd) = (t)*(ptrs++); + break; + case 0x3012 : // cxyz + res.assign(_spectrum,_width,_height,_depth); + switch (_spectrum) { + case 1 : { + const T *ptr_r = data(0,0,0,0); + t *ptrd = res._data; + for (ulongT siz = (ulongT)_width*_height*_depth; siz; --siz) *(ptrd++) = (t)*(ptr_r++); + } break; + case 2 : { + const T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1); + t *ptrd = res._data; + for (ulongT siz = (ulongT)_width*_height*_depth; siz; --siz) { + ptrd[0] = (t)*(ptr_r++); + ptrd[1] = (t)*(ptr_g++); + ptrd+=2; + } + } break; + case 3 : { // Optimization for the classical conversion from planar RGB to interleaved RGB + const T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2); + t *ptrd = res._data; + for (ulongT siz = (ulongT)_width*_height*_depth; siz; --siz) { + ptrd[0] = (t)*(ptr_r++); + ptrd[1] = (t)*(ptr_g++); + ptrd[2] = (t)*(ptr_b++); + ptrd+=3; + } + } break; + case 4 : { // Optimization for the classical conversion from planar RGBA to interleaved RGBA + const T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2), *ptr_a = data(0,0,0,3); + t *ptrd = res._data; + for (ulongT siz = (ulongT)_width*_height*_depth; siz; --siz) { + ptrd[0] = (t)*(ptr_r++); + ptrd[1] = (t)*(ptr_g++); + ptrd[2] = (t)*(ptr_b++); + ptrd[3] = (t)*(ptr_a++); + ptrd+=4; + } + } break; + default : { + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(c,x,y,z,wh,whd) = (t)*(ptrs++); + } + } + break; + case 0x3021 : // cxzy + res.assign(_spectrum,_width,_depth,_height); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(c,x,z,y,wh,whd) = (t)*(ptrs++); + break; + case 0x3102 : // cyxz + res.assign(_spectrum,_height,_width,_depth); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(c,y,x,z,wh,whd) = (t)*(ptrs++); + break; + case 0x3120 : // cyzx + res.assign(_spectrum,_height,_depth,_width); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(c,y,z,x,wh,whd) = (t)*(ptrs++); + break; + case 0x3201 : // czxy + res.assign(_spectrum,_depth,_width,_height); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(c,z,x,y,wh,whd) = (t)*(ptrs++); + break; + case 0x3210 : // czyx + res.assign(_spectrum,_depth,_height,_width); + wh = (ulongT)res._width*res._height; whd = wh*res._depth; + cimg_forXYZC(*this,x,y,z,c) res(c,z,y,x,wh,whd) = (t)*(ptrs++); + break; + } + } + if (!res) + throw CImgArgumentException(_cimg_instance + "permute_axes(): Invalid specified permutation '%s'.", + cimg_instance, + order); + return res; + } + + //! Unroll pixel values along specified axis. + /** + \param axis Unroll axis (can be \c 'x', \c 'y', \c 'z' or c 'c'). + **/ + CImg& unroll(const char axis) { + const unsigned int siz = (unsigned int)size(); + if (siz) switch (cimg::lowercase(axis)) { + case 'x' : _width = siz; _height = _depth = _spectrum = 1; break; + case 'y' : _height = siz; _width = _depth = _spectrum = 1; break; + case 'z' : _depth = siz; _width = _height = _spectrum = 1; break; + default : _spectrum = siz; _width = _height = _depth = 1; + } + return *this; + } + + //! Unroll pixel values along specified axis \newinstance. + CImg get_unroll(const char axis) const { + return (+*this).unroll(axis); + } + + //! Rotate image with arbitrary angle. + /** + \param angle Rotation angle, in degrees. + \param interpolation Type of interpolation. Can be { 0=nearest | 1=linear | 2=cubic }. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + \note The size of the image is modified. + **/ + CImg& rotate(const float angle, const unsigned int interpolation=1, + const unsigned int boundary_conditions=0) { + const float nangle = cimg::mod(angle,360.0f); + if (nangle==0.0f) return *this; + return get_rotate(nangle,interpolation,boundary_conditions).move_to(*this); + } + + //! Rotate image with arbitrary angle \newinstance. + CImg get_rotate(const float angle, const unsigned int interpolation=1, + const unsigned int boundary_conditions=0) const { + if (is_empty()) return *this; + CImg res; + const float nangle = cimg::mod(angle,360.0f); + if (boundary_conditions!=1 && cimg::mod(nangle,90.0f)==0) { // Optimized version for orthogonal angles. + const int wm1 = width() - 1, hm1 = height() - 1; + const int iangle = (int)nangle/90; + switch (iangle) { + case 1 : { // 90 deg + res.assign(_height,_width,_depth,_spectrum); + T *ptrd = res._data; + cimg_forXYZC(res,x,y,z,c) *(ptrd++) = (*this)(y,hm1 - x,z,c); + } break; + case 2 : { // 180 deg + res.assign(_width,_height,_depth,_spectrum); + T *ptrd = res._data; + cimg_forXYZC(res,x,y,z,c) *(ptrd++) = (*this)(wm1 - x,hm1 - y,z,c); + } break; + case 3 : { // 270 deg + res.assign(_height,_width,_depth,_spectrum); + T *ptrd = res._data; + cimg_forXYZC(res,x,y,z,c) *(ptrd++) = (*this)(wm1 - y,x,z,c); + } break; + default : // 0 deg + return *this; + } + } else { // Generic angle + const float + rad = (float)(nangle*cimg::PI/180.0), + ca = (float)std::cos(rad), sa = (float)std::sin(rad), + ux = cimg::abs((_width - 1)*ca), uy = cimg::abs((_width - 1)*sa), + vx = cimg::abs((_height - 1)*sa), vy = cimg::abs((_height - 1)*ca), + w2 = 0.5f*(_width - 1), h2 = 0.5f*(_height - 1); + res.assign((int)cimg::round(1 + ux + vx),(int)cimg::round(1 + uy + vy),_depth,_spectrum); + const float rw2 = 0.5f*(res._width - 1), rh2 = 0.5f*(res._height - 1); + _rotate(res,nangle,interpolation,boundary_conditions,w2,h2,rw2,rh2); + } + return res; + } + + //! Rotate image with arbitrary angle, around a center point. + /** + \param angle Rotation angle, in degrees. + \param cx X-coordinate of the rotation center. + \param cy Y-coordinate of the rotation center. + \param interpolation Type of interpolation, { 0=nearest | 1=linear | 2=cubic | 3=mirror }. + \param boundary_conditions Boundary conditions, { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + **/ + CImg& rotate(const float angle, const float cx, const float cy, + const unsigned int interpolation, const unsigned int boundary_conditions=0) { + return get_rotate(angle,cx,cy,interpolation,boundary_conditions).move_to(*this); + } + + //! Rotate image with arbitrary angle, around a center point \newinstance. + CImg get_rotate(const float angle, const float cx, const float cy, + const unsigned int interpolation, const unsigned int boundary_conditions=0) const { + if (is_empty()) return *this; + CImg res(_width,_height,_depth,_spectrum); + _rotate(res,angle,interpolation,boundary_conditions,cx,cy,cx,cy); + return res; + } + + // [internal] Perform 2d rotation with arbitrary angle. + void _rotate(CImg& res, const float angle, + const unsigned int interpolation, const unsigned int boundary_conditions, + const float w2, const float h2, + const float rw2, const float rh2) const { + const float + rad = (float)(angle*cimg::PI/180.0), + ca = (float)std::cos(rad), sa = (float)std::sin(rad); + + switch (boundary_conditions) { + case 3 : { // Mirror + + switch (interpolation) { + case 2 : { // Cubic interpolation + const float ww = 2.0f*width(), hh = 2.0f*height(); + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZC(res,x,y,z,c) { + const float xc = x - rw2, yc = y - rh2, + mx = cimg::mod(w2 + xc*ca + yc*sa,ww), + my = cimg::mod(h2 - xc*sa + yc*ca,hh); + const Tfloat val = _cubic_atXY(mx::cut(val); + } + } break; + case 1 : { // Linear interpolation + const float ww = 2.0f*width(), hh = 2.0f*height(); + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZC(res,x,y,z,c) { + const float xc = x - rw2, yc = y - rh2, + mx = cimg::mod(w2 + xc*ca + yc*sa,ww), + my = cimg::mod(h2 - xc*sa + yc*ca,hh); + res(x,y,z,c) = (T)_linear_atXY(mx=2048)) + cimg_forXYZC(res,x,y,z,c) { + const float xc = x - rw2, yc = y - rh2, + mx = cimg::mod((int)cimg::round(w2 + xc*ca + yc*sa),ww), + my = cimg::mod((int)cimg::round(h2 - xc*sa + yc*ca),hh); + res(x,y,z,c) = (*this)(mx=2048)) + cimg_forXYZC(res,x,y,z,c) { + const float xc = x - rw2, yc = y - rh2; + const Tfloat val = _cubic_atXY(cimg::mod(w2 + xc*ca + yc*sa,(float)width()), + cimg::mod(h2 - xc*sa + yc*ca,(float)height()),z,c); + res(x,y,z,c) = cimg::type::cut(val); + } + } break; + case 1 : { // Linear interpolation + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZC(res,x,y,z,c) { + const float xc = x - rw2, yc = y - rh2; + res(x,y,z,c) = (T)_linear_atXY(cimg::mod(w2 + xc*ca + yc*sa,(float)width()), + cimg::mod(h2 - xc*sa + yc*ca,(float)height()),z,c); + } + } break; + default : { // Nearest-neighbor interpolation + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZC(res,x,y,z,c) { + const float xc = x - rw2, yc = y - rh2; + res(x,y,z,c) = (*this)(cimg::mod((int)cimg::round(w2 + xc*ca + yc*sa),(float)width()), + cimg::mod((int)cimg::round(h2 - xc*sa + yc*ca),(float)height()),z,c); + } + } + } break; + + case 1 : // Neumann + switch (interpolation) { + case 2 : { // Cubic interpolation + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZC(res,x,y,z,c) { + const float xc = x - rw2, yc = y - rh2; + const Tfloat val = _cubic_atXY(w2 + xc*ca + yc*sa,h2 - xc*sa + yc*ca,z,c); + res(x,y,z,c) = cimg::type::cut(val); + } + } break; + case 1 : { // Linear interpolation + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZC(res,x,y,z,c) { + const float xc = x - rw2, yc = y - rh2; + res(x,y,z,c) = (T)_linear_atXY(w2 + xc*ca + yc*sa,h2 - xc*sa + yc*ca,z,c); + } + } break; + default : { // Nearest-neighbor interpolation + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZC(res,x,y,z,c) { + const float xc = x - rw2, yc = y - rh2; + res(x,y,z,c) = _atXY((int)cimg::round(w2 + xc*ca + yc*sa), + (int)cimg::round(h2 - xc*sa + yc*ca),z,c); + } + } + } break; + + default : // Dirichlet + switch (interpolation) { + case 2 : { // Cubic interpolation + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZC(res,x,y,z,c) { + const float xc = x - rw2, yc = y - rh2; + const Tfloat val = cubic_atXY(w2 + xc*ca + yc*sa,h2 - xc*sa + yc*ca,z,c,(T)0); + res(x,y,z,c) = cimg::type::cut(val); + } + } break; + case 1 : { // Linear interpolation + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZC(res,x,y,z,c) { + const float xc = x - rw2, yc = y - rh2; + res(x,y,z,c) = (T)linear_atXY(w2 + xc*ca + yc*sa,h2 - xc*sa + yc*ca,z,c,(T)0); + } + } break; + default : { // Nearest-neighbor interpolation + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZC(res,x,y,z,c) { + const float xc = x - rw2, yc = y - rh2; + res(x,y,z,c) = atXY((int)cimg::round(w2 + xc*ca + yc*sa), + (int)cimg::round(h2 - xc*sa + yc*ca),z,c,(T)0); + } + } + } + } + } + + //! Rotate volumetric image with arbitrary angle and axis. + /** + \param u X-coordinate of the 3d rotation axis. + \param v Y-coordinate of the 3d rotation axis. + \param w Z-coordinate of the 3d rotation axis. + \param angle Rotation angle, in degrees. + \param interpolation Type of interpolation. Can be { 0=nearest | 1=linear | 2=cubic }. + \param boundary_conditions Boundary conditions. + Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + \note Most of the time, size of the image is modified. + **/ + CImg rotate(const float u, const float v, const float w, const float angle, + const unsigned int interpolation, const unsigned int boundary_conditions) { + const float nangle = cimg::mod(angle,360.0f); + if (nangle==0.0f) return *this; + return get_rotate(u,v,w,nangle,interpolation,boundary_conditions).move_to(*this); + } + + //! Rotate volumetric image with arbitrary angle and axis \newinstance. + CImg get_rotate(const float u, const float v, const float w, const float angle, + const unsigned int interpolation, const unsigned int boundary_conditions) const { + if (is_empty()) return *this; + CImg res; + const float + w1 = _width - 1, h1 = _height - 1, d1 = _depth -1, + w2 = 0.5f*w1, h2 = 0.5f*h1, d2 = 0.5f*d1; + CImg R = CImg::rotation_matrix(u,v,w,angle); + const CImg + X = R*CImg(8,3,1,1, + 0.0f,w1,w1,0.0f,0.0f,w1,w1,0.0f, + 0.0f,0.0f,h1,h1,0.0f,0.0f,h1,h1, + 0.0f,0.0f,0.0f,0.0f,d1,d1,d1,d1); + float + xm, xM = X.get_shared_row(0).max_min(xm), + ym, yM = X.get_shared_row(1).max_min(ym), + zm, zM = X.get_shared_row(2).max_min(zm); + const int + dx = (int)cimg::round(xM - xm), + dy = (int)cimg::round(yM - ym), + dz = (int)cimg::round(zM - zm); + R.transpose(); + res.assign(1 + dx,1 + dy,1 + dz,_spectrum); + const float rw2 = 0.5f*dx, rh2 = 0.5f*dy, rd2 = 0.5f*dz; + _rotate(res,R,interpolation,boundary_conditions,w2,h2,d2,rw2,rh2,rd2); + return res; + } + + //! Rotate volumetric image with arbitrary angle and axis, around a center point. + /** + \param u X-coordinate of the 3d rotation axis. + \param v Y-coordinate of the 3d rotation axis. + \param w Z-coordinate of the 3d rotation axis. + \param angle Rotation angle, in degrees. + \param cx X-coordinate of the rotation center. + \param cy Y-coordinate of the rotation center. + \param cz Z-coordinate of the rotation center. + \param interpolation Type of interpolation. Can be { 0=nearest | 1=linear | 2=cubic | 3=mirror }. + \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann | 2=periodic }. + \note Most of the time, size of the image is modified. + **/ + CImg rotate(const float u, const float v, const float w, const float angle, + const float cx, const float cy, const float cz, + const unsigned int interpolation=1, const unsigned int boundary_conditions=0) { + const float nangle = cimg::mod(angle,360.0f); + if (nangle==0.0f) return *this; + return get_rotate(u,v,w,nangle,cx,cy,cz,interpolation,boundary_conditions).move_to(*this); + } + + //! Rotate volumetric image with arbitrary angle and axis, around a center point \newinstance. + CImg get_rotate(const float u, const float v, const float w, const float angle, + const float cx, const float cy, const float cz, + const unsigned int interpolation=1, const unsigned int boundary_conditions=0) const { + if (is_empty()) return *this; + CImg res(_width,_height,_depth,_spectrum); + CImg R = CImg::rotation_matrix(u,v,w,-angle); + _rotate(res,R,interpolation,boundary_conditions,cx,cy,cz,cx,cy,cz); + return res; + } + + // [internal] Perform 3d rotation with arbitrary axis and angle. + void _rotate(CImg& res, const CImg& R, + const unsigned int interpolation, const unsigned int boundary_conditions, + const float w2, const float h2, const float d2, + const float rw2, const float rh2, const float rd2) const { + switch (boundary_conditions) { + case 3 : // Mirror + switch (interpolation) { + case 2 : { // Cubic interpolation + const float ww = 2.0f*width(), hh = 2.0f*height(), dd = 2.0f*depth(); + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZ(res,x,y,z) { + const float + xc = x - rw2, yc = y - rh2, zc = z - rd2, + X = cimg::mod((float)(w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc),ww), + Y = cimg::mod((float)(h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc),hh), + Z = cimg::mod((float)(d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc),dd); + cimg_forC(res,c) res(x,y,z,c) = cimg::type::cut(_cubic_atXYZ(X=2048)) + cimg_forXYZ(res,x,y,z) { + const float + xc = x - rw2, yc = y - rh2, zc = z - rd2, + X = cimg::mod((float)(w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc),ww), + Y = cimg::mod((float)(h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc),hh), + Z = cimg::mod((float)(d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc),dd); + cimg_forC(res,c) res(x,y,z,c) = (T)_linear_atXYZ(X=2048)) + cimg_forXYZ(res,x,y,z) { + const float xc = x - rw2, yc = y - rh2, zc = z - rd2; + const int + X = cimg::mod((int)cimg::round(w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc),ww), + Y = cimg::mod((int)cimg::round(h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc),hh), + Z = cimg::mod((int)cimg::round(d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc),dd); + cimg_forC(res,c) res(x,y,z,c) = (*this)(X=2048)) + cimg_forXYZ(res,x,y,z) { + const float + xc = x - rw2, yc = y - rh2, zc = z - rd2, + X = cimg::mod((float)(w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc),(float)width()), + Y = cimg::mod((float)(h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc),(float)height()), + Z = cimg::mod((float)(d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc),(float)depth()); + cimg_forC(res,c) res(x,y,z,c) = cimg::type::cut(_cubic_atXYZ(X,Y,Z,c)); + } + } break; + case 1 : { // Linear interpolation + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZ(res,x,y,z) { + const float + xc = x - rw2, yc = y - rh2, zc = z - rd2, + X = cimg::mod((float)(w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc),(float)width()), + Y = cimg::mod((float)(h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc),(float)height()), + Z = cimg::mod((float)(d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc),(float)depth()); + cimg_forC(res,c) res(x,y,z,c) = (T)_linear_atXYZ(X,Y,Z,c); + } + } break; + default : { // Nearest-neighbor interpolation + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZ(res,x,y,z) { + const float xc = x - rw2, yc = y - rh2, zc = z - rd2; + const int + X = cimg::mod((int)cimg::round(w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc),width()), + Y = cimg::mod((int)cimg::round(h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc),height()), + Z = cimg::mod((int)cimg::round(d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc),depth()); + cimg_forC(res,c) res(x,y,z,c) = (*this)(X,Y,Z,c); + } + } + } break; + + case 1 : // Neumann + switch (interpolation) { + case 2 : { // Cubic interpolation + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZ(res,x,y,z) { + const float + xc = x - rw2, yc = y - rh2, zc = z - rd2, + X = w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc, + Y = h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc, + Z = d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc; + cimg_forC(res,c) res(x,y,z,c) = cimg::type::cut(_cubic_atXYZ(X,Y,Z,c)); + } + } break; + case 1 : { // Linear interpolation + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZ(res,x,y,z) { + const float + xc = x - rw2, yc = y - rh2, zc = z - rd2, + X = w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc, + Y = h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc, + Z = d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc; + cimg_forC(res,c) res(x,y,z,c) = _linear_atXYZ(X,Y,Z,c); + } + } break; + default : { // Nearest-neighbor interpolation + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZ(res,x,y,z) { + const float xc = x - rw2, yc = y - rh2, zc = z - rd2; + const int + X = (int)cimg::round(w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc), + Y = (int)cimg::round(h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc), + Z = (int)cimg::round(d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc); + cimg_forC(res,c) res(x,y,z,c) = _atXYZ(X,Y,Z,c); + } + } + } break; + + default : // Dirichlet + switch (interpolation) { + case 2 : { // Cubic interpolation + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZ(res,x,y,z) { + const float + xc = x - rw2, yc = y - rh2, zc = z - rd2, + X = w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc, + Y = h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc, + Z = d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc; + cimg_forC(res,c) res(x,y,z,c) = cimg::type::cut(cubic_atXYZ(X,Y,Z,c,(T)0)); + } + } break; + case 1 : { // Linear interpolation + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZ(res,x,y,z) { + const float + xc = x - rw2, yc = y - rh2, zc = z - rd2, + X = w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc, + Y = h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc, + Z = d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc; + cimg_forC(res,c) res(x,y,z,c) = linear_atXYZ(X,Y,Z,c,(T)0); + } + } break; + default : { // Nearest-neighbor interpolation + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(res.size()>=2048)) + cimg_forXYZ(res,x,y,z) { + const float xc = x - rw2, yc = y - rh2, zc = z - rd2; + const int + X = (int)cimg::round(w2 + R(0,0)*xc + R(1,0)*yc + R(2,0)*zc), + Y = (int)cimg::round(h2 + R(0,1)*xc + R(1,1)*yc + R(2,1)*zc), + Z = (int)cimg::round(d2 + R(0,2)*xc + R(1,2)*yc + R(2,2)*zc); + cimg_forC(res,c) res(x,y,z,c) = atXYZ(X,Y,Z,c,(T)0); + } + } + } break; + } + } + + //! Warp image content by a warping field. + /** + \param warp Warping field. + \param mode Can be { 0=backward-absolute | 1=backward-relative | 2=forward-absolute | 3=foward-relative } + \param interpolation Can be { 0=nearest | 1=linear | 2=cubic }. + \param boundary_conditions Boundary conditions { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + **/ + template + CImg& warp(const CImg& warp, const unsigned int mode=0, + const unsigned int interpolation=1, const unsigned int boundary_conditions=0) { + return get_warp(warp,mode,interpolation,boundary_conditions).move_to(*this); + } + + //! Warp image content by a warping field \newinstance + template + CImg get_warp(const CImg& warp, const unsigned int mode=0, + const unsigned int interpolation=1, const unsigned int boundary_conditions=0) const { + if (is_empty() || !warp) return *this; + if (mode && !is_sameXYZ(warp)) + throw CImgArgumentException(_cimg_instance + "warp(): Instance and specified relative warping field (%u,%u,%u,%u,%p) " + "have different XYZ dimensions.", + cimg_instance, + warp._width,warp._height,warp._depth,warp._spectrum,warp._data); + + CImg res(warp._width,warp._height,warp._depth,_spectrum); + + if (warp._spectrum==1) { // 1d warping + if (mode>=3) { // Forward-relative warp + res.fill((T)0); + if (interpolation>=1) // Linear interpolation + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) res.set_linear_atX(*(ptrs++),x + (float)*(ptrs0++),y,z,c); + } + else // Nearest-neighbor interpolation + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) { + const int X = x + (int)cimg::round(*(ptrs0++)); + if (X>=0 && X=1) // Linear interpolation + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) res.set_linear_atX(*(ptrs++),(float)*(ptrs0++),y,z,c); + } + else // Nearest-neighbor interpolation + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) { + const int X = (int)cimg::round(*(ptrs0++)); + if (X>=0 && X=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const float mx = cimg::mod(x - (float)*(ptrs0++),w2); + *(ptrd++) = (T)_cubic_atX(mx=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_cubic_atX(cimg::mod(x - (float)*(ptrs0++),(float)_width),y,z,c); + } + break; + case 1 : // Neumann + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_cubic_atX(x - (float)*(ptrs0++),y,z,c); + } + break; + default : // Dirichlet + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)cubic_atX(x - (float)*(ptrs0++),y,z,c,(T)0); + } + } + else if (interpolation==1) // Linear interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float w2 = 2.0f*width(); + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const float mx = cimg::mod(x - (float)*(ptrs0++),w2); + *(ptrd++) = (T)_linear_atX(mx=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_linear_atX(cimg::mod(x - (float)*(ptrs0++),(float)_width),y,z,c); + } + break; + case 1 : // Neumann + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_linear_atX(x - (float)*(ptrs0++),y,z,c); + } + break; + default : // Dirichlet + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)linear_atX(x - (float)*(ptrs0++),y,z,c,(T)0); + } + } + else // Nearest-neighbor interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const int w2 = 2*width(); + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const int mx = cimg::mod(x - (int)cimg::round(*(ptrs0++)),w2); + *(ptrd++) = (*this)(mx=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const float mx = cimg::mod((float)*(ptrs0++),w2); + *(ptrd++) = (T)_cubic_atX(mx=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_cubic_atX(cimg::mod((float)*(ptrs0++),(float)_width),0,0,c); + } + break; + case 1 : // Neumann + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_cubic_atX((float)*(ptrs0++),0,0,c); + } + break; + default : // Dirichlet + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)cubic_atX((float)*(ptrs0++),0,0,c,(T)0); + } + } + else if (interpolation==1) // Linear interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float w2 = 2.0f*width(); + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const float mx = cimg::mod((float)*(ptrs0++),w2); + *(ptrd++) = (T)_linear_atX(mx=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_linear_atX(cimg::mod((float)*(ptrs0++),(float)_width),0,0,c); + } + break; + case 1 : // Neumann + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_linear_atX((float)*(ptrs0++),0,0,c); + } + break; + default : // Dirichlet + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)linear_atX((float)*(ptrs0++),0,0,c,(T)0); + } + } + else // Nearest-neighbor interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const int w2 = 2*width(); + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const int mx = cimg::mod((int)cimg::round(*(ptrs0++)),w2); + *(ptrd++) = (*this)(mx=3) { // Forward-relative warp + res.fill((T)0); + if (interpolation>=1) // Linear interpolation + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) res.set_linear_atXY(*(ptrs++),x + (float)*(ptrs0++),y + (float)*(ptrs1++),z,c); + } + else // Nearest-neighbor interpolation + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) { + const int X = x + (int)cimg::round(*(ptrs0++)), Y = y + (int)cimg::round(*(ptrs1++)); + if (X>=0 && X=0 && Y=1) // Linear interpolation + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) res.set_linear_atXY(*(ptrs++),(float)*(ptrs0++),(float)*(ptrs1++),z,c); + } + else // Nearest-neighbor interpolation + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) { + const int X = (int)cimg::round(*(ptrs0++)), Y = (int)cimg::round(*(ptrs1++)); + if (X>=0 && X=0 && Y=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const float + mx = cimg::mod(x - (float)*(ptrs0++),w2), + my = cimg::mod(y - (float)*(ptrs1++),h2); + *(ptrd++) = (T)_cubic_atXY(mx=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_cubic_atXY(cimg::mod(x - (float)*(ptrs0++),(float)_width), + cimg::mod(y - (float)*(ptrs1++),(float)_height),z,c); + } + break; + case 1 : // Neumann + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_cubic_atXY(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z,c); + } + break; + default : // Dirichlet + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)cubic_atXY(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z,c,(T)0); + } + } + else if (interpolation==1) // Linear interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float w2 = 2.0f*width(), h2 = 2.0f*height(); + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const float + mx = cimg::mod(x - (float)*(ptrs0++),w2), + my = cimg::mod(y - (float)*(ptrs1++),h2); + *(ptrd++) = (T)_linear_atXY(mx=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_linear_atXY(cimg::mod(x - (float)*(ptrs0++),(float)_width), + cimg::mod(y - (float)*(ptrs1++),(float)_height),z,c); + } + break; + case 1 : // Neumann + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_linear_atXY(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z,c); + } + break; + default : // Dirichlet + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)linear_atXY(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z,c,(T)0); + } + } + else // Nearest-neighbor interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const int w2 = 2*width(), h2 = 2*height(); + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const int + mx = cimg::mod(x - (int)cimg::round(*(ptrs0++)),w2), + my = cimg::mod(y - (int)cimg::round(*(ptrs1++)),h2); + *(ptrd++) = (*this)(mx=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const float + mx = cimg::mod((float)*(ptrs0++),w2), + my = cimg::mod((float)*(ptrs1++),h2); + *(ptrd++) = (T)_cubic_atXY(mx=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_cubic_atXY(cimg::mod((float)*(ptrs0++),(float)_width), + cimg::mod((float)*(ptrs1++),(float)_height),0,c); + } + break; + case 1 : // Neumann + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_cubic_atXY((float)*(ptrs0++),(float)*(ptrs1++),0,c); + } + break; + default : // Dirichlet + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)cubic_atXY((float)*(ptrs0++),(float)*(ptrs1++),0,c,(T)0); + } + } + else if (interpolation==1) // Linear interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float w2 = 2.0f*width(), h2 = 2.0f*height(); + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const float + mx = cimg::mod((float)*(ptrs0++),w2), + my = cimg::mod((float)*(ptrs1++),h2); + *(ptrd++) = (T)_linear_atXY(mx=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_linear_atXY(cimg::mod((float)*(ptrs0++),(float)_width), + cimg::mod((float)*(ptrs1++),(float)_height),0,c); + } + break; + case 1 : // Neumann + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_linear_atXY((float)*(ptrs0++),(float)*(ptrs1++),0,c); + } + break; + default : // Dirichlet + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)linear_atXY((float)*(ptrs0++),(float)*(ptrs1++),0,c,(T)0); + } + } + else // Nearest-neighbor interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const int w2 = 2*width(), h2 = 2*height(); + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1); T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const int + mx = cimg::mod((int)cimg::round(*(ptrs0++)),w2), + my = cimg::mod((int)cimg::round(*(ptrs1++)),h2); + *(ptrd++) = (*this)(mx=3) { // Forward-relative warp + res.fill((T)0); + if (interpolation>=1) // Linear interpolation + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) res.set_linear_atXYZ(*(ptrs++),x + (float)*(ptrs0++),y + (float)*(ptrs1++), + z + (float)*(ptrs2++),c); + } + else // Nearest-neighbor interpolation + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) { + const int + X = x + (int)cimg::round(*(ptrs0++)), + Y = y + (int)cimg::round(*(ptrs1++)), + Z = z + (int)cimg::round(*(ptrs2++)); + if (X>=0 && X=0 && Y=0 && Z=1) // Linear interpolation + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) res.set_linear_atXYZ(*(ptrs++),(float)*(ptrs0++),(float)*(ptrs1++),(float)*(ptrs2++),c); + } + else // Nearest-neighbor interpolation + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + const T *ptrs = data(0,y,z,c); + cimg_forX(res,x) { + const int + X = (int)cimg::round(*(ptrs0++)), + Y = (int)cimg::round(*(ptrs1++)), + Z = (int)cimg::round(*(ptrs2++)); + if (X>=0 && X=0 && Y=0 && Z=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const float + mx = cimg::mod(x - (float)*(ptrs0++),w2), + my = cimg::mod(y - (float)*(ptrs1++),h2), + mz = cimg::mod(z - (float)*(ptrs2++),d2); + *(ptrd++) = (T)_cubic_atXYZ(mx=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_cubic_atXYZ(cimg::mod(x - (float)*(ptrs0++),(float)_width), + cimg::mod(y - (float)*(ptrs1++),(float)_height), + cimg::mod(z - (float)*(ptrs2++),(float)_depth),c); + } + break; + case 1 : // Neumann + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) + *(ptrd++) = (T)_cubic_atXYZ(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z - (float)*(ptrs2++),c); + } + break; + default : // Dirichlet + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) + *(ptrd++) = (T)cubic_atXYZ(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z - (float)*(ptrs2++),c,(T)0); + } + } + else if (interpolation==1) // Linear interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float w2 = 2.0f*width(), h2 = 2.0f*height(), d2 = 2.0f*depth(); + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const float + mx = cimg::mod(x - (float)*(ptrs0++),w2), + my = cimg::mod(y - (float)*(ptrs1++),h2), + mz = cimg::mod(z - (float)*(ptrs2++),d2); + *(ptrd++) = (T)_linear_atXYZ(mx=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_linear_atXYZ(cimg::mod(x - (float)*(ptrs0++),(float)_width), + cimg::mod(y - (float)*(ptrs1++),(float)_height), + cimg::mod(z - (float)*(ptrs2++),(float)_depth),c); + } + break; + case 1 : // Neumann + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) + *(ptrd++) = (T)_linear_atXYZ(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z - (float)*(ptrs2++),c); + } + break; + default : // Dirichlet + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) + *(ptrd++) = (T)linear_atXYZ(x - (float)*(ptrs0++),y - (float)*(ptrs1++),z - (float)*(ptrs2++),c,(T)0); + } + } + else // Nearest neighbor interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const int w2 = 2*width(), h2 = 2*height(), d2 = 2*depth(); + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const int + mx = cimg::mod(x - (int)cimg::round(*(ptrs0++)),w2), + my = cimg::mod(y - (int)cimg::round(*(ptrs1++)),h2), + mz = cimg::mod(z - (int)cimg::round(*(ptrs2++)),d2); + *(ptrd++) = (*this)(mx=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const float + mx = cimg::mod((float)*(ptrs0++),w2), + my = cimg::mod((float)*(ptrs1++),h2), + mz = cimg::mod((float)*(ptrs2++),d2); + *(ptrd++) = (T)_cubic_atXYZ(mx=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_cubic_atXYZ(cimg::mod((float)*(ptrs0++),(float)_width), + cimg::mod((float)*(ptrs1++),(float)_height), + cimg::mod((float)*(ptrs2++),(float)_depth),c); + } + break; + case 1 : // Neumann + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_cubic_atXYZ((float)*(ptrs0++),(float)*(ptrs1++),(float)*(ptrs2++),c); + } + break; + default : // Dirichlet + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)cubic_atXYZ((float)*(ptrs0++),(float)*(ptrs1++),(float)*(ptrs2++), + c,(T)0); + } + } + else if (interpolation==1) // Linear interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const float w2 = 2.0f*width(), h2 = 2.0f*height(), d2 = 2.0f*depth(); + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const float + mx = cimg::mod((float)*(ptrs0++),w2), + my = cimg::mod((float)*(ptrs1++),h2), + mz = cimg::mod((float)*(ptrs2++),d2); + *(ptrd++) = (T)_linear_atXYZ(mx=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_linear_atXYZ(cimg::mod((float)*(ptrs0++),(float)_width), + cimg::mod((float)*(ptrs1++),(float)_height), + cimg::mod((float)*(ptrs2++),(float)_depth),c); + } + break; + case 1 : // Neumann + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)_linear_atXYZ((float)*(ptrs0++),(float)*(ptrs1++),(float)*(ptrs2++),c); + } + break; + default : // Dirichlet + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=1048576)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) *(ptrd++) = (T)linear_atXYZ((float)*(ptrs0++),(float)*(ptrs1++),(float)*(ptrs2++), + c,(T)0); + } + } + else // Nearest-neighbor interpolation + switch (boundary_conditions) { + case 3 : { // Mirror + const int w2 = 2*width(), h2 = 2*height(), d2 = 2*depth(); + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(res.size()>=4096)) + cimg_forYZC(res,y,z,c) { + const t *ptrs0 = warp.data(0,y,z,0), *ptrs1 = warp.data(0,y,z,1), *ptrs2 = warp.data(0,y,z,2); + T *ptrd = res.data(0,y,z,c); + cimg_forX(res,x) { + const int + mx = cimg::mod((int)cimg::round(*(ptrs0++)),w2), + my = cimg::mod((int)cimg::round(*(ptrs1++)),h2), + mz = cimg::mod((int)cimg::round(*(ptrs2++)),d2); + *(ptrd++) = (*this)(mx get_projections2d(const unsigned int x0, const unsigned int y0, const unsigned int z0) const { + if (is_empty() || _depth<2) return +*this; + const unsigned int + _x0 = (x0>=_width)?_width - 1:x0, + _y0 = (y0>=_height)?_height - 1:y0, + _z0 = (z0>=_depth)?_depth - 1:z0; + const CImg + img_xy = get_crop(0,0,_z0,0,_width - 1,_height - 1,_z0,_spectrum - 1), + img_zy = get_crop(_x0,0,0,0,_x0,_height - 1,_depth - 1,_spectrum - 1).permute_axes("xzyc"). + resize(_depth,_height,1,-100,-1), + img_xz = get_crop(0,_y0,0,0,_width - 1,_y0,_depth - 1,_spectrum - 1).resize(_width,_depth,1,-100,-1); + return CImg(_width + _depth,_height + _depth,1,_spectrum,cimg::min(img_xy.min(),img_zy.min(),img_xz.min())). + draw_image(0,0,img_xy).draw_image(img_xy._width,0,img_zy). + draw_image(0,img_xy._height,img_xz); + } + + //! Construct a 2d representation of a 3d image, with XY,XZ and YZ views \inplace. + CImg& projections2d(const unsigned int x0, const unsigned int y0, const unsigned int z0) { + if (_depth<2) return *this; + return get_projections2d(x0,y0,z0).move_to(*this); + } + + //! Crop image region. + /** + \param x0 = X-coordinate of the upper-left crop rectangle corner. + \param y0 = Y-coordinate of the upper-left crop rectangle corner. + \param z0 = Z-coordinate of the upper-left crop rectangle corner. + \param c0 = C-coordinate of the upper-left crop rectangle corner. + \param x1 = X-coordinate of the lower-right crop rectangle corner. + \param y1 = Y-coordinate of the lower-right crop rectangle corner. + \param z1 = Z-coordinate of the lower-right crop rectangle corner. + \param c1 = C-coordinate of the lower-right crop rectangle corner. + \param boundary_conditions = Can be { 0=dirichlet | 1=neumann | 2=periodic | 3=mirror }. + **/ + CImg& crop(const int x0, const int y0, const int z0, const int c0, + const int x1, const int y1, const int z1, const int c1, + const unsigned int boundary_conditions=0) { + return get_crop(x0,y0,z0,c0,x1,y1,z1,c1,boundary_conditions).move_to(*this); + } + + //! Crop image region \newinstance. + CImg get_crop(const int x0, const int y0, const int z0, const int c0, + const int x1, const int y1, const int z1, const int c1, + const unsigned int boundary_conditions=0) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "crop(): Empty instance.", + cimg_instance); + const int + nx0 = x0 res(1U + nx1 - nx0,1U + ny1 - ny0,1U + nz1 - nz0,1U + nc1 - nc0); + if (nx0<0 || nx1>=width() || ny0<0 || ny1>=height() || nz0<0 || nz1>=depth() || nc0<0 || nc1>=spectrum()) + switch (boundary_conditions) { + case 3 : { // Mirror + const int w2 = 2*width(), h2 = 2*height(), d2 = 2*depth(), s2 = 2*spectrum(); + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=16 && _height*_depth*_spectrum>=4)) + cimg_forXYZC(res,x,y,z,c) { + const int + mx = cimg::mod(nx0 + x,w2), + my = cimg::mod(ny0 + y,h2), + mz = cimg::mod(nz0 + z,d2), + mc = cimg::mod(nc0 + c,s2); + res(x,y,z,c) = (*this)(mx=16 && _height*_depth*_spectrum>=4)) + cimg_forXYZC(res,x,y,z,c) { + res(x,y,z,c) = (*this)(cimg::mod(nx0 + x,width()),cimg::mod(ny0 + y,height()), + cimg::mod(nz0 + z,depth()),cimg::mod(nc0 + c,spectrum())); + } + } break; + case 1 : // Neumann + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=16 && _height*_depth*_spectrum>=4)) + cimg_forXYZC(res,x,y,z,c) res(x,y,z,c) = _atXYZC(nx0 + x,ny0 + y,nz0 + z,nc0 + c); + break; + default : // Dirichlet + res.fill((T)0).draw_image(-nx0,-ny0,-nz0,-nc0,*this); + } + else res.draw_image(-nx0,-ny0,-nz0,-nc0,*this); + return res; + } + + //! Crop image region \overloading. + CImg& crop(const int x0, const int y0, const int z0, + const int x1, const int y1, const int z1, + const unsigned int boundary_conditions=0) { + return crop(x0,y0,z0,0,x1,y1,z1,_spectrum - 1,boundary_conditions); + } + + //! Crop image region \newinstance. + CImg get_crop(const int x0, const int y0, const int z0, + const int x1, const int y1, const int z1, + const unsigned int boundary_conditions=0) const { + return get_crop(x0,y0,z0,0,x1,y1,z1,_spectrum - 1,boundary_conditions); + } + + //! Crop image region \overloading. + CImg& crop(const int x0, const int y0, + const int x1, const int y1, + const unsigned int boundary_conditions=0) { + return crop(x0,y0,0,0,x1,y1,_depth - 1,_spectrum - 1,boundary_conditions); + } + + //! Crop image region \newinstance. + CImg get_crop(const int x0, const int y0, + const int x1, const int y1, + const unsigned int boundary_conditions=0) const { + return get_crop(x0,y0,0,0,x1,y1,_depth - 1,_spectrum - 1,boundary_conditions); + } + + //! Crop image region \overloading. + CImg& crop(const int x0, const int x1, const unsigned int boundary_conditions=0) { + return crop(x0,0,0,0,x1,_height - 1,_depth - 1,_spectrum - 1,boundary_conditions); + } + + //! Crop image region \newinstance. + CImg get_crop(const int x0, const int x1, const unsigned int boundary_conditions=0) const { + return get_crop(x0,0,0,0,x1,_height - 1,_depth - 1,_spectrum - 1,boundary_conditions); + } + + //! Autocrop image region, regarding the specified background value. + CImg& autocrop(const T& value, const char *const axes="czyx") { + if (is_empty()) return *this; + for (const char *s = axes; *s; ++s) { + const char axis = cimg::lowercase(*s); + const CImg coords = _autocrop(value,axis); + if (coords[0]==-1 && coords[1]==-1) return assign(); // Image has only 'value' pixels. + else switch (axis) { + case 'x' : { + const int x0 = coords[0], x1 = coords[1]; + if (x0>=0 && x1>=0) crop(x0,x1); + } break; + case 'y' : { + const int y0 = coords[0], y1 = coords[1]; + if (y0>=0 && y1>=0) crop(0,y0,_width - 1,y1); + } break; + case 'z' : { + const int z0 = coords[0], z1 = coords[1]; + if (z0>=0 && z1>=0) crop(0,0,z0,_width - 1,_height - 1,z1); + } break; + default : { + const int c0 = coords[0], c1 = coords[1]; + if (c0>=0 && c1>=0) crop(0,0,0,c0,_width - 1,_height - 1,_depth - 1,c1); + } + } + } + return *this; + } + + //! Autocrop image region, regarding the specified background value \newinstance. + CImg get_autocrop(const T& value, const char *const axes="czyx") const { + return (+*this).autocrop(value,axes); + } + + //! Autocrop image region, regarding the specified background color. + /** + \param color Color used for the crop. If \c 0, color is guessed. + \param axes Axes used for the crop. + **/ + CImg& autocrop(const T *const color=0, const char *const axes="zyx") { + if (is_empty()) return *this; + if (!color) { // Guess color. + const CImg col1 = get_vector_at(0,0,0); + const unsigned int w = _width, h = _height, d = _depth, s = _spectrum; + autocrop(col1,axes); + if (_width==w && _height==h && _depth==d && _spectrum==s) { + const CImg col2 = get_vector_at(w - 1,h - 1,d - 1); + autocrop(col2,axes); + } + return *this; + } + for (const char *s = axes; *s; ++s) { + const char axis = cimg::lowercase(*s); + switch (axis) { + case 'x' : { + int x0 = width(), x1 = -1; + cimg_forC(*this,c) { + const CImg coords = get_shared_channel(c)._autocrop(color[c],'x'); + const int nx0 = coords[0], nx1 = coords[1]; + if (nx0>=0 && nx1>=0) { x0 = std::min(x0,nx0); x1 = std::max(x1,nx1); } + } + if (x0==width() && x1==-1) return assign(); else crop(x0,x1); + } break; + case 'y' : { + int y0 = height(), y1 = -1; + cimg_forC(*this,c) { + const CImg coords = get_shared_channel(c)._autocrop(color[c],'y'); + const int ny0 = coords[0], ny1 = coords[1]; + if (ny0>=0 && ny1>=0) { y0 = std::min(y0,ny0); y1 = std::max(y1,ny1); } + } + if (y0==height() && y1==-1) return assign(); else crop(0,y0,_width - 1,y1); + } break; + default : { + int z0 = depth(), z1 = -1; + cimg_forC(*this,c) { + const CImg coords = get_shared_channel(c)._autocrop(color[c],'z'); + const int nz0 = coords[0], nz1 = coords[1]; + if (nz0>=0 && nz1>=0) { z0 = std::min(z0,nz0); z1 = std::max(z1,nz1); } + } + if (z0==depth() && z1==-1) return assign(); else crop(0,0,z0,_width - 1,_height - 1,z1); + } + } + } + return *this; + } + + //! Autocrop image region, regarding the specified background color \newinstance. + CImg get_autocrop(const T *const color=0, const char *const axes="zyx") const { + return (+*this).autocrop(color,axes); + } + + //! Autocrop image region, regarding the specified background color \overloading. + template CImg& autocrop(const CImg& color, const char *const axes="zyx") { + return get_autocrop(color,axes).move_to(*this); + } + + //! Autocrop image region, regarding the specified background color \newinstance. + template CImg get_autocrop(const CImg& color, const char *const axes="zyx") const { + return get_autocrop(color._data,axes); + } + + CImg _autocrop(const T& value, const char axis) const { + CImg res; + switch (cimg::lowercase(axis)) { + case 'x' : { + int x0 = -1, x1 = -1; + cimg_forX(*this,x) cimg_forYZC(*this,y,z,c) + if ((*this)(x,y,z,c)!=value) { x0 = x; x = width(); y = height(); z = depth(); c = spectrum(); } + if (x0>=0) { + for (int x = width() - 1; x>=0; --x) cimg_forYZC(*this,y,z,c) + if ((*this)(x,y,z,c)!=value) { x1 = x; x = 0; y = height(); z = depth(); c = spectrum(); } + } + res = CImg::vector(x0,x1); + } break; + case 'y' : { + int y0 = -1, y1 = -1; + cimg_forY(*this,y) cimg_forXZC(*this,x,z,c) + if ((*this)(x,y,z,c)!=value) { y0 = y; x = width(); y = height(); z = depth(); c = spectrum(); } + if (y0>=0) { + for (int y = height() - 1; y>=0; --y) cimg_forXZC(*this,x,z,c) + if ((*this)(x,y,z,c)!=value) { y1 = y; x = width(); y = 0; z = depth(); c = spectrum(); } + } + res = CImg::vector(y0,y1); + } break; + case 'z' : { + int z0 = -1, z1 = -1; + cimg_forZ(*this,z) cimg_forXYC(*this,x,y,c) + if ((*this)(x,y,z,c)!=value) { z0 = z; x = width(); y = height(); z = depth(); c = spectrum(); } + if (z0>=0) { + for (int z = depth() - 1; z>=0; --z) cimg_forXYC(*this,x,y,c) + if ((*this)(x,y,z,c)!=value) { z1 = z; x = width(); y = height(); z = 0; c = spectrum(); } + } + res = CImg::vector(z0,z1); + } break; + default : { + int c0 = -1, c1 = -1; + cimg_forC(*this,c) cimg_forXYZ(*this,x,y,z) + if ((*this)(x,y,z,c)!=value) { c0 = c; x = width(); y = height(); z = depth(); c = spectrum(); } + if (c0>=0) { + for (int c = spectrum() - 1; c>=0; --c) cimg_forXYZ(*this,x,y,z) + if ((*this)(x,y,z,c)!=value) { c1 = c; x = width(); y = height(); z = depth(); c = 0; } + } + res = CImg::vector(c0,c1); + } + } + return res; + } + + //! Return specified image column. + /** + \param x0 Image column. + **/ + CImg get_column(const int x0) const { + return get_columns(x0,x0); + } + + //! Return specified image column \inplace. + CImg& column(const int x0) { + return columns(x0,x0); + } + + //! Return specified range of image columns. + /** + \param x0 Starting image column. + \param x1 Ending image column. + **/ + CImg& columns(const int x0, const int x1) { + return get_columns(x0,x1).move_to(*this); + } + + //! Return specified range of image columns \inplace. + CImg get_columns(const int x0, const int x1) const { + return get_crop(x0,0,0,0,x1,height() - 1,depth() - 1,spectrum() - 1); + } + + //! Return specified image row. + CImg get_row(const int y0) const { + return get_rows(y0,y0); + } + + //! Return specified image row \inplace. + /** + \param y0 Image row. + **/ + CImg& row(const int y0) { + return rows(y0,y0); + } + + //! Return specified range of image rows. + /** + \param y0 Starting image row. + \param y1 Ending image row. + **/ + CImg get_rows(const int y0, const int y1) const { + return get_crop(0,y0,0,0,width() - 1,y1,depth() - 1,spectrum() - 1); + } + + //! Return specified range of image rows \inplace. + CImg& rows(const int y0, const int y1) { + return get_rows(y0,y1).move_to(*this); + } + + //! Return specified image slice. + /** + \param z0 Image slice. + **/ + CImg get_slice(const int z0) const { + return get_slices(z0,z0); + } + + //! Return specified image slice \inplace. + CImg& slice(const int z0) { + return slices(z0,z0); + } + + //! Return specified range of image slices. + /** + \param z0 Starting image slice. + \param z1 Ending image slice. + **/ + CImg get_slices(const int z0, const int z1) const { + return get_crop(0,0,z0,0,width() - 1,height() - 1,z1,spectrum() - 1); + } + + //! Return specified range of image slices \inplace. + CImg& slices(const int z0, const int z1) { + return get_slices(z0,z1).move_to(*this); + } + + //! Return specified image channel. + /** + \param c0 Image channel. + **/ + CImg get_channel(const int c0) const { + return get_channels(c0,c0); + } + + //! Return specified image channel \inplace. + CImg& channel(const int c0) { + return channels(c0,c0); + } + + //! Return specified range of image channels. + /** + \param c0 Starting image channel. + \param c1 Ending image channel. + **/ + CImg get_channels(const int c0, const int c1) const { + return get_crop(0,0,0,c0,width() - 1,height() - 1,depth() - 1,c1); + } + + //! Return specified range of image channels \inplace. + CImg& channels(const int c0, const int c1) { + return get_channels(c0,c1).move_to(*this); + } + + //! Return stream line of a 2d or 3d vector field. + CImg get_streamline(const float x, const float y, const float z, + const float L=256, const float dl=0.1f, + const unsigned int interpolation_type=2, const bool is_backward_tracking=false, + const bool is_oriented_only=false) const { + if (_spectrum!=2 && _spectrum!=3) + throw CImgInstanceException(_cimg_instance + "streamline(): Instance is not a 2d or 3d vector field.", + cimg_instance); + if (_spectrum==2) { + if (is_oriented_only) { + typename CImg::_functor4d_streamline2d_oriented func(*this); + return streamline(func,x,y,z,L,dl,interpolation_type,is_backward_tracking,true, + 0,0,0,_width - 1.0f,_height - 1.0f,0.0f); + } else { + typename CImg::_functor4d_streamline2d_directed func(*this); + return streamline(func,x,y,z,L,dl,interpolation_type,is_backward_tracking,false, + 0,0,0,_width - 1.0f,_height - 1.0f,0.0f); + } + } + if (is_oriented_only) { + typename CImg::_functor4d_streamline3d_oriented func(*this); + return streamline(func,x,y,z,L,dl,interpolation_type,is_backward_tracking,true, + 0,0,0,_width - 1.0f,_height - 1.0f,_depth - 1.0f); + } + typename CImg::_functor4d_streamline3d_directed func(*this); + return streamline(func,x,y,z,L,dl,interpolation_type,is_backward_tracking,false, + 0,0,0,_width - 1.0f,_height - 1.0f,_depth - 1.0f); + } + + //! Return stream line of a 3d vector field. + /** + \param func Vector field function. + \param x X-coordinate of the starting point of the streamline. + \param y Y-coordinate of the starting point of the streamline. + \param z Z-coordinate of the starting point of the streamline. + \param L Streamline length. + \param dl Streamline length increment. + \param interpolation_type Type of interpolation. + Can be { 0=nearest int | 1=linear | 2=2nd-order RK | 3=4th-order RK. }. + \param is_backward_tracking Tells if the streamline is estimated forward or backward. + \param is_oriented_only Tells if the direction of the vectors must be ignored. + \param x0 X-coordinate of the first bounding-box vertex. + \param y0 Y-coordinate of the first bounding-box vertex. + \param z0 Z-coordinate of the first bounding-box vertex. + \param x1 X-coordinate of the second bounding-box vertex. + \param y1 Y-coordinate of the second bounding-box vertex. + \param z1 Z-coordinate of the second bounding-box vertex. + **/ + template + static CImg streamline(const tfunc& func, + const float x, const float y, const float z, + const float L=256, const float dl=0.1f, + const unsigned int interpolation_type=2, const bool is_backward_tracking=false, + const bool is_oriented_only=false, + const float x0=0, const float y0=0, const float z0=0, + const float x1=0, const float y1=0, const float z1=0) { + if (dl<=0) + throw CImgArgumentException("CImg<%s>::streamline(): Invalid specified integration length %g " + "(should be >0).", + pixel_type(), + dl); + + const bool is_bounded = (x0!=x1 || y0!=y1 || z0!=z1); + if (L<=0 || (is_bounded && (xx1 || yy1 || zz1))) return CImg(); + const unsigned int size_L = (unsigned int)cimg::round(L/dl + 1); + CImg coordinates(size_L,3); + const float dl2 = dl/2; + float + *ptr_x = coordinates.data(0,0), + *ptr_y = coordinates.data(0,1), + *ptr_z = coordinates.data(0,2), + pu = (float)(dl*func(x,y,z,0)), + pv = (float)(dl*func(x,y,z,1)), + pw = (float)(dl*func(x,y,z,2)), + X = x, Y = y, Z = z; + + switch (interpolation_type) { + case 0 : { // Nearest integer interpolation. + cimg_forX(coordinates,l) { + *(ptr_x++) = X; *(ptr_y++) = Y; *(ptr_z++) = Z; + const int + xi = (int)(X>0?X + 0.5f:X - 0.5f), + yi = (int)(Y>0?Y + 0.5f:Y - 0.5f), + zi = (int)(Z>0?Z + 0.5f:Z - 0.5f); + float + u = (float)(dl*func((float)xi,(float)yi,(float)zi,0)), + v = (float)(dl*func((float)xi,(float)yi,(float)zi,1)), + w = (float)(dl*func((float)xi,(float)yi,(float)zi,2)); + if (is_oriented_only && u*pu + v*pv + w*pw<0) { u = -u; v = -v; w = -w; } + if (is_backward_tracking) { X-=(pu=u); Y-=(pv=v); Z-=(pw=w); } else { X+=(pu=u); Y+=(pv=v); Z+=(pw=w); } + if (is_bounded && (Xx1 || Yy1 || Zz1)) break; + } + } break; + case 1 : { // First-order interpolation. + cimg_forX(coordinates,l) { + *(ptr_x++) = X; *(ptr_y++) = Y; *(ptr_z++) = Z; + float + u = (float)(dl*func(X,Y,Z,0)), + v = (float)(dl*func(X,Y,Z,1)), + w = (float)(dl*func(X,Y,Z,2)); + if (is_oriented_only && u*pu + v*pv + w*pw<0) { u = -u; v = -v; w = -w; } + if (is_backward_tracking) { X-=(pu=u); Y-=(pv=v); Z-=(pw=w); } else { X+=(pu=u); Y+=(pv=v); Z+=(pw=w); } + if (is_bounded && (Xx1 || Yy1 || Zz1)) break; + } + } break; + case 2 : { // Second order interpolation. + cimg_forX(coordinates,l) { + *(ptr_x++) = X; *(ptr_y++) = Y; *(ptr_z++) = Z; + float + u0 = (float)(dl2*func(X,Y,Z,0)), + v0 = (float)(dl2*func(X,Y,Z,1)), + w0 = (float)(dl2*func(X,Y,Z,2)); + if (is_oriented_only && u0*pu + v0*pv + w0*pw<0) { u0 = -u0; v0 = -v0; w0 = -w0; } + float + u = (float)(dl*func(X + u0,Y + v0,Z + w0,0)), + v = (float)(dl*func(X + u0,Y + v0,Z + w0,1)), + w = (float)(dl*func(X + u0,Y + v0,Z + w0,2)); + if (is_oriented_only && u*pu + v*pv + w*pw<0) { u = -u; v = -v; w = -w; } + if (is_backward_tracking) { X-=(pu=u); Y-=(pv=v); Z-=(pw=w); } else { X+=(pu=u); Y+=(pv=v); Z+=(pw=w); } + if (is_bounded && (Xx1 || Yy1 || Zz1)) break; + } + } break; + default : { // Fourth order interpolation. + cimg_forX(coordinates,x) { + *(ptr_x++) = X; *(ptr_y++) = Y; *(ptr_z++) = Z; + float + u0 = (float)(dl2*func(X,Y,Z,0)), + v0 = (float)(dl2*func(X,Y,Z,1)), + w0 = (float)(dl2*func(X,Y,Z,2)); + if (is_oriented_only && u0*pu + v0*pv + w0*pw<0) { u0 = -u0; v0 = -v0; w0 = -w0; } + float + u1 = (float)(dl2*func(X + u0,Y + v0,Z + w0,0)), + v1 = (float)(dl2*func(X + u0,Y + v0,Z + w0,1)), + w1 = (float)(dl2*func(X + u0,Y + v0,Z + w0,2)); + if (is_oriented_only && u1*pu + v1*pv + w1*pw<0) { u1 = -u1; v1 = -v1; w1 = -w1; } + float + u2 = (float)(dl2*func(X + u1,Y + v1,Z + w1,0)), + v2 = (float)(dl2*func(X + u1,Y + v1,Z + w1,1)), + w2 = (float)(dl2*func(X + u1,Y + v1,Z + w1,2)); + if (is_oriented_only && u2*pu + v2*pv + w2*pw<0) { u2 = -u2; v2 = -v2; w2 = -w2; } + float + u3 = (float)(dl2*func(X + u2,Y + v2,Z + w2,0)), + v3 = (float)(dl2*func(X + u2,Y + v2,Z + w2,1)), + w3 = (float)(dl2*func(X + u2,Y + v2,Z + w2,2)); + if (is_oriented_only && u2*pu + v2*pv + w2*pw<0) { u3 = -u3; v3 = -v3; w3 = -w3; } + const float + u = (u0 + u3)/3 + (u1 + u2)/1.5f, + v = (v0 + v3)/3 + (v1 + v2)/1.5f, + w = (w0 + w3)/3 + (w1 + w2)/1.5f; + if (is_backward_tracking) { X-=(pu=u); Y-=(pv=v); Z-=(pw=w); } else { X+=(pu=u); Y+=(pv=v); Z+=(pw=w); } + if (is_bounded && (Xx1 || Yy1 || Zz1)) break; + } + } + } + if (ptr_x!=coordinates.data(0,1)) coordinates.resize((int)(ptr_x-coordinates.data()),3,1,1,0); + return coordinates; + } + + //! Return stream line of a 3d vector field \overloading. + static CImg streamline(const char *const expression, + const float x, const float y, const float z, + const float L=256, const float dl=0.1f, + const unsigned int interpolation_type=2, const bool is_backward_tracking=true, + const bool is_oriented_only=false, + const float x0=0, const float y0=0, const float z0=0, + const float x1=0, const float y1=0, const float z1=0) { + _functor4d_streamline_expr func(expression); + return streamline(func,x,y,z,L,dl,interpolation_type,is_backward_tracking,is_oriented_only,x0,y0,z0,x1,y1,z1); + } + + struct _functor4d_streamline2d_directed { + const CImg& ref; + _functor4d_streamline2d_directed(const CImg& pref):ref(pref) {} + float operator()(const float x, const float y, const float z, const unsigned int c) const { + return c<2?(float)ref._linear_atXY(x,y,(int)z,c):0; + } + }; + + struct _functor4d_streamline3d_directed { + const CImg& ref; + _functor4d_streamline3d_directed(const CImg& pref):ref(pref) {} + float operator()(const float x, const float y, const float z, const unsigned int c) const { + return (float)ref._linear_atXYZ(x,y,z,c); + } + }; + + struct _functor4d_streamline2d_oriented { + const CImg& ref; + CImg *pI; + _functor4d_streamline2d_oriented(const CImg& pref):ref(pref),pI(0) { pI = new CImg(2,2,1,2); } + ~_functor4d_streamline2d_oriented() { delete pI; } + float operator()(const float x, const float y, const float z, const unsigned int c) const { +#define _cimg_vecalign2d(i,j) \ + if (I(i,j,0)*I(0,0,0) + I(i,j,1)*I(0,0,1)<0) { I(i,j,0) = -I(i,j,0); I(i,j,1) = -I(i,j,1); } + int + xi = (int)x - (x>=0?0:1), nxi = xi + 1, + yi = (int)y - (y>=0?0:1), nyi = yi + 1, + zi = (int)z; + const float + dx = x - xi, + dy = y - yi; + if (c==0) { + CImg& I = *pI; + if (xi<0) xi = 0; + if (nxi<0) nxi = 0; + if (xi>=ref.width()) xi = ref.width() - 1; + if (nxi>=ref.width()) nxi = ref.width() - 1; + if (yi<0) yi = 0; + if (nyi<0) nyi = 0; + if (yi>=ref.height()) yi = ref.height() - 1; + if (nyi>=ref.height()) nyi = ref.height() - 1; + I(0,0,0) = (float)ref(xi,yi,zi,0); I(0,0,1) = (float)ref(xi,yi,zi,1); + I(1,0,0) = (float)ref(nxi,yi,zi,0); I(1,0,1) = (float)ref(nxi,yi,zi,1); + I(1,1,0) = (float)ref(nxi,nyi,zi,0); I(1,1,1) = (float)ref(nxi,nyi,zi,1); + I(0,1,0) = (float)ref(xi,nyi,zi,0); I(0,1,1) = (float)ref(xi,nyi,zi,1); + _cimg_vecalign2d(1,0); _cimg_vecalign2d(1,1); _cimg_vecalign2d(0,1); + } + return c<2?(float)pI->_linear_atXY(dx,dy,0,c):0; + } + }; + + struct _functor4d_streamline3d_oriented { + const CImg& ref; + CImg *pI; + _functor4d_streamline3d_oriented(const CImg& pref):ref(pref),pI(0) { pI = new CImg(2,2,2,3); } + ~_functor4d_streamline3d_oriented() { delete pI; } + float operator()(const float x, const float y, const float z, const unsigned int c) const { +#define _cimg_vecalign3d(i,j,k) if (I(i,j,k,0)*I(0,0,0,0) + I(i,j,k,1)*I(0,0,0,1) + I(i,j,k,2)*I(0,0,0,2)<0) { \ + I(i,j,k,0) = -I(i,j,k,0); I(i,j,k,1) = -I(i,j,k,1); I(i,j,k,2) = -I(i,j,k,2); } + int + xi = (int)x - (x>=0?0:1), nxi = xi + 1, + yi = (int)y - (y>=0?0:1), nyi = yi + 1, + zi = (int)z - (z>=0?0:1), nzi = zi + 1; + const float + dx = x - xi, + dy = y - yi, + dz = z - zi; + if (c==0) { + CImg& I = *pI; + if (xi<0) xi = 0; + if (nxi<0) nxi = 0; + if (xi>=ref.width()) xi = ref.width() - 1; + if (nxi>=ref.width()) nxi = ref.width() - 1; + if (yi<0) yi = 0; + if (nyi<0) nyi = 0; + if (yi>=ref.height()) yi = ref.height() - 1; + if (nyi>=ref.height()) nyi = ref.height() - 1; + if (zi<0) zi = 0; + if (nzi<0) nzi = 0; + if (zi>=ref.depth()) zi = ref.depth() - 1; + if (nzi>=ref.depth()) nzi = ref.depth() - 1; + I(0,0,0,0) = (float)ref(xi,yi,zi,0); I(0,0,0,1) = (float)ref(xi,yi,zi,1); + I(0,0,0,2) = (float)ref(xi,yi,zi,2); I(1,0,0,0) = (float)ref(nxi,yi,zi,0); + I(1,0,0,1) = (float)ref(nxi,yi,zi,1); I(1,0,0,2) = (float)ref(nxi,yi,zi,2); + I(1,1,0,0) = (float)ref(nxi,nyi,zi,0); I(1,1,0,1) = (float)ref(nxi,nyi,zi,1); + I(1,1,0,2) = (float)ref(nxi,nyi,zi,2); I(0,1,0,0) = (float)ref(xi,nyi,zi,0); + I(0,1,0,1) = (float)ref(xi,nyi,zi,1); I(0,1,0,2) = (float)ref(xi,nyi,zi,2); + I(0,0,1,0) = (float)ref(xi,yi,nzi,0); I(0,0,1,1) = (float)ref(xi,yi,nzi,1); + I(0,0,1,2) = (float)ref(xi,yi,nzi,2); I(1,0,1,0) = (float)ref(nxi,yi,nzi,0); + I(1,0,1,1) = (float)ref(nxi,yi,nzi,1); I(1,0,1,2) = (float)ref(nxi,yi,nzi,2); + I(1,1,1,0) = (float)ref(nxi,nyi,nzi,0); I(1,1,1,1) = (float)ref(nxi,nyi,nzi,1); + I(1,1,1,2) = (float)ref(nxi,nyi,nzi,2); I(0,1,1,0) = (float)ref(xi,nyi,nzi,0); + I(0,1,1,1) = (float)ref(xi,nyi,nzi,1); I(0,1,1,2) = (float)ref(xi,nyi,nzi,2); + _cimg_vecalign3d(1,0,0); _cimg_vecalign3d(1,1,0); _cimg_vecalign3d(0,1,0); + _cimg_vecalign3d(0,0,1); _cimg_vecalign3d(1,0,1); _cimg_vecalign3d(1,1,1); _cimg_vecalign3d(0,1,1); + } + return (float)pI->_linear_atXYZ(dx,dy,dz,c); + } + }; + + struct _functor4d_streamline_expr { + _cimg_math_parser *mp; + ~_functor4d_streamline_expr() { mp->end(); delete mp; } + _functor4d_streamline_expr(const char *const expr):mp(0) { + mp = new _cimg_math_parser(expr,"streamline",CImg::const_empty(),0); + } + float operator()(const float x, const float y, const float z, const unsigned int c) const { + return (float)(*mp)(x,y,z,c); + } + }; + + //! Return a shared-memory image referencing a range of pixels of the image instance. + /** + \param x0 X-coordinate of the starting pixel. + \param x1 X-coordinate of the ending pixel. + \param y0 Y-coordinate. + \param z0 Z-coordinate. + \param c0 C-coordinate. + **/ + CImg get_shared_points(const unsigned int x0, const unsigned int x1, + const unsigned int y0=0, const unsigned int z0=0, const unsigned int c0=0) { + const unsigned int + beg = (unsigned int)offset(x0,y0,z0,c0), + end = (unsigned int)offset(x1,y0,z0,c0); + if (beg>end || beg>=size() || end>=size()) + throw CImgArgumentException(_cimg_instance + "get_shared_points(): Invalid request of a shared-memory subset (%u->%u,%u,%u,%u).", + cimg_instance, + x0,x1,y0,z0,c0); + + return CImg(_data + beg,x1 - x0 + 1,1,1,1,true); + } + + //! Return a shared-memory image referencing a range of pixels of the image instance \const. + const CImg get_shared_points(const unsigned int x0, const unsigned int x1, + const unsigned int y0=0, const unsigned int z0=0, const unsigned int c0=0) const { + const unsigned int + beg = (unsigned int)offset(x0,y0,z0,c0), + end = (unsigned int)offset(x1,y0,z0,c0); + if (beg>end || beg>=size() || end>=size()) + throw CImgArgumentException(_cimg_instance + "get_shared_points(): Invalid request of a shared-memory subset (%u->%u,%u,%u,%u).", + cimg_instance, + x0,x1,y0,z0,c0); + + return CImg(_data + beg,x1 - x0 + 1,1,1,1,true); + } + + //! Return a shared-memory image referencing a range of rows of the image instance. + /** + \param y0 Y-coordinate of the starting row. + \param y1 Y-coordinate of the ending row. + \param z0 Z-coordinate. + \param c0 C-coordinate. + **/ + CImg get_shared_rows(const unsigned int y0, const unsigned int y1, + const unsigned int z0=0, const unsigned int c0=0) { + const unsigned int + beg = (unsigned int)offset(0,y0,z0,c0), + end = (unsigned int)offset(0,y1,z0,c0); + if (beg>end || beg>=size() || end>=size()) + throw CImgArgumentException(_cimg_instance + "get_shared_rows(): Invalid request of a shared-memory subset " + "(0->%u,%u->%u,%u,%u).", + cimg_instance, + _width - 1,y0,y1,z0,c0); + + return CImg(_data + beg,_width,y1 - y0 + 1,1,1,true); + } + + //! Return a shared-memory image referencing a range of rows of the image instance \const. + const CImg get_shared_rows(const unsigned int y0, const unsigned int y1, + const unsigned int z0=0, const unsigned int c0=0) const { + const unsigned int + beg = (unsigned int)offset(0,y0,z0,c0), + end = (unsigned int)offset(0,y1,z0,c0); + if (beg>end || beg>=size() || end>=size()) + throw CImgArgumentException(_cimg_instance + "get_shared_rows(): Invalid request of a shared-memory subset " + "(0->%u,%u->%u,%u,%u).", + cimg_instance, + _width - 1,y0,y1,z0,c0); + + return CImg(_data + beg,_width,y1 - y0 + 1,1,1,true); + } + + //! Return a shared-memory image referencing one row of the image instance. + /** + \param y0 Y-coordinate. + \param z0 Z-coordinate. + \param c0 C-coordinate. + **/ + CImg get_shared_row(const unsigned int y0, const unsigned int z0=0, const unsigned int c0=0) { + return get_shared_rows(y0,y0,z0,c0); + } + + //! Return a shared-memory image referencing one row of the image instance \const. + const CImg get_shared_row(const unsigned int y0, const unsigned int z0=0, const unsigned int c0=0) const { + return get_shared_rows(y0,y0,z0,c0); + } + + //! Return a shared memory image referencing a range of slices of the image instance. + /** + \param z0 Z-coordinate of the starting slice. + \param z1 Z-coordinate of the ending slice. + \param c0 C-coordinate. + **/ + CImg get_shared_slices(const unsigned int z0, const unsigned int z1, const unsigned int c0=0) { + const unsigned int + beg = (unsigned int)offset(0,0,z0,c0), + end = (unsigned int)offset(0,0,z1,c0); + if (beg>end || beg>=size() || end>=size()) + throw CImgArgumentException(_cimg_instance + "get_shared_slices(): Invalid request of a shared-memory subset " + "(0->%u,0->%u,%u->%u,%u).", + cimg_instance, + _width - 1,_height - 1,z0,z1,c0); + + return CImg(_data + beg,_width,_height,z1 - z0 + 1,1,true); + } + + //! Return a shared memory image referencing a range of slices of the image instance \const. + const CImg get_shared_slices(const unsigned int z0, const unsigned int z1, const unsigned int c0=0) const { + const unsigned int + beg = (unsigned int)offset(0,0,z0,c0), + end = (unsigned int)offset(0,0,z1,c0); + if (beg>end || beg>=size() || end>=size()) + throw CImgArgumentException(_cimg_instance + "get_shared_slices(): Invalid request of a shared-memory subset " + "(0->%u,0->%u,%u->%u,%u).", + cimg_instance, + _width - 1,_height - 1,z0,z1,c0); + + return CImg(_data + beg,_width,_height,z1 - z0 + 1,1,true); + } + + //! Return a shared-memory image referencing one slice of the image instance. + /** + \param z0 Z-coordinate. + \param c0 C-coordinate. + **/ + CImg get_shared_slice(const unsigned int z0, const unsigned int c0=0) { + return get_shared_slices(z0,z0,c0); + } + + //! Return a shared-memory image referencing one slice of the image instance \const. + const CImg get_shared_slice(const unsigned int z0, const unsigned int c0=0) const { + return get_shared_slices(z0,z0,c0); + } + + //! Return a shared-memory image referencing a range of channels of the image instance. + /** + \param c0 C-coordinate of the starting channel. + \param c1 C-coordinate of the ending channel. + **/ + CImg get_shared_channels(const unsigned int c0, const unsigned int c1) { + const unsigned int + beg = (unsigned int)offset(0,0,0,c0), + end = (unsigned int)offset(0,0,0,c1); + if (beg>end || beg>=size() || end>=size()) + throw CImgArgumentException(_cimg_instance + "get_shared_channels(): Invalid request of a shared-memory subset " + "(0->%u,0->%u,0->%u,%u->%u).", + cimg_instance, + _width - 1,_height - 1,_depth - 1,c0,c1); + + return CImg(_data + beg,_width,_height,_depth,c1 - c0 + 1,true); + } + + //! Return a shared-memory image referencing a range of channels of the image instance \const. + const CImg get_shared_channels(const unsigned int c0, const unsigned int c1) const { + const unsigned int + beg = (unsigned int)offset(0,0,0,c0), + end = (unsigned int)offset(0,0,0,c1); + if (beg>end || beg>=size() || end>=size()) + throw CImgArgumentException(_cimg_instance + "get_shared_channels(): Invalid request of a shared-memory subset " + "(0->%u,0->%u,0->%u,%u->%u).", + cimg_instance, + _width - 1,_height - 1,_depth - 1,c0,c1); + + return CImg(_data + beg,_width,_height,_depth,c1 - c0 + 1,true); + } + + //! Return a shared-memory image referencing one channel of the image instance. + /** + \param c0 C-coordinate. + **/ + CImg get_shared_channel(const unsigned int c0) { + return get_shared_channels(c0,c0); + } + + //! Return a shared-memory image referencing one channel of the image instance \const. + const CImg get_shared_channel(const unsigned int c0) const { + return get_shared_channels(c0,c0); + } + + //! Return a shared-memory version of the image instance. + CImg get_shared() { + return CImg(_data,_width,_height,_depth,_spectrum,true); + } + + //! Return a shared-memory version of the image instance \const. + const CImg get_shared() const { + return CImg(_data,_width,_height,_depth,_spectrum,true); + } + + //! Split image into a list along specified axis. + /** + \param axis Splitting axis. Can be { 'x' | 'y' | 'z' | 'c' }. + \param nb Number of splitted parts. + \note + - If \c nb==0, instance image is splitted into blocs of egal values along the specified axis. + - If \c nb<=0, instance image is splitted into blocs of -\c nb pixel wide. + - If \c nb>0, instance image is splitted into \c nb blocs. + **/ + CImgList get_split(const char axis, const int nb=-1) const { + CImgList res; + if (is_empty()) return res; + const char _axis = cimg::lowercase(axis); + + if (nb<0) { // Split by bloc size. + const unsigned int dp = (unsigned int)(nb?-nb:1); + switch (_axis) { + case 'x': { + if (_width>dp) { + res.assign(_width/dp + (_width%dp?1:0),1,1); + const unsigned int pe = _width - dp; + cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=128 && _height*_depth*_spectrum>=128)) + for (unsigned int p = 0; pdp) { + res.assign(_height/dp + (_height%dp?1:0),1,1); + const unsigned int pe = _height - dp; + cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=128 && _width*_depth*_spectrum>=128)) + for (unsigned int p = 0; pdp) { + res.assign(_depth/dp + (_depth%dp?1:0),1,1); + const unsigned int pe = _depth - dp; + cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=128 && _width*_height*_spectrum>=128)) + for (unsigned int p = 0; pdp) { + res.assign(_spectrum/dp + (_spectrum%dp?1:0),1,1); + const unsigned int pe = _spectrum - dp; + cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=128 && _width*_height*_depth>=128)) + for (unsigned int p = 0; p0) { // Split by number of (non-homogeneous) blocs. + const unsigned int siz = _axis=='x'?_width:_axis=='y'?_height:_axis=='z'?_depth:_axis=='c'?_spectrum:0; + if ((unsigned int)nb>siz) + throw CImgArgumentException(_cimg_instance + "get_split(): Instance cannot be split along %c-axis into %u blocs.", + cimg_instance, + axis,nb); + if (nb==1) res.assign(*this); + else { + int err = (int)siz; + unsigned int _p = 0; + switch (_axis) { + case 'x' : { + cimg_forX(*this,p) if ((err-=nb)<=0) { + get_crop(_p,0,0,0,p,_height - 1,_depth - 1,_spectrum - 1).move_to(res); + err+=(int)siz; + _p = p + 1U; + } + } break; + case 'y' : { + cimg_forY(*this,p) if ((err-=nb)<=0) { + get_crop(0,_p,0,0,_width - 1,p,_depth - 1,_spectrum - 1).move_to(res); + err+=(int)siz; + _p = p + 1U; + } + } break; + case 'z' : { + cimg_forZ(*this,p) if ((err-=nb)<=0) { + get_crop(0,0,_p,0,_width - 1,_height - 1,p,_spectrum - 1).move_to(res); + err+=(int)siz; + _p = p + 1U; + } + } break; + case 'c' : { + cimg_forC(*this,p) if ((err-=nb)<=0) { + get_crop(0,0,0,_p,_width - 1,_height - 1,_depth - 1,p).move_to(res); + err+=(int)siz; + _p = p + 1U; + } + } + } + } + } else { // Split by egal values according to specified axis. + T current = *_data; + switch (_axis) { + case 'x' : { + int i0 = 0; + cimg_forX(*this,i) + if ((*this)(i)!=current) { get_columns(i0,i - 1).move_to(res); i0 = i; current = (*this)(i); } + get_columns(i0,width() - 1).move_to(res); + } break; + case 'y' : { + int i0 = 0; + cimg_forY(*this,i) + if ((*this)(0,i)!=current) { get_rows(i0,i - 1).move_to(res); i0 = i; current = (*this)(0,i); } + get_rows(i0,height() - 1).move_to(res); + } break; + case 'z' : { + int i0 = 0; + cimg_forZ(*this,i) + if ((*this)(0,0,i)!=current) { get_slices(i0,i - 1).move_to(res); i0 = i; current = (*this)(0,0,i); } + get_slices(i0,depth() - 1).move_to(res); + } break; + case 'c' : { + int i0 = 0; + cimg_forC(*this,i) + if ((*this)(0,0,0,i)!=current) { get_channels(i0,i - 1).move_to(res); i0 = i; current = (*this)(0,0,0,i); } + get_channels(i0,spectrum() - 1).move_to(res); + } break; + default : { + longT i0 = 0; + cimg_foroff(*this,i) + if ((*this)[i]!=current) { + CImg(_data + i0,1,(unsigned int)(i - i0)).move_to(res); + i0 = (longT)i; current = (*this)[i]; + } + CImg(_data + i0,1,(unsigned int)(size() - i0)).move_to(res); + } + } + } + return res; + } + + //! Split image into a list of sub-images, according to a specified splitting value sequence and optionally axis. + /** + \param values Splitting value sequence. + \param axis Axis along which the splitting is performed. Can be '0' to ignore axis. + \param keep_values Tells if the splitting sequence must be kept in the splitted blocs. + **/ + template + CImgList get_split(const CImg& values, const char axis=0, const bool keep_values=true) const { + CImgList res; + if (is_empty()) return res; + const ulongT vsiz = values.size(); + const char _axis = cimg::lowercase(axis); + if (!vsiz) return CImgList(*this); + if (vsiz==1) { // Split according to a single value. + const T value = (T)*values; + switch (_axis) { + case 'x' : { + unsigned int i0 = 0, i = 0; + do { + while (i<_width && (*this)(i)==value) ++i; + if (i>i0) { if (keep_values) get_columns(i0,i - 1).move_to(res); i0 = i; } + while (i<_width && (*this)(i)!=value) ++i; + if (i>i0) { get_columns(i0,i - 1).move_to(res); i0 = i; } + } while (i<_width); + } break; + case 'y' : { + unsigned int i0 = 0, i = 0; + do { + while (i<_height && (*this)(0,i)==value) ++i; + if (i>i0) { if (keep_values) get_rows(i0,i - 1).move_to(res); i0 = i; } + while (i<_height && (*this)(0,i)!=value) ++i; + if (i>i0) { get_rows(i0,i - 1).move_to(res); i0 = i; } + } while (i<_height); + } break; + case 'z' : { + unsigned int i0 = 0, i = 0; + do { + while (i<_depth && (*this)(0,0,i)==value) ++i; + if (i>i0) { if (keep_values) get_slices(i0,i - 1).move_to(res); i0 = i; } + while (i<_depth && (*this)(0,0,i)!=value) ++i; + if (i>i0) { get_slices(i0,i - 1).move_to(res); i0 = i; } + } while (i<_depth); + } break; + case 'c' : { + unsigned int i0 = 0, i = 0; + do { + while (i<_spectrum && (*this)(0,0,0,i)==value) ++i; + if (i>i0) { if (keep_values) get_channels(i0,i - 1).move_to(res); i0 = i; } + while (i<_spectrum && (*this)(0,0,0,i)!=value) ++i; + if (i>i0) { get_channels(i0,i - 1).move_to(res); i0 = i; } + } while (i<_spectrum); + } break; + default : { + const ulongT siz = size(); + ulongT i0 = 0, i = 0; + do { + while (ii0) { if (keep_values) CImg(_data + i0,1,(unsigned int)(i - i0)).move_to(res); i0 = i; } + while (ii0) { CImg(_data + i0,1,(unsigned int)(i - i0)).move_to(res); i0 = i; } + } while (i=vsiz) j = 0; } + i-=j; + if (i>i1) { + if (i1>i0) get_columns(i0,i1 - 1).move_to(res); + if (keep_values) get_columns(i1,i - 1).move_to(res); + i0 = i; + } else ++i; + } else ++i; + } while (i<_width); + if (i0<_width) get_columns(i0,width() - 1).move_to(res); + } break; + case 'y' : { + unsigned int i0 = 0, i1 = 0, i = 0; + do { + if ((*this)(0,i)==*values) { + i1 = i; j = 0; + while (i<_height && (*this)(0,i)==values[j]) { ++i; if (++j>=vsiz) j = 0; } + i-=j; + if (i>i1) { + if (i1>i0) get_rows(i0,i1 - 1).move_to(res); + if (keep_values) get_rows(i1,i - 1).move_to(res); + i0 = i; + } else ++i; + } else ++i; + } while (i<_height); + if (i0<_height) get_rows(i0,height() - 1).move_to(res); + } break; + case 'z' : { + unsigned int i0 = 0, i1 = 0, i = 0; + do { + if ((*this)(0,0,i)==*values) { + i1 = i; j = 0; + while (i<_depth && (*this)(0,0,i)==values[j]) { ++i; if (++j>=vsiz) j = 0; } + i-=j; + if (i>i1) { + if (i1>i0) get_slices(i0,i1 - 1).move_to(res); + if (keep_values) get_slices(i1,i - 1).move_to(res); + i0 = i; + } else ++i; + } else ++i; + } while (i<_depth); + if (i0<_depth) get_slices(i0,depth() - 1).move_to(res); + } break; + case 'c' : { + unsigned int i0 = 0, i1 = 0, i = 0; + do { + if ((*this)(0,0,0,i)==*values) { + i1 = i; j = 0; + while (i<_spectrum && (*this)(0,0,0,i)==values[j]) { ++i; if (++j>=vsiz) j = 0; } + i-=j; + if (i>i1) { + if (i1>i0) get_channels(i0,i1 - 1).move_to(res); + if (keep_values) get_channels(i1,i - 1).move_to(res); + i0 = i; + } else ++i; + } else ++i; + } while (i<_spectrum); + if (i0<_spectrum) get_channels(i0,spectrum() - 1).move_to(res); + } break; + default : { + ulongT i0 = 0, i1 = 0, i = 0; + const ulongT siz = size(); + do { + if ((*this)[i]==*values) { + i1 = i; j = 0; + while (i=vsiz) j = 0; } + i-=j; + if (i>i1) { + if (i1>i0) CImg(_data + i0,1,(unsigned int)(i1 - i0)).move_to(res); + if (keep_values) CImg(_data + i1,1,(unsigned int)(i - i1)).move_to(res); + i0 = i; + } else ++i; + } else ++i; + } while (i(_data + i0,1,(unsigned int)(siz - i0)).move_to(res); + } break; + } + } + return res; + } + + //! Append two images along specified axis. + /** + \param img Image to append with instance image. + \param axis Appending axis. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Append alignment in \c [0,1]. + **/ + template + CImg& append(const CImg& img, const char axis='x', const float align=0) { + if (is_empty()) return assign(img,false); + if (!img) return *this; + return CImgList(*this,true).insert(img).get_append(axis,align).move_to(*this); + } + + //! Append two images along specified axis \specialization. + CImg& append(const CImg& img, const char axis='x', const float align=0) { + if (is_empty()) return assign(img,false); + if (!img) return *this; + return CImgList(*this,img,true).get_append(axis,align).move_to(*this); + } + + //! Append two images along specified axis \const. + template + CImg<_cimg_Tt> get_append(const CImg& img, const char axis='x', const float align=0) const { + if (is_empty()) return +img; + if (!img) return +*this; + return CImgList<_cimg_Tt>(*this,true).insert(img).get_append(axis,align); + } + + //! Append two images along specified axis \specialization. + CImg get_append(const CImg& img, const char axis='x', const float align=0) const { + if (is_empty()) return +img; + if (!img) return +*this; + return CImgList(*this,img,true).get_append(axis,align); + } + + //@} + //--------------------------------------- + // + //! \name Filtering / Transforms + //@{ + //--------------------------------------- + + //! Correlate image by a kernel. + /** + \param kernel = the correlation kernel. + \param boundary_conditions boundary conditions can be (false=dirichlet, true=neumann) + \param is_normalized = enable local normalization. + \note + - The correlation of the image instance \p *this by the kernel \p kernel is defined to be: + res(x,y,z) = sum_{i,j,k} (*this)(x + i,y + j,z + k)*kernel(i,j,k). + **/ + template + CImg& correlate(const CImg& kernel, const bool boundary_conditions=true, + const bool is_normalized=false) { + if (is_empty() || !kernel) return *this; + return get_correlate(kernel,boundary_conditions,is_normalized).move_to(*this); + } + + template + CImg<_cimg_Ttfloat> get_correlate(const CImg& kernel, const bool boundary_conditions=true, + const bool is_normalized=false) const { + return _correlate(kernel,boundary_conditions,is_normalized,false); + } + + //! Correlate image by a kernel \newinstance. + template + CImg<_cimg_Ttfloat> _correlate(const CImg& kernel, const bool boundary_conditions, + const bool is_normalized, const bool is_convolution) const { + if (is_empty() || !kernel) return *this; + typedef _cimg_Ttfloat Ttfloat; + CImg res(_width,_height,_depth,std::max(_spectrum,kernel._spectrum)); + cimg_abort_init; + if (boundary_conditions && kernel._width==kernel._height && + ((kernel._depth==1 && kernel._width<=5) || (kernel._depth==kernel._width && kernel._width<=3))) { + // Special optimization done for 2x2, 3x3, 4x4, 5x5, 2x2x2 and 3x3x3 kernel (with boundary_conditions=true). + CImg _kernel; + if (is_convolution) { // Add empty column/row/slice to shift kernel center in case of convolution + const int dw = !(kernel.width()%2), dh = !(kernel.height()%2), dd = !(kernel.depth()%2); + if (dw || dh || dd) + kernel.get_resize(kernel.width() + dw,kernel.height() + dh,kernel.depth() + dd,-100,0,0). + move_to(_kernel); + } + if (!_kernel) _kernel = kernel.get_shared(); + + Ttfloat *ptrd = res._data; + CImg I; + switch (_kernel._depth) { + case 3 : { + I.assign(27); + cimg_forC(res,c) { + cimg_abort_test(); + const CImg _img = get_shared_channel(c%_spectrum); + const CImg _K = _kernel.get_shared_channel(c%_kernel._spectrum); + if (is_normalized) { + const Ttfloat _M = (Ttfloat)_K.magnitude(2), M = _M*_M; + cimg_for3x3x3(_img,x,y,z,0,I,T) { + const Ttfloat N = M*(I[ 0]*I[ 0] + I[ 1]*I[ 1] + I[ 2]*I[ 2] + + I[ 3]*I[ 3] + I[ 4]*I[ 4] + I[ 5]*I[ 5] + + I[ 6]*I[ 6] + I[ 7]*I[ 7] + I[ 8]*I[ 8] + + I[ 9]*I[ 9] + I[10]*I[10] + I[11]*I[11] + + I[12]*I[12] + I[13]*I[13] + I[14]*I[14] + + I[15]*I[15] + I[16]*I[16] + I[17]*I[17] + + I[18]*I[18] + I[19]*I[19] + I[20]*I[20] + + I[21]*I[21] + I[22]*I[22] + I[23]*I[23] + + I[24]*I[24] + I[25]*I[25] + I[26]*I[26]); + *(ptrd++) = (Ttfloat)(N?(I[ 0]*_K[ 0] + I[ 1]*_K[ 1] + I[ 2]*_K[ 2] + + I[ 3]*_K[ 3] + I[ 4]*_K[ 4] + I[ 5]*_K[ 5] + + I[ 6]*_K[ 6] + I[ 7]*_K[ 7] + I[ 8]*_K[ 8] + + I[ 9]*_K[ 9] + I[10]*_K[10] + I[11]*_K[11] + + I[12]*_K[12] + I[13]*_K[13] + I[14]*_K[14] + + I[15]*_K[15] + I[16]*_K[16] + I[17]*_K[17] + + I[18]*_K[18] + I[19]*_K[19] + I[20]*_K[20] + + I[21]*_K[21] + I[22]*_K[22] + I[23]*_K[23] + + I[24]*_K[24] + I[25]*_K[25] + I[26]*_K[26])/std::sqrt(N):0); + } + } else cimg_for3x3x3(_img,x,y,z,0,I,T) + *(ptrd++) = (Ttfloat)(I[ 0]*_K[ 0] + I[ 1]*_K[ 1] + I[ 2]*_K[ 2] + + I[ 3]*_K[ 3] + I[ 4]*_K[ 4] + I[ 5]*_K[ 5] + + I[ 6]*_K[ 6] + I[ 7]*_K[ 7] + I[ 8]*_K[ 8] + + I[ 9]*_K[ 9] + I[10]*_K[10] + I[11]*_K[11] + + I[12]*_K[12] + I[13]*_K[13] + I[14]*_K[14] + + I[15]*_K[15] + I[16]*_K[16] + I[17]*_K[17] + + I[18]*_K[18] + I[19]*_K[19] + I[20]*_K[20] + + I[21]*_K[21] + I[22]*_K[22] + I[23]*_K[23] + + I[24]*_K[24] + I[25]*_K[25] + I[26]*_K[26]); + } + } break; + case 2 : { + I.assign(8); + cimg_forC(res,c) { + cimg_abort_test(); + const CImg _img = get_shared_channel(c%_spectrum); + const CImg K = _kernel.get_shared_channel(c%_kernel._spectrum); + if (is_normalized) { + const Ttfloat _M = (Ttfloat)K.magnitude(2), M = _M*_M; + cimg_for2x2x2(_img,x,y,z,0,I,T) { + const Ttfloat N = M*(I[0]*I[0] + I[1]*I[1] + + I[2]*I[2] + I[3]*I[3] + + I[4]*I[4] + I[5]*I[5] + + I[6]*I[6] + I[7]*I[7]); + *(ptrd++) = (Ttfloat)(N?(I[0]*K[0] + I[1]*K[1] + + I[2]*K[2] + I[3]*K[3] + + I[4]*K[4] + I[5]*K[5] + + I[6]*K[6] + I[7]*K[7])/std::sqrt(N):0); + } + } else cimg_for2x2x2(_img,x,y,z,0,I,T) + *(ptrd++) = (Ttfloat)(I[0]*K[0] + I[1]*K[1] + + I[2]*K[2] + I[3]*K[3] + + I[4]*K[4] + I[5]*K[5] + + I[6]*K[6] + I[7]*K[7]); + } + } break; + default : + case 1 : + switch (_kernel._width) { + case 6 : { + I.assign(36); + cimg_forC(res,c) { + cimg_abort_test(); + const CImg _img = get_shared_channel(c%_spectrum); + const CImg K = _kernel.get_shared_channel(c%_kernel._spectrum); + if (is_normalized) { + const Ttfloat _M = (Ttfloat)K.magnitude(2), M = _M*_M; + cimg_forZ(_img,z) cimg_for6x6(_img,x,y,z,0,I,T) { + const Ttfloat N = M*(I[ 0]*I[ 0] + I[ 1]*I[ 1] + I[ 2]*I[ 2] + I[ 3]*I[ 3] + I[ 4]*I[ 4] + + I[ 5]*I[ 5] + I[ 6]*I[ 6] + I[ 7]*I[ 7] + I[ 8]*I[ 8] + I[ 9]*I[ 9] + + I[10]*I[10] + I[11]*I[11] + I[12]*I[12] + I[13]*I[13] + I[14]*I[14] + + I[15]*I[15] + I[16]*I[16] + I[17]*I[17] + I[18]*I[18] + I[19]*I[19] + + I[20]*I[20] + I[21]*I[21] + I[22]*I[22] + I[23]*I[23] + I[24]*I[24] + + I[25]*I[25] + I[26]*I[26] + I[27]*I[27] + I[28]*I[28] + I[29]*I[29] + + I[30]*I[30] + I[31]*I[31] + I[32]*I[32] + I[33]*I[33] + I[34]*I[34] + + I[35]*I[35]); + *(ptrd++) = (Ttfloat)(N?(I[ 0]*K[ 0] + I[ 1]*K[ 1] + I[ 2]*K[ 2] + I[ 3]*K[ 3] + + I[ 4]*K[ 4] + I[ 5]*K[ 5] + I[ 6]*K[ 6] + I[ 7]*K[ 7] + + I[ 8]*K[ 8] + I[ 9]*K[ 9] + I[10]*K[10] + I[11]*K[11] + + I[12]*K[12] + I[13]*K[13] + I[14]*K[14] + I[15]*K[15] + + I[16]*K[16] + I[17]*K[17] + I[18]*K[18] + I[19]*K[19] + + I[20]*K[20] + I[21]*K[21] + I[22]*K[22] + I[23]*K[23] + + I[24]*K[24] + I[25]*K[25] + I[26]*K[26] + I[27]*K[27] + + I[28]*K[28] + I[29]*K[29] + I[30]*K[30] + I[31]*K[31] + + I[32]*K[32] + I[33]*K[33] + I[34]*K[34] + I[35]*K[35])/ + std::sqrt(N):0); + } + } else cimg_forZ(_img,z) cimg_for6x6(_img,x,y,z,0,I,T) + *(ptrd++) = (Ttfloat)(I[ 0]*K[ 0] + I[ 1]*K[ 1] + I[ 2]*K[ 2] + I[ 3]*K[ 3] + + I[ 4]*K[ 4] + I[ 5]*K[ 5] + I[ 6]*K[ 6] + I[ 7]*K[ 7] + + I[ 8]*K[ 8] + I[ 9]*K[ 9] + I[10]*K[10] + I[11]*K[11] + + I[12]*K[12] + I[13]*K[13] + I[14]*K[14] + I[15]*K[15] + + I[16]*K[16] + I[17]*K[17] + I[18]*K[18] + I[19]*K[19] + + I[20]*K[20] + I[21]*K[21] + I[22]*K[22] + I[23]*K[23] + + I[24]*K[24] + I[25]*K[25] + I[26]*K[26] + I[27]*K[27] + + I[28]*K[28] + I[29]*K[29] + I[30]*K[30] + I[31]*K[31] + + I[32]*K[32] + I[33]*K[33] + I[34]*K[34] + I[35]*K[35]); + } + } break; + case 5 : { + I.assign(25); + cimg_forC(res,c) { + cimg_abort_test(); + const CImg _img = get_shared_channel(c%_spectrum); + const CImg K = _kernel.get_shared_channel(c%_kernel._spectrum); + if (is_normalized) { + const Ttfloat _M = (Ttfloat)K.magnitude(2), M = _M*_M; + cimg_forZ(_img,z) cimg_for5x5(_img,x,y,z,0,I,T) { + const Ttfloat N = M*(I[ 0]*I[ 0] + I[ 1]*I[ 1] + I[ 2]*I[ 2] + I[ 3]*I[ 3] + I[ 4]*I[ 4] + + I[ 5]*I[ 5] + I[ 6]*I[ 6] + I[ 7]*I[ 7] + I[ 8]*I[ 8] + I[ 9]*I[ 9] + + I[10]*I[10] + I[11]*I[11] + I[12]*I[12] + I[13]*I[13] + I[14]*I[14] + + I[15]*I[15] + I[16]*I[16] + I[17]*I[17] + I[18]*I[18] + I[19]*I[19] + + I[20]*I[20] + I[21]*I[21] + I[22]*I[22] + I[23]*I[23] + I[24]*I[24]); + *(ptrd++) = (Ttfloat)(N?(I[ 0]*K[ 0] + I[ 1]*K[ 1] + I[ 2]*K[ 2] + I[ 3]*K[ 3] + + I[ 4]*K[ 4] + I[ 5]*K[ 5] + I[ 6]*K[ 6] + I[ 7]*K[ 7] + + I[ 8]*K[ 8] + I[ 9]*K[ 9] + I[10]*K[10] + I[11]*K[11] + + I[12]*K[12] + I[13]*K[13] + I[14]*K[14] + I[15]*K[15] + + I[16]*K[16] + I[17]*K[17] + I[18]*K[18] + I[19]*K[19] + + I[20]*K[20] + I[21]*K[21] + I[22]*K[22] + I[23]*K[23] + + I[24]*K[24])/std::sqrt(N):0); + } + } else cimg_forZ(_img,z) cimg_for5x5(_img,x,y,z,0,I,T) + *(ptrd++) = (Ttfloat)(I[ 0]*K[ 0] + I[ 1]*K[ 1] + I[ 2]*K[ 2] + I[ 3]*K[ 3] + + I[ 4]*K[ 4] + I[ 5]*K[ 5] + I[ 6]*K[ 6] + I[ 7]*K[ 7] + + I[ 8]*K[ 8] + I[ 9]*K[ 9] + I[10]*K[10] + I[11]*K[11] + + I[12]*K[12] + I[13]*K[13] + I[14]*K[14] + I[15]*K[15] + + I[16]*K[16] + I[17]*K[17] + I[18]*K[18] + I[19]*K[19] + + I[20]*K[20] + I[21]*K[21] + I[22]*K[22] + I[23]*K[23] + + I[24]*K[24]); + } + } break; + case 4 : { + I.assign(16); + cimg_forC(res,c) { + cimg_abort_test(); + const CImg _img = get_shared_channel(c%_spectrum); + const CImg K = _kernel.get_shared_channel(c%_kernel._spectrum); + if (is_normalized) { + const Ttfloat _M = (Ttfloat)K.magnitude(2), M = _M*_M; + cimg_forZ(_img,z) cimg_for4x4(_img,x,y,z,0,I,T) { + const Ttfloat N = M*(I[ 0]*I[ 0] + I[ 1]*I[ 1] + I[ 2]*I[ 2] + I[ 3]*I[ 3] + + I[ 4]*I[ 4] + I[ 5]*I[ 5] + I[ 6]*I[ 6] + I[ 7]*I[ 7] + + I[ 8]*I[ 8] + I[ 9]*I[ 9] + I[10]*I[10] + I[11]*I[11] + + I[12]*I[12] + I[13]*I[13] + I[14]*I[14] + I[15]*I[15]); + *(ptrd++) = (Ttfloat)(N?(I[ 0]*K[ 0] + I[ 1]*K[ 1] + I[ 2]*K[ 2] + I[ 3]*K[ 3] + + I[ 4]*K[ 4] + I[ 5]*K[ 5] + I[ 6]*K[ 6] + I[ 7]*K[ 7] + + I[ 8]*K[ 8] + I[ 9]*K[ 9] + I[10]*K[10] + I[11]*K[11] + + I[12]*K[12] + I[13]*K[13] + I[14]*K[14] + I[15]*K[15])/ + std::sqrt(N):0); + } + } else cimg_forZ(_img,z) cimg_for4x4(_img,x,y,z,0,I,T) + *(ptrd++) = (Ttfloat)(I[ 0]*K[ 0] + I[ 1]*K[ 1] + I[ 2]*K[ 2] + I[ 3]*K[ 3] + + I[ 4]*K[ 4] + I[ 5]*K[ 5] + I[ 6]*K[ 6] + I[ 7]*K[ 7] + + I[ 8]*K[ 8] + I[ 9]*K[ 9] + I[10]*K[10] + I[11]*K[11] + + I[12]*K[12] + I[13]*K[13] + I[14]*K[14] + I[15]*K[15]); + } + } break; + case 3 : { + I.assign(9); + cimg_forC(res,c) { + cimg_abort_test(); + const CImg _img = get_shared_channel(c%_spectrum); + const CImg K = _kernel.get_shared_channel(c%_kernel._spectrum); + if (is_normalized) { + const Ttfloat _M = (Ttfloat)K.magnitude(2), M = _M*_M; + cimg_forZ(_img,z) cimg_for3x3(_img,x,y,z,0,I,T) { + const Ttfloat N = M*(I[0]*I[0] + I[1]*I[1] + I[2]*I[2] + + I[3]*I[3] + I[4]*I[4] + I[5]*I[5] + + I[6]*I[6] + I[7]*I[7] + I[8]*I[8]); + *(ptrd++) = (Ttfloat)(N?(I[0]*K[0] + I[1]*K[1] + I[2]*K[2] + + I[3]*K[3] + I[4]*K[4] + I[5]*K[5] + + I[6]*K[6] + I[7]*K[7] + I[8]*K[8])/std::sqrt(N):0); + } + } else cimg_forZ(_img,z) cimg_for3x3(_img,x,y,z,0,I,T) + *(ptrd++) = (Ttfloat)(I[0]*K[0] + I[1]*K[1] + I[2]*K[2] + + I[3]*K[3] + I[4]*K[4] + I[5]*K[5] + + I[6]*K[6] + I[7]*K[7] + I[8]*K[8]); + } + } break; + case 2 : { + I.assign(4); + cimg_forC(res,c) { + cimg_abort_test(); + const CImg _img = get_shared_channel(c%_spectrum); + const CImg K = _kernel.get_shared_channel(c%_kernel._spectrum); + if (is_normalized) { + const Ttfloat _M = (Ttfloat)K.magnitude(2), M = _M*_M; + cimg_forZ(_img,z) cimg_for2x2(_img,x,y,z,0,I,T) { + const Ttfloat N = M*(I[0]*I[0] + I[1]*I[1] + + I[2]*I[2] + I[3]*I[3]); + *(ptrd++) = (Ttfloat)(N?(I[0]*K[0] + I[1]*K[1] + + I[2]*K[2] + I[3]*K[3])/std::sqrt(N):0); + } + } else cimg_forZ(_img,z) cimg_for2x2(_img,x,y,z,0,I,T) + *(ptrd++) = (Ttfloat)(I[0]*K[0] + I[1]*K[1] + + I[2]*K[2] + I[3]*K[3]); + } + } break; + case 1 : + if (is_normalized) res.fill(1); + else cimg_forC(res,c) { + cimg_abort_test(); + const CImg _img = get_shared_channel(c%_spectrum); + const CImg K = _kernel.get_shared_channel(c%_kernel._spectrum); + res.get_shared_channel(c).assign(_img)*=K[0]; + } + break; + } + } + } else { // Generic version for other kernels and boundary conditions. + int + mx2 = kernel.width()/2, my2 = kernel.height()/2, mz2 = kernel.depth()/2, + mx1 = kernel.width() - mx2 - 1, my1 = kernel.height() - my2 - 1, mz1 = kernel.depth() - mz2 - 1; + if (is_convolution) cimg::swap(mx1,mx2,my1,my2,mz1,mz2); // Shift kernel center in case of convolution + const int + mxe = width() - mx2, mye = height() - my2, mze = depth() - mz2; + cimg_forC(res,c) cimg_abort_try { + cimg_abort_test(); + const CImg _img = get_shared_channel(c%_spectrum); + const CImg K = kernel.get_shared_channel(c%kernel._spectrum); + if (is_normalized) { // Normalized correlation. + const Ttfloat _M = (Ttfloat)K.magnitude(2), M = _M*_M; + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width*_height*_depth>=32768)) + for (int z = mz1; z=256 && _height*_depth>=128)) + cimg_forYZ(res,y,z) cimg_abort_try2 { + cimg_abort_test2(); + for (int x = 0; x=mye || z=mze)?++x:((x=mxe)?++x:(x=mxe))) { + Ttfloat val = 0, N = 0; + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) { + const Ttfloat _val = (Ttfloat)_img._atXYZ(x + xm,y + ym,z + zm); + val+=_val*K(mx1 + xm,my1 + ym,mz1 + zm); + N+=_val*_val; + } + N*=M; + res(x,y,z,c) = (Ttfloat)(N?val/std::sqrt(N):0); + } + } cimg_abort_catch2() + else + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=256 && _height*_depth>=128)) + cimg_forYZ(res,y,z) cimg_abort_try2 { + cimg_abort_test2(); + for (int x = 0; x=mye || z=mze)?++x:((x=mxe)?++x:(x=mxe))) { + Ttfloat val = 0, N = 0; + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) { + const Ttfloat _val = (Ttfloat)_img.atXYZ(x + xm,y + ym,z + zm,0,(T)0); + val+=_val*K(mx1 + xm,my1 + ym,mz1 + zm); + N+=_val*_val; + } + N*=M; + res(x,y,z,c) = (Ttfloat)(N?val/std::sqrt(N):0); + } + } cimg_abort_catch2() + } else { // Classical correlation. + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width*_height*_depth>=32768)) + for (int z = mz1; z=256 && _height*_depth>=128)) + cimg_forYZ(res,y,z) cimg_abort_try2 { + cimg_abort_test2(); + for (int x = 0; x=mye || z=mze)?++x:((x=mxe)?++x:(x=mxe))) { + Ttfloat val = 0; + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) + val+=_img._atXYZ(x + xm,y + ym,z + zm)*K(mx1 + xm,my1 + ym,mz1 + zm); + res(x,y,z,c) = (Ttfloat)val; + } + } cimg_abort_catch2() + else + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=256 && _height*_depth>=128)) + cimg_forYZ(res,y,z) cimg_abort_try2 { + cimg_abort_test2(); + for (int x = 0; x=mye || z=mze)?++x:((x=mxe)?++x:(x=mxe))) { + Ttfloat val = 0; + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) + val+=_img.atXYZ(x + xm,y + ym,z + zm,0,(T)0)*K(mx1 + xm,my1 + ym,mz1 + zm); + res(x,y,z,c) = (Ttfloat)val; + } + } cimg_abort_catch2() + } + } cimg_abort_catch() + } + cimg_abort_test(); + return res; + } + + //! Convolve image by a kernel. + /** + \param kernel = the correlation kernel. + \param boundary_conditions boundary conditions can be (false=dirichlet, true=neumann) + \param is_normalized = enable local normalization. + \note + - The result \p res of the convolution of an image \p img by a kernel \p kernel is defined to be: + res(x,y,z) = sum_{i,j,k} img(x-i,y-j,z-k)*kernel(i,j,k) + **/ + template + CImg& convolve(const CImg& kernel, const bool boundary_conditions=true, const bool is_normalized=false) { + if (is_empty() || !kernel) return *this; + return get_convolve(kernel,boundary_conditions,is_normalized).move_to(*this); + } + + //! Convolve image by a kernel \newinstance. + template + CImg<_cimg_Ttfloat> get_convolve(const CImg& kernel, const bool boundary_conditions=true, + const bool is_normalized=false) const { + return _correlate(CImg(kernel._data,kernel.size(),1,1,1,true).get_mirror('x'). + resize(kernel,-1),boundary_conditions,is_normalized,true); + } + + //! Cumulate image values, optionally along specified axis. + /** + \param axis Cumulation axis. Set it to 0 to cumulate all values globally without taking axes into account. + **/ + CImg& cumulate(const char axis=0) { + switch (cimg::lowercase(axis)) { + case 'x' : + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=512 && _height*_depth*_spectrum>=16)) + cimg_forYZC(*this,y,z,c) { + T *ptrd = data(0,y,z,c); + Tlong cumul = (Tlong)0; + cimg_forX(*this,x) { cumul+=(Tlong)*ptrd; *(ptrd++) = (T)cumul; } + } + break; + case 'y' : { + const ulongT w = (ulongT)_width; + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_height>=512 && _width*_depth*_spectrum>=16)) + cimg_forXZC(*this,x,z,c) { + T *ptrd = data(x,0,z,c); + Tlong cumul = (Tlong)0; + cimg_forY(*this,y) { cumul+=(Tlong)*ptrd; *ptrd = (T)cumul; ptrd+=w; } + } + } break; + case 'z' : { + const ulongT wh = (ulongT)_width*_height; + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_depth>=512 && _width*_depth*_spectrum>=16)) + cimg_forXYC(*this,x,y,c) { + T *ptrd = data(x,y,0,c); + Tlong cumul = (Tlong)0; + cimg_forZ(*this,z) { cumul+=(Tlong)*ptrd; *ptrd = (T)cumul; ptrd+=wh; } + } + } break; + case 'c' : { + const ulongT whd = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_spectrum>=512 && _width*_height*_depth>=16)) + cimg_forXYZ(*this,x,y,z) { + T *ptrd = data(x,y,z,0); + Tlong cumul = (Tlong)0; + cimg_forC(*this,c) { cumul+=(Tlong)*ptrd; *ptrd = (T)cumul; ptrd+=whd; } + } + } break; + default : { // Global cumulation. + Tlong cumul = (Tlong)0; + cimg_for(*this,ptrd,T) { cumul+=(Tlong)*ptrd; *ptrd = (T)cumul; } + } + } + return *this; + } + + //! Cumulate image values, optionally along specified axis \newinstance. + CImg get_cumulate(const char axis=0) const { + return CImg(*this,false).cumulate(axis); + } + + //! Cumulate image values, along specified axes. + /** + \param axes Cumulation axes, as a C-string. + \note \c axes may contains multiple characters, e.g. \c "xyz" + **/ + CImg& cumulate(const char *const axes) { + for (const char *s = axes; *s; ++s) cumulate(*s); + return *this; + } + + //! Cumulate image values, along specified axes \newinstance. + CImg get_cumulate(const char *const axes) const { + return CImg(*this,false).cumulate(axes); + } + + //! Erode image by a structuring element. + /** + \param kernel Structuring element. + \param boundary_conditions Boundary conditions. + \param is_real Do the erosion in real (a.k.a 'non-flat') mode (\c true) rather than binary mode (\c false). + **/ + template + CImg& erode(const CImg& kernel, const bool boundary_conditions=true, + const bool is_real=false) { + if (is_empty() || !kernel) return *this; + return get_erode(kernel,boundary_conditions,is_real).move_to(*this); + } + + //! Erode image by a structuring element \newinstance. + template + CImg<_cimg_Tt> get_erode(const CImg& kernel, const bool boundary_conditions=true, + const bool is_real=false) const { + if (is_empty() || !kernel) return *this; + if (!is_real && kernel==0) return CImg(width(),height(),depth(),spectrum(),0); + typedef _cimg_Tt Tt; + CImg res(_width,_height,_depth,std::max(_spectrum,kernel._spectrum)); + const int + mx2 = kernel.width()/2, my2 = kernel.height()/2, mz2 = kernel.depth()/2, + mx1 = kernel.width() - mx2 - 1, my1 = kernel.height() - my2 - 1, mz1 = kernel.depth() - mz2 - 1, + mxe = width() - mx2, mye = height() - my2, mze = depth() - mz2; + cimg_abort_init; + cimg_forC(*this,c) cimg_abort_try { + cimg_abort_test(); + const CImg _img = get_shared_channel(c%_spectrum); + const CImg K = kernel.get_shared_channel(c%kernel._spectrum); + if (is_real) { // Real erosion + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width*_height*_depth>=32768)) + for (int z = mz1; z::max(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) { + const t mval = K(mx1 + xm,my1 + ym,mz1 + zm); + const Tt cval = (Tt)(_img(x + xm,y + ym,z + zm) - mval); + if (cval=256 && _height*_depth>=128)) + cimg_forYZ(res,y,z) cimg_abort_try2 { + cimg_abort_test2(); + for (int x = 0; x=mye || z=mze)?++x:((x=mxe)?++x:(x=mxe))) { + Tt min_val = cimg::type::max(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) { + const t mval = K(mx1 + xm,my1 + ym,mz1 + zm); + const Tt cval = (Tt)(_img._atXYZ(x + xm,y + ym,z + zm) - mval); + if (cval=256 && _height*_depth>=128)) + cimg_forYZ(res,y,z) cimg_abort_try2 { + cimg_abort_test2(); + for (int x = 0; x=mye || z=mze)?++x:((x=mxe)?++x:(x=mxe))) { + Tt min_val = cimg::type::max(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) { + const t mval = K(mx1 + xm,my1 + ym,mz1 + zm); + const Tt cval = (Tt)(_img.atXYZ(x + xm,y + ym,z + zm,0,(T)0) - mval); + if (cval=32768)) + for (int z = mz1; z::max(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) + if (K(mx1 + xm,my1 + ym,mz1 + zm)) { + const Tt cval = (Tt)_img(x + xm,y + ym,z + zm); + if (cval=256 && _height*_depth>=128)) + cimg_forYZ(res,y,z) cimg_abort_try2 { + cimg_abort_test2(); + for (int x = 0; x=mye || z=mze)?++x:((x=mxe)?++x:(x=mxe))) { + Tt min_val = cimg::type::max(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) + if (K(mx1 + xm,my1 + ym,mz1 + zm)) { + const T cval = (Tt)_img._atXYZ(x + xm,y + ym,z + zm); + if (cval=256 && _height*_depth>=128)) + cimg_forYZ(res,y,z) cimg_abort_try2 { + cimg_abort_test2(); + for (int x = 0; x=mye || z=mze)?++x:((x=mxe)?++x:(x=mxe))) { + Tt min_val = cimg::type::max(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) + if (K(mx1 + xm,my1 + ym,mz1 + zm)) { + const T cval = (Tt)_img.atXYZ(x + xm,y + ym,z + zm,0,(T)0); + if (cval& erode(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) { + if (is_empty() || (sx==1 && sy==1 && sz==1)) return *this; + if (sx>1 && _width>1) { // Along X-axis. + const int L = width(), off = 1, s = (int)sx, _s2 = s/2 + 1, _s1 = s - _s2, s1 = _s1>L?L:_s1, s2 = _s2>L?L:_s2; + CImg buf(L); + cimg_pragma_openmp(parallel for collapse(3) firstprivate(buf) if (size()>524288)) + cimg_forYZC(*this,y,z,c) { + T *const ptrdb = buf._data, *ptrd = buf._data, *const ptrde = buf._data + L - 1; + const T *const ptrsb = data(0,y,z,c), *ptrs = ptrsb, *const ptrse = ptrs + L*off - off; + T cur = *ptrs; ptrs+=off; bool is_first = true; + for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) { + const T val = *ptrs; ptrs+=off; if (val<=cur) { cur = val; is_first = false; }} + *(ptrd++) = cur; + if (ptrs>=ptrse) { + T *pd = data(0,y,z,c); cur = std::min(cur,*ptrse); cimg_forX(buf,x) { *pd = cur; pd+=off; } + } else { + for (int p = s1; p>0 && ptrd<=ptrde; --p) { + const T val = *ptrs; if (ptrs0; --p) { + const T val = *ptrs; ptrs+=off; + if (is_first) { + const T *nptrs = ptrs - off; cur = val; + for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval0 && ptrs>=ptrsb; --p) { + const T val = *ptrs; ptrs-=off; if (val0 && ptrd>=ptrdb; --p) { + const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val1 && _height>1) { // Along Y-axis. + const int L = height(), off = width(), s = (int)sy, _s2 = s/2 + 1, _s1 = s - _s2, s1 = _s1>L?L:_s1, + s2 = _s2>L?L:_s2; + CImg buf(L); + cimg_pragma_openmp(parallel for collapse(3) firstprivate(buf) if (size()>524288)) + cimg_forXZC(*this,x,z,c) { + T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1; + const T *const ptrsb = data(x,0,z,c), *ptrs = ptrsb, *const ptrse = ptrs + L*off - off; + T cur = *ptrs; ptrs+=off; bool is_first = true; + for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) { + const T val = *ptrs; ptrs+=off; if (val<=cur) { cur = val; is_first = false; } + } + *(ptrd++) = cur; + if (ptrs>=ptrse) { + T *pd = data(x,0,z,c); cur = std::min(cur,*ptrse); cimg_forX(buf,x) { *pd = cur; pd+=off; } + } else { + for (int p = s1; p>0 && ptrd<=ptrde; --p) { + const T val = *ptrs; if (ptrs0; --p) { + const T val = *ptrs; ptrs+=off; + if (is_first) { + const T *nptrs = ptrs - off; cur = val; + for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval0 && ptrs>=ptrsb; --p) { + const T val = *ptrs; ptrs-=off; if (val0 && ptrd>=ptrdb; --p) { + const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val1 && _depth>1) { // Along Z-axis. + const int L = depth(), off = width()*height(), s = (int)sz, _s2 = s/2 + 1, _s1 = s - _s2, s1 = _s1>L?L:_s1, + s2 = _s2>L?L:_s2; + CImg buf(L); + cimg_pragma_openmp(parallel for collapse(3) firstprivate(buf) if (size()>524288)) + cimg_forXYC(*this,x,y,c) { + T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1; + const T *const ptrsb = data(x,y,0,c), *ptrs = ptrsb, *const ptrse = ptrs + L*off - off; + T cur = *ptrs; ptrs+=off; bool is_first = true; + for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) { + const T val = *ptrs; ptrs+=off; if (val<=cur) { cur = val; is_first = false; } + } + *(ptrd++) = cur; + if (ptrs>=ptrse) { + T *pd = data(x,y,0,c); cur = std::min(cur,*ptrse); cimg_forX(buf,x) { *pd = cur; pd+=off; } + } else { + for (int p = s1; p>0 && ptrd<=ptrde; --p) { + const T val = *ptrs; if (ptrs0; --p) { + const T val = *ptrs; ptrs+=off; + if (is_first) { + const T *nptrs = ptrs - off; cur = val; + for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval0 && ptrs>=ptrsb; --p) { + const T val = *ptrs; ptrs-=off; if (val0 && ptrd>=ptrdb; --p) { + const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val get_erode(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const { + return (+*this).erode(sx,sy,sz); + } + + //! Erode the image by a square structuring element of specified size. + /** + \param s Size of the structuring element. + **/ + CImg& erode(const unsigned int s) { + return erode(s,s,s); + } + + //! Erode the image by a square structuring element of specified size \newinstance. + CImg get_erode(const unsigned int s) const { + return (+*this).erode(s); + } + + //! Dilate image by a structuring element. + /** + \param kernel Structuring element. + \param boundary_conditions Boundary conditions. + \param is_real Do the dilation in real (a.k.a 'non-flat') mode (\c true) rather than binary mode (\c false). + **/ + template + CImg& dilate(const CImg& kernel, const bool boundary_conditions=true, + const bool is_real=false) { + if (is_empty() || !kernel) return *this; + return get_dilate(kernel,boundary_conditions,is_real).move_to(*this); + } + + //! Dilate image by a structuring element \newinstance. + template + CImg<_cimg_Tt> get_dilate(const CImg& kernel, const bool boundary_conditions=true, + const bool is_real=false) const { + if (is_empty() || !kernel || (!is_real && kernel==0)) return *this; + typedef _cimg_Tt Tt; + CImg res(_width,_height,_depth,_spectrum); + const int + mx1 = kernel.width()/2, my1 = kernel.height()/2, mz1 = kernel.depth()/2, + mx2 = kernel.width() - mx1 - 1, my2 = kernel.height() - my1 - 1, mz2 = kernel.depth() - mz1 - 1, + mxe = width() - mx2, mye = height() - my2, mze = depth() - mz2; + cimg_abort_init; + cimg_forC(*this,c) cimg_abort_try { + cimg_abort_test(); + const CImg _img = get_shared_channel(c%_spectrum); + const CImg K = kernel.get_shared_channel(c%kernel._spectrum); + if (is_real) { // Real dilation + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width*_height*_depth>=32768)) + for (int z = mz1; z::min(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) { + const t mval = K(mx2 - xm,my2 - ym,mz2 - zm); + const Tt cval = (Tt)(_img(x + xm,y + ym,z + zm) + mval); + if (cval>max_val) max_val = cval; + } + res(x,y,z,c) = max_val; + } cimg_abort_catch2() + if (boundary_conditions) + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=256 && _height*_depth>=128)) + cimg_forYZ(res,y,z) cimg_abort_try2 { + cimg_abort_test2(); + for (int x = 0; x=mye || z=mze)?++x:((x=mxe)?++x:(x=mxe))) { + Tt max_val = cimg::type::min(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) { + const t mval = K(mx2 - xm,my2 - ym,mz2 - zm); + const Tt cval = (Tt)(_img._atXYZ(x + xm,y + ym,z + zm) + mval); + if (cval>max_val) max_val = cval; + } + res(x,y,z,c) = max_val; + } + } cimg_abort_catch2() + else + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=256 && _height*_depth>=128)) + cimg_forYZ(*this,y,z) cimg_abort_try2 { + cimg_abort_test2(); + for (int x = 0; x=mye || z=mze)?++x:((x=mxe)?++x:(x=mxe))) { + Tt max_val = cimg::type::min(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) { + const t mval = K(mx2 - xm,my2 - ym,mz2 - zm); + const Tt cval = (Tt)(_img.atXYZ(x + xm,y + ym,z + zm,0,(T)0) + mval); + if (cval>max_val) max_val = cval; + } + res(x,y,z,c) = max_val; + } + } cimg_abort_catch2() + } else { // Binary dilation + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=256 && _height*_depth>=128)) + for (int z = mz1; z::min(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) + if (K(mx2 - xm,my2 - ym,mz2 - zm)) { + const Tt cval = (Tt)_img(x + xm,y + ym,z + zm); + if (cval>max_val) max_val = cval; + } + res(x,y,z,c) = max_val; + } cimg_abort_catch2() + if (boundary_conditions) + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=256 && _height*_depth>=128)) + cimg_forYZ(res,y,z) cimg_abort_try2 { + cimg_abort_test2(); + for (int x = 0; x=mye || z=mze)?++x:((x=mxe)?++x:(x=mxe))) { + Tt max_val = cimg::type::min(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) + if (K(mx2 - xm,my2 - ym,mz2 - zm)) { + const T cval = (Tt)_img._atXYZ(x + xm,y + ym,z + zm); + if (cval>max_val) max_val = cval; + } + res(x,y,z,c) = max_val; + } + } cimg_abort_catch2() + else + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=256 && _height*_depth>=128)) + cimg_forYZ(res,y,z) cimg_abort_try2 { + cimg_abort_test2(); + for (int x = 0; x=mye || z=mze)?++x:((x=mxe)?++x:(x=mxe))) { + Tt max_val = cimg::type::min(); + for (int zm = -mz1; zm<=mz2; ++zm) + for (int ym = -my1; ym<=my2; ++ym) + for (int xm = -mx1; xm<=mx2; ++xm) + if (K(mx2 - xm,my2 - ym,mz2 - zm)) { + const T cval = (Tt)_img.atXYZ(x + xm,y + ym,z + zm,0,(T)0); + if (cval>max_val) max_val = cval; + } + res(x,y,z,c) = max_val; + } + } cimg_abort_catch2() + } + } cimg_abort_catch() + cimg_abort_test(); + return res; + } + + //! Dilate image by a rectangular structuring element of specified size. + /** + \param sx Width of the structuring element. + \param sy Height of the structuring element. + \param sz Depth of the structuring element. + **/ + CImg& dilate(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) { + if (is_empty() || (sx==1 && sy==1 && sz==1)) return *this; + if (sx>1 && _width>1) { // Along X-axis. + const int L = width(), off = 1, s = (int)sx, _s1 = s/2, _s2 = s - _s1, s1 = _s1>L?L:_s1, s2 = _s2>L?L:_s2; + CImg buf(L); + cimg_pragma_openmp(parallel for collapse(3) firstprivate(buf) if (size()>524288)) + cimg_forYZC(*this,y,z,c) { + T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1; + const T *const ptrsb = data(0,y,z,c), *ptrs = ptrsb, *const ptrse = ptrs + L*off - off; + T cur = *ptrs; ptrs+=off; bool is_first = true; + for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) { + const T val = *ptrs; ptrs+=off; if (val>=cur) { cur = val; is_first = false; } + } + *(ptrd++) = cur; + if (ptrs>=ptrse) { + T *pd = data(0,y,z,c); cur = std::max(cur,*ptrse); cimg_forX(buf,x) { *pd = cur; pd+=off; } + } else { + for (int p = s1; p>0 && ptrd<=ptrde; --p) { + const T val = *ptrs; if (ptrs=cur) { cur = val; is_first = false; } + *(ptrd++) = cur; + } + for (int p = L - s - 1; p>0; --p) { + const T val = *ptrs; ptrs+=off; + if (is_first) { + const T *nptrs = ptrs - off; cur = val; + for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval>cur) cur = nval; } + nptrs-=off; const T nval = *nptrs; if (nval>cur) { cur = nval; is_first = true; } else is_first = false; + } else { if (val>=cur) cur = val; else if (cur==*(ptrs-s*off)) is_first = true; } + *(ptrd++) = cur; + } + ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs-=off; + for (int p = s1; p>0 && ptrs>=ptrsb; --p) { + const T val = *ptrs; ptrs-=off; if (val>cur) cur = val; + } + *(ptrd--) = cur; + for (int p = s2 - 1; p>0 && ptrd>=ptrdb; --p) { + const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val>cur) cur = val; *(ptrd--) = cur; + } + T *pd = data(0,y,z,c); cimg_for(buf,ps,T) { *pd = *ps; pd+=off; } + } + } + } + + if (sy>1 && _height>1) { // Along Y-axis. + const int L = height(), off = width(), s = (int)sy, _s1 = s/2, _s2 = s - _s1, s1 = _s1>L?L:_s1, + s2 = _s2>L?L:_s2; + CImg buf(L); + cimg_pragma_openmp(parallel for collapse(3) firstprivate(buf) if (size()>524288)) + cimg_forXZC(*this,x,z,c) { + T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1; + const T *const ptrsb = data(x,0,z,c), *ptrs = ptrsb, *const ptrse = ptrs + L*off - off; + T cur = *ptrs; ptrs+=off; bool is_first = true; + for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) { + const T val = *ptrs; ptrs+=off; if (val>=cur) { cur = val; is_first = false; } + } + *(ptrd++) = cur; + if (ptrs>=ptrse) { + T *pd = data(x,0,z,c); cur = std::max(cur,*ptrse); cimg_forX(buf,x) { *pd = cur; pd+=off; } + } else { + for (int p = s1; p>0 && ptrd<=ptrde; --p) { + const T val = *ptrs; if (ptrs=cur) { cur = val; is_first = false; } + *(ptrd++) = cur; + } + for (int p = L - s - 1; p>0; --p) { + const T val = *ptrs; ptrs+=off; + if (is_first) { + const T *nptrs = ptrs - off; cur = val; + for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval>cur) cur = nval; } + nptrs-=off; const T nval = *nptrs; if (nval>cur) { cur = nval; is_first = true; } else is_first = false; + } else { if (val>=cur) cur = val; else if (cur==*(ptrs-s*off)) is_first = true; } + *(ptrd++) = cur; + } + ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs-=off; + for (int p = s1; p>0 && ptrs>=ptrsb; --p) { + const T val = *ptrs; ptrs-=off; if (val>cur) cur = val; + } + *(ptrd--) = cur; + for (int p = s2 - 1; p>0 && ptrd>=ptrdb; --p) { + const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val>cur) cur = val; *(ptrd--) = cur; + } + T *pd = data(x,0,z,c); cimg_for(buf,ps,T) { *pd = *ps; pd+=off; } + } + } + } + + if (sz>1 && _depth>1) { // Along Z-axis. + const int L = depth(), off = width()*height(), s = (int)sz, _s1 = s/2, _s2 = s - _s1, s1 = _s1>L?L:_s1, + s2 = _s2>L?L:_s2; + CImg buf(L); + cimg_pragma_openmp(parallel for collapse(3) firstprivate(buf) if (size()>524288)) + cimg_forXYC(*this,x,y,c) { + T *const ptrdb = buf._data, *ptrd = ptrdb, *const ptrde = buf._data + L - 1; + const T *const ptrsb = data(x,y,0,c), *ptrs = ptrsb, *const ptrse = ptrs + L*off - off; + T cur = *ptrs; ptrs+=off; bool is_first = true; + for (int p = s2 - 1; p>0 && ptrs<=ptrse; --p) { + const T val = *ptrs; ptrs+=off; if (val>=cur) { cur = val; is_first = false; } + } + *(ptrd++) = cur; + if (ptrs>=ptrse) { + T *pd = data(x,y,0,c); cur = std::max(cur,*ptrse); cimg_forX(buf,x) { *pd = cur; pd+=off; } + } else { + for (int p = s1; p>0 && ptrd<=ptrde; --p) { + const T val = *ptrs; if (ptrs=cur) { cur = val; is_first = false; } + *(ptrd++) = cur; + } + for (int p = L - s - 1; p>0; --p) { + const T val = *ptrs; ptrs+=off; + if (is_first) { + const T *nptrs = ptrs - off; cur = val; + for (int q = s - 2; q>0; --q) { nptrs-=off; const T nval = *nptrs; if (nval>cur) cur = nval; } + nptrs-=off; const T nval = *nptrs; if (nval>cur) { cur = nval; is_first = true; } else is_first = false; + } else { if (val>=cur) cur = val; else if (cur==*(ptrs-s*off)) is_first = true; } + *(ptrd++) = cur; + } + ptrd = ptrde; ptrs = ptrse; cur = *ptrs; ptrs-=off; + for (int p = s1; p>0 && ptrs>=ptrsb; --p) { + const T val = *ptrs; ptrs-=off; if (val>cur) cur = val; + } + *(ptrd--) = cur; + for (int p = s2 - 1; p>0 && ptrd>=ptrdb; --p) { + const T val = *ptrs; if (ptrs>ptrsb) ptrs-=off; if (val>cur) cur = val; *(ptrd--) = cur; + } + T *pd = data(x,y,0,c); cimg_for(buf,ps,T) { *pd = *ps; pd+=off; } + } + } + } + return *this; + } + + //! Dilate image by a rectangular structuring element of specified size \newinstance. + CImg get_dilate(const unsigned int sx, const unsigned int sy, const unsigned int sz=1) const { + return (+*this).dilate(sx,sy,sz); + } + + //! Dilate image by a square structuring element of specified size. + /** + \param s Size of the structuring element. + **/ + CImg& dilate(const unsigned int s) { + return dilate(s,s,s); + } + + //! Dilate image by a square structuring element of specified size \newinstance. + CImg get_dilate(const unsigned int s) const { + return (+*this).dilate(s); + } + + //! Compute watershed transform. + /** + \param priority Priority map. + \param is_high_connectivity Boolean that choose between 4(false)- or 8(true)-connectivity + in 2d case, and between 6(false)- or 26(true)-connectivity in 3d case. + \note Non-zero values of the instance instance are propagated to zero-valued ones according to + specified the priority map. + **/ + template + CImg& watershed(const CImg& priority, const bool is_high_connectivity=false) { +#define _cimg_watershed_init(cond,X,Y,Z) \ + if (cond && !(*this)(X,Y,Z)) Q._priority_queue_insert(labels,sizeQ,priority(X,Y,Z),X,Y,Z,nb_seeds) + +#define _cimg_watershed_propagate(cond,X,Y,Z) \ + if (cond) { \ + if ((*this)(X,Y,Z)) { \ + ns = labels(X,Y,Z) - 1; xs = seeds(ns,0); ys = seeds(ns,1); zs = seeds(ns,2); \ + d = cimg::sqr((float)x - xs) + cimg::sqr((float)y - ys) + cimg::sqr((float)z - zs); \ + if (d labels(_width,_height,_depth,1,0), seeds(64,3); + CImg::type> Q; + unsigned int sizeQ = 0; + int px, nx, py, ny, pz, nz; + bool is_px, is_nx, is_py, is_ny, is_pz, is_nz; + const bool is_3d = _depth>1; + + // Find seed points and insert them in priority queue. + unsigned int nb_seeds = 0; + const T *ptrs = _data; + cimg_forXYZ(*this,x,y,z) if (*(ptrs++)) { // 3d version + if (nb_seeds>=seeds._width) seeds.resize(2*seeds._width,3,1,1,0); + seeds(nb_seeds,0) = x; seeds(nb_seeds,1) = y; seeds(nb_seeds++,2) = z; + px = x - 1; nx = x + 1; + py = y - 1; ny = y + 1; + pz = z - 1; nz = z + 1; + is_px = px>=0; is_nx = nx=0; is_ny = ny=0; is_nz = nz=0; is_nx = nx=0; is_ny = ny=0; is_nz = nz::inf(); + T label = (T)0; + _cimg_watershed_propagate(is_px,px,y,z); + _cimg_watershed_propagate(is_nx,nx,y,z); + _cimg_watershed_propagate(is_py,x,py,z); + _cimg_watershed_propagate(is_ny,x,ny,z); + if (is_3d) { + _cimg_watershed_propagate(is_pz,x,y,pz); + _cimg_watershed_propagate(is_nz,x,y,nz); + } + if (is_high_connectivity) { + _cimg_watershed_propagate(is_px && is_py,px,py,z); + _cimg_watershed_propagate(is_nx && is_py,nx,py,z); + _cimg_watershed_propagate(is_px && is_ny,px,ny,z); + _cimg_watershed_propagate(is_nx && is_ny,nx,ny,z); + if (is_3d) { + _cimg_watershed_propagate(is_px && is_pz,px,y,pz); + _cimg_watershed_propagate(is_nx && is_pz,nx,y,pz); + _cimg_watershed_propagate(is_px && is_nz,px,y,nz); + _cimg_watershed_propagate(is_nx && is_nz,nx,y,nz); + _cimg_watershed_propagate(is_py && is_pz,x,py,pz); + _cimg_watershed_propagate(is_ny && is_pz,x,ny,pz); + _cimg_watershed_propagate(is_py && is_nz,x,py,nz); + _cimg_watershed_propagate(is_ny && is_nz,x,ny,nz); + _cimg_watershed_propagate(is_px && is_py && is_pz,px,py,pz); + _cimg_watershed_propagate(is_nx && is_py && is_pz,nx,py,pz); + _cimg_watershed_propagate(is_px && is_ny && is_pz,px,ny,pz); + _cimg_watershed_propagate(is_nx && is_ny && is_pz,nx,ny,pz); + _cimg_watershed_propagate(is_px && is_py && is_nz,px,py,nz); + _cimg_watershed_propagate(is_nx && is_py && is_nz,nx,py,nz); + _cimg_watershed_propagate(is_px && is_ny && is_nz,px,ny,nz); + _cimg_watershed_propagate(is_nx && is_ny && is_nz,nx,ny,nz); + } + } + (*this)(x,y,z) = label; + labels(x,y,z) = ++nmin; + } + return *this; + } + + //! Compute watershed transform \newinstance. + template + CImg get_watershed(const CImg& priority, const bool is_high_connectivity=false) const { + return (+*this).watershed(priority,is_high_connectivity); + } + + // [internal] Insert/Remove items in priority queue, for watershed/distance transforms. + template + bool _priority_queue_insert(CImg& is_queued, unsigned int& siz, const tv value, + const unsigned int x, const unsigned int y, const unsigned int z, + const unsigned int n=1) { + if (is_queued(x,y,z)) return false; + is_queued(x,y,z) = (tq)n; + if (++siz>=_width) { if (!is_empty()) resize(_width*2,4,1,1,0); else assign(64,4); } + (*this)(siz - 1,0) = (T)value; + (*this)(siz - 1,1) = (T)x; + (*this)(siz - 1,2) = (T)y; + (*this)(siz - 1,3) = (T)z; + for (unsigned int pos = siz - 1, par = 0; pos && value>(*this)(par=(pos + 1)/2 - 1,0); pos = par) { + cimg::swap((*this)(pos,0),(*this)(par,0)); + cimg::swap((*this)(pos,1),(*this)(par,1)); + cimg::swap((*this)(pos,2),(*this)(par,2)); + cimg::swap((*this)(pos,3),(*this)(par,3)); + } + return true; + } + + CImg& _priority_queue_remove(unsigned int& siz) { + (*this)(0,0) = (*this)(--siz,0); + (*this)(0,1) = (*this)(siz,1); + (*this)(0,2) = (*this)(siz,2); + (*this)(0,3) = (*this)(siz,3); + const float value = (*this)(0,0); + for (unsigned int pos = 0, left = 0, right = 0; + ((right=2*(pos + 1),(left=right - 1))(*this)(right,0)) { + cimg::swap((*this)(pos,0),(*this)(left,0)); + cimg::swap((*this)(pos,1),(*this)(left,1)); + cimg::swap((*this)(pos,2),(*this)(left,2)); + cimg::swap((*this)(pos,3),(*this)(left,3)); + pos = left; + } else { + cimg::swap((*this)(pos,0),(*this)(right,0)); + cimg::swap((*this)(pos,1),(*this)(right,1)); + cimg::swap((*this)(pos,2),(*this)(right,2)); + cimg::swap((*this)(pos,3),(*this)(right,3)); + pos = right; + } + } else { + cimg::swap((*this)(pos,0),(*this)(left,0)); + cimg::swap((*this)(pos,1),(*this)(left,1)); + cimg::swap((*this)(pos,2),(*this)(left,2)); + cimg::swap((*this)(pos,3),(*this)(left,3)); + pos = left; + } + } + return *this; + } + + //! Apply recursive Deriche filter. + /** + \param sigma Standard deviation of the filter. + \param order Order of the filter. Can be { 0=smooth-filter | 1=1st-derivative | 2=2nd-derivative }. + \param axis Axis along which the filter is computed. Can be { 'x' | 'y' | 'z' | 'c' }. + \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann }. + **/ + CImg& deriche(const float sigma, const unsigned int order=0, const char axis='x', + const bool boundary_conditions=true) { +#define _cimg_deriche_apply \ + CImg Y(N); \ + Tfloat *ptrY = Y._data, yb = 0, yp = 0; \ + T xp = (T)0; \ + if (boundary_conditions) { xp = *ptrX; yb = yp = (Tfloat)(coefp*xp); } \ + for (int m = 0; m=0; --n) { \ + const T xc = *(ptrX-=off); \ + const Tfloat yc = (Tfloat)(a2*xn + a3*xa - b1*yn - b2*ya); \ + xa = xn; xn = xc; ya = yn; yn = yc; \ + *ptrX = (T)(*(--ptrY)+yc); \ + } + const char naxis = cimg::lowercase(axis); + const float nsigma = sigma>=0?sigma:-sigma*(naxis=='x'?_width:naxis=='y'?_height:naxis=='z'?_depth:_spectrum)/100; + if (is_empty() || (nsigma<0.1f && !order)) return *this; + const float + nnsigma = nsigma<0.1f?0.1f:nsigma, + alpha = 1.695f/nnsigma, + ema = (float)std::exp(-alpha), + ema2 = (float)std::exp(-2*alpha), + b1 = -2*ema, + b2 = ema2; + float a0 = 0, a1 = 0, a2 = 0, a3 = 0, coefp = 0, coefn = 0; + switch (order) { + case 0 : { + const float k = (1-ema)*(1-ema)/(1 + 2*alpha*ema-ema2); + a0 = k; + a1 = k*(alpha - 1)*ema; + a2 = k*(alpha + 1)*ema; + a3 = -k*ema2; + } break; + case 1 : { + const float k = -(1-ema)*(1-ema)*(1-ema)/(2*(ema + 1)*ema); + a0 = a3 = 0; + a1 = k*ema; + a2 = -a1; + } break; + case 2 : { + const float + ea = (float)std::exp(-alpha), + k = -(ema2 - 1)/(2*alpha*ema), + kn = (-2*(-1 + 3*ea - 3*ea*ea + ea*ea*ea)/(3*ea + 1 + 3*ea*ea + ea*ea*ea)); + a0 = kn; + a1 = -kn*(1 + k*alpha)*ema; + a2 = kn*(1 - k*alpha)*ema; + a3 = -kn*ema2; + } break; + default : + throw CImgArgumentException(_cimg_instance + "deriche(): Invalid specified filter order %u " + "(should be { 0=smoothing | 1=1st-derivative | 2=2nd-derivative }).", + cimg_instance, + order); + } + coefp = (a0 + a1)/(1 + b1 + b2); + coefn = (a2 + a3)/(1 + b1 + b2); + switch (naxis) { + case 'x' : { + const int N = width(); + const ulongT off = 1U; + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=256 && _height*_depth*_spectrum>=16)) + cimg_forYZC(*this,y,z,c) { T *ptrX = data(0,y,z,c); _cimg_deriche_apply; } + } break; + case 'y' : { + const int N = height(); + const ulongT off = (ulongT)_width; + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=256 && _height*_depth*_spectrum>=16)) + cimg_forXZC(*this,x,z,c) { T *ptrX = data(x,0,z,c); _cimg_deriche_apply; } + } break; + case 'z' : { + const int N = depth(); + const ulongT off = (ulongT)_width*_height; + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=256 && _height*_depth*_spectrum>=16)) + cimg_forXYC(*this,x,y,c) { T *ptrX = data(x,y,0,c); _cimg_deriche_apply; } + } break; + default : { + const int N = spectrum(); + const ulongT off = (ulongT)_width*_height*_depth; + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=256 && _height*_depth*_spectrum>=16)) + cimg_forXYZ(*this,x,y,z) { T *ptrX = data(x,y,z,0); _cimg_deriche_apply; } + } + } + return *this; + } + + //! Apply recursive Deriche filter \newinstance. + CImg get_deriche(const float sigma, const unsigned int order=0, const char axis='x', + const bool boundary_conditions=true) const { + return CImg(*this,false).deriche(sigma,order,axis,boundary_conditions); + } + + // [internal] Apply a recursive filter (used by CImg::vanvliet()). + /* + \param ptr the pointer of the data + \param filter the coefficient of the filter in the following order [n,n - 1,n - 2,n - 3]. + \param N size of the data + \param off the offset between two data point + \param order the order of the filter 0 (smoothing), 1st derivtive, 2nd derivative, 3rd derivative + \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann }. + \note Boundary condition using B. Triggs method (IEEE trans on Sig Proc 2005). + */ + static void _cimg_recursive_apply(T *data, const double filter[], const int N, const ulongT off, + const unsigned int order, const bool boundary_conditions) { + double val[4] = { 0 }; // res[n,n - 1,n - 2,n - 3,..] or res[n,n + 1,n + 2,n + 3,..] + const double + sumsq = filter[0], sum = sumsq * sumsq, + a1 = filter[1], a2 = filter[2], a3 = filter[3], + scaleM = 1.0 / ( (1.0 + a1 - a2 + a3) * (1.0 - a1 - a2 - a3) * (1.0 + a2 + (a1 - a3) * a3) ); + double M[9]; // Triggs matrix + M[0] = scaleM * (-a3 * a1 + 1.0 - a3 * a3 - a2); + M[1] = scaleM * (a3 + a1) * (a2 + a3 * a1); + M[2] = scaleM * a3 * (a1 + a3 * a2); + M[3] = scaleM * (a1 + a3 * a2); + M[4] = -scaleM * (a2 - 1.0) * (a2 + a3 * a1); + M[5] = -scaleM * a3 * (a3 * a1 + a3 * a3 + a2 - 1.0); + M[6] = scaleM * (a3 * a1 + a2 + a1 * a1 - a2 * a2); + M[7] = scaleM * (a1 * a2 + a3 * a2 * a2 - a1 * a3 * a3 - a3 * a3 * a3 - a3 * a2 + a3); + M[8] = scaleM * a3 * (a1 + a3 * a2); + switch (order) { + case 0 : { + const double iplus = (boundary_conditions?data[(N - 1)*off]:(T)0); + for (int pass = 0; pass<2; ++pass) { + if (!pass) { + for (int k = 1; k<4; ++k) val[k] = (boundary_conditions?*data/sumsq:0); + } else { + // apply Triggs boundary conditions + const double + uplus = iplus/(1.0 - a1 - a2 - a3), vplus = uplus/(1.0 - a1 - a2 - a3), + unp = val[1] - uplus, unp1 = val[2] - uplus, unp2 = val[3] - uplus; + val[0] = (M[0] * unp + M[1] * unp1 + M[2] * unp2 + vplus) * sum; + val[1] = (M[3] * unp + M[4] * unp1 + M[5] * unp2 + vplus) * sum; + val[2] = (M[6] * unp + M[7] * unp1 + M[8] * unp2 + vplus) * sum; + *data = (T)val[0]; + data -= off; + for (int k = 3; k>0; --k) val[k] = val[k - 1]; + } + for (int n = pass; n0; --k) val[k] = val[k - 1]; + } + if (!pass) data -= off; + } + } break; + case 1 : { + double x[3]; // [front,center,back] + for (int pass = 0; pass<2; ++pass) { + if (!pass) { + for (int k = 0; k<3; ++k) x[k] = (boundary_conditions?*data:(T)0); + for (int k = 0; k<4; ++k) val[k] = 0; + } else { + // apply Triggs boundary conditions + const double + unp = val[1], unp1 = val[2], unp2 = val[3]; + val[0] = (M[0] * unp + M[1] * unp1 + M[2] * unp2) * sum; + val[1] = (M[3] * unp + M[4] * unp1 + M[5] * unp2) * sum; + val[2] = (M[6] * unp + M[7] * unp1 + M[8] * unp2) * sum; + *data = (T)val[0]; + data -= off; + for (int k = 3; k>0; --k) val[k] = val[k - 1]; + } + for (int n = pass; n0; --k) x[k] = x[k - 1]; + } else { data-=off;} + for (int k = 3; k>0; --k) val[k] = val[k - 1]; + } + *data = (T)0; + } + } break; + case 2: { + double x[3]; // [front,center,back] + for (int pass = 0; pass<2; ++pass) { + if (!pass) { + for (int k = 0; k<3; ++k) x[k] = (boundary_conditions?*data:(T)0); + for (int k = 0; k<4; ++k) val[k] = 0; + } else { + // apply Triggs boundary conditions + const double + unp = val[1], unp1 = val[2], unp2 = val[3]; + val[0] = (M[0] * unp + M[1] * unp1 + M[2] * unp2) * sum; + val[1] = (M[3] * unp + M[4] * unp1 + M[5] * unp2) * sum; + val[2] = (M[6] * unp + M[7] * unp1 + M[8] * unp2) * sum; + *data = (T)val[0]; + data -= off; + for (int k = 3; k>0; --k) val[k] = val[k - 1]; + } + for (int n = pass; n0; --k) x[k] = x[k - 1]; + for (int k = 3; k>0; --k) val[k] = val[k - 1]; + } + *data = (T)0; + } + } break; + case 3: { + double x[3]; // [front,center,back] + for (int pass = 0; pass<2; ++pass) { + if (!pass) { + for (int k = 0; k<3; ++k) x[k] = (boundary_conditions?*data:(T)0); + for (int k = 0; k<4; ++k) val[k] = 0; + } else { + // apply Triggs boundary conditions + const double + unp = val[1], unp1 = val[2], unp2 = val[3]; + val[0] = (M[0] * unp + M[1] * unp1 + M[2] * unp2) * sum; + val[1] = (M[3] * unp + M[4] * unp1 + M[5] * unp2) * sum; + val[2] = (M[6] * unp + M[7] * unp1 + M[8] * unp2) * sum; + *data = (T)val[0]; + data -= off; + for (int k = 3; k>0; --k) val[k] = val[k - 1]; + } + for (int n = pass; n0; --k) x[k] = x[k - 1]; + for (int k = 3; k>0; --k) val[k] = val[k - 1]; + } + *data = (T)0; + } + } break; + } + } + + //! Van Vliet recursive Gaussian filter. + /** + \param sigma standard deviation of the Gaussian filter + \param order the order of the filter 0,1,2,3 + \param axis Axis along which the filter is computed. Can be { 'x' | 'y' | 'z' | 'c' }. + \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann }. + \note dirichlet boundary condition has a strange behavior + + I.T. Young, L.J. van Vliet, M. van Ginkel, Recursive Gabor filtering. + IEEE Trans. Sig. Proc., vol. 50, pp. 2799-2805, 2002. + + (this is an improvement over Young-Van Vliet, Sig. Proc. 44, 1995) + + Boundary conditions (only for order 0) using Triggs matrix, from + B. Triggs and M. Sdika. Boundary conditions for Young-van Vliet + recursive filtering. IEEE Trans. Signal Processing, + vol. 54, pp. 2365-2367, 2006. + **/ + CImg& vanvliet(const float sigma, const unsigned int order, const char axis='x', + const bool boundary_conditions=true) { + if (is_empty()) return *this; + const char naxis = cimg::lowercase(axis); + const float nsigma = sigma>=0?sigma:-sigma*(naxis=='x'?_width:naxis=='y'?_height:naxis=='z'?_depth:_spectrum)/100; + if (is_empty() || (nsigma<0.5f && !order)) return *this; + const double + nnsigma = nsigma<0.5f?0.5f:nsigma, + m0 = 1.16680, m1 = 1.10783, m2 = 1.40586, + m1sq = m1 * m1, m2sq = m2 * m2, + q = (nnsigma<3.556?-0.2568 + 0.5784*nnsigma + 0.0561*nnsigma*nnsigma:2.5091 + 0.9804*(nnsigma - 3.556)), + qsq = q * q, + scale = (m0 + q) * (m1sq + m2sq + 2 * m1 * q + qsq), + b1 = -q * (2 * m0 * m1 + m1sq + m2sq + (2 * m0 + 4 * m1) * q + 3 * qsq) / scale, + b2 = qsq * (m0 + 2 * m1 + 3 * q) / scale, + b3 = -qsq * q / scale, + B = ( m0 * (m1sq + m2sq) ) / scale; + double filter[4]; + filter[0] = B; filter[1] = -b1; filter[2] = -b2; filter[3] = -b3; + switch (naxis) { + case 'x' : { + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=256 && _height*_depth*_spectrum>=16)) + cimg_forYZC(*this,y,z,c) + _cimg_recursive_apply(data(0,y,z,c),filter,_width,1U,order,boundary_conditions); + } break; + case 'y' : { + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=256 && _height*_depth*_spectrum>=16)) + cimg_forXZC(*this,x,z,c) + _cimg_recursive_apply(data(x,0,z,c),filter,_height,(ulongT)_width,order,boundary_conditions); + } break; + case 'z' : { + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=256 && _height*_depth*_spectrum>=16)) + cimg_forXYC(*this,x,y,c) + _cimg_recursive_apply(data(x,y,0,c),filter,_depth,(ulongT)_width*_height, + order,boundary_conditions); + } break; + default : { + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=256 && _height*_depth*_spectrum>=16)) + cimg_forXYZ(*this,x,y,z) + _cimg_recursive_apply(data(x,y,z,0),filter,_spectrum,(ulongT)_width*_height*_depth, + order,boundary_conditions); + } + } + return *this; + } + + //! Blur image using Van Vliet recursive Gaussian filter. \newinstance. + CImg get_vanvliet(const float sigma, const unsigned int order, const char axis='x', + const bool boundary_conditions=true) const { + return CImg(*this,false).vanvliet(sigma,order,axis,boundary_conditions); + } + + //! Blur image. + /** + \param sigma_x Standard deviation of the blur, along the X-axis. + \param sigma_y Standard deviation of the blur, along the Y-axis. + \param sigma_z Standard deviation of the blur, along the Z-axis. + \param boundary_conditions Boundary conditions. Can be { false=dirichlet | true=neumann }. + \param is_gaussian Tells if the blur uses a gaussian (\c true) or quasi-gaussian (\c false) kernel. + \note + - The blur is computed as a 0-order Deriche filter. This is not a gaussian blur. + - This is a recursive algorithm, not depending on the values of the standard deviations. + \see deriche(), vanvliet(). + **/ + CImg& blur(const float sigma_x, const float sigma_y, const float sigma_z, + const bool boundary_conditions=true, const bool is_gaussian=false) { + if (is_empty()) return *this; + if (is_gaussian) { + if (_width>1) vanvliet(sigma_x,0,'x',boundary_conditions); + if (_height>1) vanvliet(sigma_y,0,'y',boundary_conditions); + if (_depth>1) vanvliet(sigma_z,0,'z',boundary_conditions); + } else { + if (_width>1) deriche(sigma_x,0,'x',boundary_conditions); + if (_height>1) deriche(sigma_y,0,'y',boundary_conditions); + if (_depth>1) deriche(sigma_z,0,'z',boundary_conditions); + } + return *this; + } + + //! Blur image \newinstance. + CImg get_blur(const float sigma_x, const float sigma_y, const float sigma_z, + const bool boundary_conditions=true, const bool is_gaussian=false) const { + return CImg(*this,false).blur(sigma_x,sigma_y,sigma_z,boundary_conditions,is_gaussian); + } + + //! Blur image isotropically. + /** + \param sigma Standard deviation of the blur. + \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann }.a + \param is_gaussian Use a gaussian kernel (VanVliet) is set, a pseudo-gaussian (Deriche) otherwise. + \see deriche(), vanvliet(). + **/ + CImg& blur(const float sigma, const bool boundary_conditions=true, const bool is_gaussian=false) { + const float nsigma = sigma>=0?sigma:-sigma*cimg::max(_width,_height,_depth)/100; + return blur(nsigma,nsigma,nsigma,boundary_conditions,is_gaussian); + } + + //! Blur image isotropically \newinstance. + CImg get_blur(const float sigma, const bool boundary_conditions=true, const bool is_gaussian=false) const { + return CImg(*this,false).blur(sigma,boundary_conditions,is_gaussian); + } + + //! Blur image anisotropically, directed by a field of diffusion tensors. + /** + \param G Field of square roots of diffusion tensors/vectors used to drive the smoothing. + \param amplitude Amplitude of the smoothing. + \param dl Spatial discretization. + \param da Angular discretization. + \param gauss_prec Precision of the diffusion process. + \param interpolation_type Interpolation scheme. + Can be { 0=nearest-neighbor | 1=linear | 2=Runge-Kutta }. + \param is_fast_approx Tells if a fast approximation of the gaussian function is used or not. + **/ + template + CImg& blur_anisotropic(const CImg& G, + const float amplitude=60, const float dl=0.8f, const float da=30, + const float gauss_prec=2, const unsigned int interpolation_type=0, + const bool is_fast_approx=1) { + + // Check arguments and init variables + if (!is_sameXYZ(G) || (G._spectrum!=3 && G._spectrum!=6)) + throw CImgArgumentException(_cimg_instance + "blur_anisotropic(): Invalid specified diffusion tensor field (%u,%u,%u,%u,%p).", + cimg_instance, + G._width,G._height,G._depth,G._spectrum,G._data); + + if (is_empty() || amplitude<=0 || dl<0) return *this; + const bool is_3d = (G._spectrum==6); + T val_min, val_max = max_min(val_min); + cimg_abort_init; + + if (da<=0) { // Iterated oriented Laplacians + CImg velocity(_width,_height,_depth,_spectrum); + for (unsigned int iteration = 0; iteration<(unsigned int)amplitude; ++iteration) { + Tfloat *ptrd = velocity._data, veloc_max = 0; + if (is_3d) // 3d version + cimg_forC(*this,c) { + cimg_abort_test(); + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) { + const Tfloat + ixx = Incc + Ipcc - 2*Iccc, + ixy = (Innc + Ippc - Inpc - Ipnc)/4, + ixz = (Incn + Ipcp - Incp - Ipcn)/4, + iyy = Icnc + Icpc - 2*Iccc, + iyz = (Icnn + Icpp - Icnp - Icpn)/4, + izz = Iccn + Iccp - 2*Iccc, + veloc = (Tfloat)(G(x,y,z,0)*ixx + 2*G(x,y,z,1)*ixy + 2*G(x,y,z,2)*ixz + + G(x,y,z,3)*iyy + 2*G(x,y,z,4)*iyz + G(x,y,z,5)*izz); + *(ptrd++) = veloc; + if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; + } + } + else // 2d version + cimg_forZC(*this,z,c) { + cimg_abort_test(); + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,z,c,I,Tfloat) { + const Tfloat + ixx = Inc + Ipc - 2*Icc, + ixy = (Inn + Ipp - Inp - Ipn)/4, + iyy = Icn + Icp - 2*Icc, + veloc = (Tfloat)(G(x,y,0,0)*ixx + 2*G(x,y,0,1)*ixy + G(x,y,0,2)*iyy); + *(ptrd++) = veloc; + if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; + } + } + if (veloc_max>0) *this+=(velocity*=dl/veloc_max); + } + } else { // LIC-based smoothing. + const ulongT whd = (ulongT)_width*_height*_depth; + const float sqrt2amplitude = (float)std::sqrt(2*amplitude); + const int dx1 = width() - 1, dy1 = height() - 1, dz1 = depth() - 1; + CImg res(_width,_height,_depth,_spectrum,0), W(_width,_height,_depth,is_3d?4:3), val(_spectrum,1,1,1,0); + int N = 0; + if (is_3d) { // 3d version + for (float phi = cimg::mod(180.0f,da)/2.0f; phi<=180; phi+=da) { + const float phir = (float)(phi*cimg::PI/180), datmp = (float)(da/std::cos(phir)), + da2 = datmp<1?360.0f:datmp; + for (float theta = 0; theta<360; (theta+=da2),++N) { + const float + thetar = (float)(theta*cimg::PI/180), + vx = (float)(std::cos(thetar)*std::cos(phir)), + vy = (float)(std::sin(thetar)*std::cos(phir)), + vz = (float)std::sin(phir); + const t + *pa = G.data(0,0,0,0), *pb = G.data(0,0,0,1), *pc = G.data(0,0,0,2), + *pd = G.data(0,0,0,3), *pe = G.data(0,0,0,4), *pf = G.data(0,0,0,5); + Tfloat *pd0 = W.data(0,0,0,0), *pd1 = W.data(0,0,0,1), *pd2 = W.data(0,0,0,2), *pd3 = W.data(0,0,0,3); + cimg_forXYZ(G,xg,yg,zg) { + const t a = *(pa++), b = *(pb++), c = *(pc++), d = *(pd++), e = *(pe++), f = *(pf++); + const float + u = (float)(a*vx + b*vy + c*vz), + v = (float)(b*vx + d*vy + e*vz), + w = (float)(c*vx + e*vy + f*vz), + n = 1e-5f + cimg::hypot(u,v,w), + dln = dl/n; + *(pd0++) = (Tfloat)(u*dln); + *(pd1++) = (Tfloat)(v*dln); + *(pd2++) = (Tfloat)(w*dln); + *(pd3++) = (Tfloat)n; + } + + cimg_abort_test(); + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=256 && _height*_depth>=2) + firstprivate(val)) + cimg_forYZ(*this,y,z) cimg_abort_try2 { + cimg_abort_test2(); + cimg_forX(*this,x) { + val.fill(0); + const float + n = (float)W(x,y,z,3), + fsigma = (float)(n*sqrt2amplitude), + fsigma2 = 2*fsigma*fsigma, + length = gauss_prec*fsigma; + float + S = 0, + X = (float)x, + Y = (float)y, + Z = (float)z; + switch (interpolation_type) { + case 0 : { // Nearest neighbor + for (float l = 0; l=0 && X<=dx1 && Y>=0 && Y<=dy1 && Z>=0 && Z<=dz1; l+=dl) { + const int + cx = (int)(X + 0.5f), + cy = (int)(Y + 0.5f), + cz = (int)(Z + 0.5f); + const float + u = (float)W(cx,cy,cz,0), + v = (float)W(cx,cy,cz,1), + w = (float)W(cx,cy,cz,2); + if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)(*this)(cx,cy,cz,c); ++S; } + else { + const float coef = (float)std::exp(-l*l/fsigma2); + cimg_forC(*this,c) val[c]+=(Tfloat)(coef*(*this)(cx,cy,cz,c)); + S+=coef; + } + X+=u; Y+=v; Z+=w; + } + } break; + case 1 : { // Linear interpolation + for (float l = 0; l=0 && X<=dx1 && Y>=0 && Y<=dy1 && Z>=0 && Z<=dz1; l+=dl) { + const float + u = (float)(W._linear_atXYZ(X,Y,Z,0)), + v = (float)(W._linear_atXYZ(X,Y,Z,1)), + w = (float)(W._linear_atXYZ(X,Y,Z,2)); + if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)_linear_atXYZ(X,Y,Z,c); ++S; } + else { + const float coef = (float)std::exp(-l*l/fsigma2); + cimg_forC(*this,c) val[c]+=(Tfloat)(coef*_linear_atXYZ(X,Y,Z,c)); + S+=coef; + } + X+=u; Y+=v; Z+=w; + } + } break; + default : { // 2nd order Runge Kutta + for (float l = 0; l=0 && X<=dx1 && Y>=0 && Y<=dy1 && Z>=0 && Z<=dz1; l+=dl) { + const float + u0 = (float)(0.5f*W._linear_atXYZ(X,Y,Z,0)), + v0 = (float)(0.5f*W._linear_atXYZ(X,Y,Z,1)), + w0 = (float)(0.5f*W._linear_atXYZ(X,Y,Z,2)), + u = (float)(W._linear_atXYZ(X + u0,Y + v0,Z + w0,0)), + v = (float)(W._linear_atXYZ(X + u0,Y + v0,Z + w0,1)), + w = (float)(W._linear_atXYZ(X + u0,Y + v0,Z + w0,2)); + if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)_linear_atXYZ(X,Y,Z,c); ++S; } + else { + const float coef = (float)std::exp(-l*l/fsigma2); + cimg_forC(*this,c) val[c]+=(Tfloat)(coef*_linear_atXYZ(X,Y,Z,c)); + S+=coef; + } + X+=u; Y+=v; Z+=w; + } + } break; + } + Tfloat *ptrd = res.data(x,y,z); + if (S>0) cimg_forC(res,c) { *ptrd+=val[c]/S; ptrd+=whd; } + else cimg_forC(res,c) { *ptrd+=(Tfloat)((*this)(x,y,z,c)); ptrd+=whd; } + } + } cimg_abort_catch2() + } + } + } else { // 2d LIC algorithm + for (float theta = cimg::mod(360.0f,da)/2.0f; theta<360; (theta+=da),++N) { + const float thetar = (float)(theta*cimg::PI/180), + vx = (float)(std::cos(thetar)), vy = (float)(std::sin(thetar)); + const t *pa = G.data(0,0,0,0), *pb = G.data(0,0,0,1), *pc = G.data(0,0,0,2); + Tfloat *pd0 = W.data(0,0,0,0), *pd1 = W.data(0,0,0,1), *pd2 = W.data(0,0,0,2); + cimg_forXY(G,xg,yg) { + const t a = *(pa++), b = *(pb++), c = *(pc++); + const float + u = (float)(a*vx + b*vy), + v = (float)(b*vx + c*vy), + n = std::max(1e-5f,cimg::hypot(u,v)), + dln = dl/n; + *(pd0++) = (Tfloat)(u*dln); + *(pd1++) = (Tfloat)(v*dln); + *(pd2++) = (Tfloat)n; + } + + cimg_abort_test(); + cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=256 && _height>=2) firstprivate(val)) + cimg_forY(*this,y) cimg_abort_try2 { + cimg_abort_test2(); + cimg_forX(*this,x) { + val.fill(0); + const float + n = (float)W(x,y,0,2), + fsigma = (float)(n*sqrt2amplitude), + fsigma2 = 2*fsigma*fsigma, + length = gauss_prec*fsigma; + float + S = 0, + X = (float)x, + Y = (float)y; + switch (interpolation_type) { + case 0 : { // Nearest-neighbor + for (float l = 0; l=0 && X<=dx1 && Y>=0 && Y<=dy1; l+=dl) { + const int + cx = (int)(X + 0.5f), + cy = (int)(Y + 0.5f); + const float + u = (float)W(cx,cy,0,0), + v = (float)W(cx,cy,0,1); + if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)(*this)(cx,cy,0,c); ++S; } + else { + const float coef = (float)std::exp(-l*l/fsigma2); + cimg_forC(*this,c) val[c]+=(Tfloat)(coef*(*this)(cx,cy,0,c)); + S+=coef; + } + X+=u; Y+=v; + } + } break; + case 1 : { // Linear interpolation + for (float l = 0; l=0 && X<=dx1 && Y>=0 && Y<=dy1; l+=dl) { + const float + u = (float)(W._linear_atXY(X,Y,0,0)), + v = (float)(W._linear_atXY(X,Y,0,1)); + if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)_linear_atXY(X,Y,0,c); ++S; } + else { + const float coef = (float)std::exp(-l*l/fsigma2); + cimg_forC(*this,c) val[c]+=(Tfloat)(coef*_linear_atXY(X,Y,0,c)); + S+=coef; + } + X+=u; Y+=v; + } + } break; + default : { // 2nd-order Runge-kutta interpolation + for (float l = 0; l=0 && X<=dx1 && Y>=0 && Y<=dy1; l+=dl) { + const float + u0 = (float)(0.5f*W._linear_atXY(X,Y,0,0)), + v0 = (float)(0.5f*W._linear_atXY(X,Y,0,1)), + u = (float)(W._linear_atXY(X + u0,Y + v0,0,0)), + v = (float)(W._linear_atXY(X + u0,Y + v0,0,1)); + if (is_fast_approx) { cimg_forC(*this,c) val[c]+=(Tfloat)_linear_atXY(X,Y,0,c); ++S; } + else { + const float coef = (float)std::exp(-l*l/fsigma2); + cimg_forC(*this,c) val[c]+=(Tfloat)(coef*_linear_atXY(X,Y,0,c)); + S+=coef; + } + X+=u; Y+=v; + } + } + } + Tfloat *ptrd = res.data(x,y); + if (S>0) cimg_forC(res,c) { *ptrd+=val[c]/S; ptrd+=whd; } + else cimg_forC(res,c) { *ptrd+=(Tfloat)((*this)(x,y,0,c)); ptrd+=whd; } + } + } cimg_abort_catch2() + } + } + const Tfloat *ptrs = res._data; + cimg_for(*this,ptrd,T) { + const Tfloat val = *(ptrs++)/N; + *ptrd = valval_max?val_max:(T)val); + } + } + cimg_abort_test(); + return *this; + } + + //! Blur image anisotropically, directed by a field of diffusion tensors \newinstance. + template + CImg get_blur_anisotropic(const CImg& G, + const float amplitude=60, const float dl=0.8f, const float da=30, + const float gauss_prec=2, const unsigned int interpolation_type=0, + const bool is_fast_approx=true) const { + return CImg(*this,false).blur_anisotropic(G,amplitude,dl,da,gauss_prec,interpolation_type,is_fast_approx); + } + + //! Blur image anisotropically, in an edge-preserving way. + /** + \param amplitude Amplitude of the smoothing. + \param sharpness Sharpness. + \param anisotropy Anisotropy. + \param alpha Standard deviation of the gradient blur. + \param sigma Standard deviation of the structure tensor blur. + \param dl Spatial discretization. + \param da Angular discretization. + \param gauss_prec Precision of the diffusion process. + \param interpolation_type Interpolation scheme. + Can be { 0=nearest-neighbor | 1=linear | 2=Runge-Kutta }. + \param is_fast_approx Tells if a fast approximation of the gaussian function is used or not. + **/ + CImg& blur_anisotropic(const float amplitude, const float sharpness=0.7f, const float anisotropy=0.6f, + const float alpha=0.6f, const float sigma=1.1f, const float dl=0.8f, const float da=30, + const float gauss_prec=2, const unsigned int interpolation_type=0, + const bool is_fast_approx=true) { + return blur_anisotropic(get_diffusion_tensors(sharpness,anisotropy,alpha,sigma,interpolation_type!=3), + amplitude,dl,da,gauss_prec,interpolation_type,is_fast_approx); + } + + //! Blur image anisotropically, in an edge-preserving way \newinstance. + CImg get_blur_anisotropic(const float amplitude, const float sharpness=0.7f, const float anisotropy=0.6f, + const float alpha=0.6f, const float sigma=1.1f, const float dl=0.8f, + const float da=30, const float gauss_prec=2, + const unsigned int interpolation_type=0, + const bool is_fast_approx=true) const { + return CImg(*this,false).blur_anisotropic(amplitude,sharpness,anisotropy,alpha,sigma,dl,da,gauss_prec, + interpolation_type,is_fast_approx); + } + + //! Blur image, with the joint bilateral filter. + /** + \param guide Image used to model the smoothing weights. + \param sigma_x Amount of blur along the X-axis. + \param sigma_y Amount of blur along the Y-axis. + \param sigma_z Amount of blur along the Z-axis. + \param sigma_r Amount of blur along the value axis. + \param sampling_x Amount of downsampling along the X-axis used for the approximation. + Defaults (0) to sigma_x. + \param sampling_y Amount of downsampling along the Y-axis used for the approximation. + Defaults (0) to sigma_y. + \param sampling_z Amount of downsampling along the Z-axis used for the approximation. + Defaults (0) to sigma_z. + \param sampling_r Amount of downsampling along the value axis used for the approximation. + Defaults (0) to sigma_r. + \note This algorithm uses the optimisation technique proposed by S. Paris and F. Durand, in ECCV'2006 + (extended for 3d volumetric images). + It is based on the reference implementation http://people.csail.mit.edu/jiawen/software/bilateralFilter.m + **/ + template + CImg& blur_bilateral(const CImg& guide, + const float sigma_x, const float sigma_y, + const float sigma_z, const float sigma_r, + const float sampling_x, const float sampling_y, + const float sampling_z, const float sampling_r) { + if (!is_sameXYZ(guide)) + throw CImgArgumentException(_cimg_instance + "blur_bilateral(): Invalid size for specified guide image (%u,%u,%u,%u,%p).", + cimg_instance, + guide._width,guide._height,guide._depth,guide._spectrum,guide._data); + if (is_empty() || (!sigma_x && !sigma_y && !sigma_z)) return *this; + T edge_min, edge_max = guide.max_min(edge_min); + if (edge_min==edge_max) return blur(sigma_x,sigma_y,sigma_z); + const float + edge_delta = (float)(edge_max - edge_min), + _sigma_x = sigma_x>=0?sigma_x:-sigma_x*_width/100, + _sigma_y = sigma_y>=0?sigma_y:-sigma_y*_height/100, + _sigma_z = sigma_z>=0?sigma_z:-sigma_z*_depth/100, + _sigma_r = sigma_r>=0?sigma_r:-sigma_r*(edge_max - edge_min)/100, + _sampling_x = sampling_x?sampling_x:std::max(_sigma_x,1.0f), + _sampling_y = sampling_y?sampling_y:std::max(_sigma_y,1.0f), + _sampling_z = sampling_z?sampling_z:std::max(_sigma_z,1.0f), + _sampling_r = sampling_r?sampling_r:std::max(_sigma_r,edge_delta/256), + derived_sigma_x = _sigma_x / _sampling_x, + derived_sigma_y = _sigma_y / _sampling_y, + derived_sigma_z = _sigma_z / _sampling_z, + derived_sigma_r = _sigma_r / _sampling_r; + const int + padding_x = (int)(2*derived_sigma_x) + 1, + padding_y = (int)(2*derived_sigma_y) + 1, + padding_z = (int)(2*derived_sigma_z) + 1, + padding_r = (int)(2*derived_sigma_r) + 1; + const unsigned int + bx = (unsigned int)((_width - 1)/_sampling_x + 1 + 2*padding_x), + by = (unsigned int)((_height - 1)/_sampling_y + 1 + 2*padding_y), + bz = (unsigned int)((_depth - 1)/_sampling_z + 1 + 2*padding_z), + br = (unsigned int)(edge_delta/_sampling_r + 1 + 2*padding_r); + if (bx>0 || by>0 || bz>0 || br>0) { + const bool is_3d = (_depth>1); + if (is_3d) { // 3d version of the algorithm + CImg bgrid(bx,by,bz,br), bgridw(bx,by,bz,br); + cimg_forC(*this,c) { + const CImg _guide = guide.get_shared_channel(c%guide._spectrum); + bgrid.fill(0); bgridw.fill(0); + cimg_forXYZ(*this,x,y,z) { + const T val = (*this)(x,y,z,c); + const float edge = (float)_guide(x,y,z); + const int + X = (int)cimg::round(x/_sampling_x) + padding_x, + Y = (int)cimg::round(y/_sampling_y) + padding_y, + Z = (int)cimg::round(z/_sampling_z) + padding_z, + R = (int)cimg::round((edge - edge_min)/_sampling_r) + padding_r; + bgrid(X,Y,Z,R)+=(float)val; + bgridw(X,Y,Z,R)+=1; + } + bgrid.blur(derived_sigma_x,derived_sigma_y,derived_sigma_z,true).deriche(derived_sigma_r,0,'c',false); + bgridw.blur(derived_sigma_x,derived_sigma_y,derived_sigma_z,true).deriche(derived_sigma_r,0,'c',false); + + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(size()>=4096)) + cimg_forXYZ(*this,x,y,z) { + const float edge = (float)_guide(x,y,z); + const float + X = x/_sampling_x + padding_x, + Y = y/_sampling_y + padding_y, + Z = z/_sampling_z + padding_z, + R = (edge - edge_min)/_sampling_r + padding_r; + const float bval0 = bgrid._linear_atXYZC(X,Y,Z,R), bval1 = bgridw._linear_atXYZC(X,Y,Z,R); + (*this)(x,y,z,c) = (T)(bval0/bval1); + } + } + } else { // 2d version of the algorithm + CImg bgrid(bx,by,br,2); + cimg_forC(*this,c) { + const CImg _guide = guide.get_shared_channel(c%guide._spectrum); + bgrid.fill(0); + cimg_forXY(*this,x,y) { + const T val = (*this)(x,y,c); + const float edge = (float)_guide(x,y); + const int + X = (int)cimg::round(x/_sampling_x) + padding_x, + Y = (int)cimg::round(y/_sampling_y) + padding_y, + R = (int)cimg::round((edge - edge_min)/_sampling_r) + padding_r; + bgrid(X,Y,R,0)+=(float)val; + bgrid(X,Y,R,1)+=1; + } + bgrid.blur(derived_sigma_x,derived_sigma_y,0,true).blur(0,0,derived_sigma_r,false); + + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(size()>=4096)) + cimg_forXY(*this,x,y) { + const float edge = (float)_guide(x,y); + const float + X = x/_sampling_x + padding_x, + Y = y/_sampling_y + padding_y, + R = (edge - edge_min)/_sampling_r + padding_r; + const float bval0 = bgrid._linear_atXYZ(X,Y,R,0), bval1 = bgrid._linear_atXYZ(X,Y,R,1); + (*this)(x,y,c) = (T)(bval0/bval1); + } + } + } + } + return *this; + } + + //! Blur image, with the joint bilateral filter \newinstance. + template + CImg get_blur_bilateral(const CImg& guide, + const float sigma_x, const float sigma_y, + const float sigma_z, const float sigma_r, + const float sampling_x, const float sampling_y, + const float sampling_z, const float sampling_r) const { + return CImg(*this,false).blur_bilateral(guide,sigma_x,sigma_y,sigma_z,sigma_r, + sampling_x,sampling_y,sampling_z,sampling_r); + } + + //! Blur image using the joint bilateral filter. + /** + \param guide Image used to model the smoothing weights. + \param sigma_s Amount of blur along the XYZ-axes. + \param sigma_r Amount of blur along the value axis. + \param sampling_s Amount of downsampling along the XYZ-axes used for the approximation. Defaults to sigma_s. + \param sampling_r Amount of downsampling along the value axis used for the approximation. Defaults to sigma_r. + **/ + template + CImg& blur_bilateral(const CImg& guide, + const float sigma_s, const float sigma_r, + const float sampling_s=0, const float sampling_r=0) { + const float _sigma_s = sigma_s>=0?sigma_s:-sigma_s*cimg::max(_width,_height,_depth)/100; + return blur_bilateral(guide,_sigma_s,_sigma_s,_sigma_s,sigma_r,sampling_s,sampling_s,sampling_s,sampling_r); + } + + //! Blur image using the bilateral filter \newinstance. + template + CImg get_blur_bilateral(const CImg& guide, + const float sigma_s, const float sigma_r, + const float sampling_s=0, const float sampling_r=0) const { + return CImg(*this,false).blur_bilateral(guide,sigma_s,sigma_r,sampling_s,sampling_r); + } + + // [internal] Apply a box filter (used by CImg::boxfilter() and CImg::blur_box()). + /* + \param ptr the pointer of the data + \param N size of the data + \param boxsize Size of the box filter (can be subpixel). + \param off the offset between two data point + \param order the order of the filter 0 (smoothing), 1st derivtive and 2nd derivative. + \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann }. + */ + static void _cimg_blur_box_apply(T *ptr, const float boxsize, const int N, const ulongT off, + const int order, const bool boundary_conditions, + const unsigned int nb_iter) { + // Smooth. + if (boxsize>1 && nb_iter) { + const int w2 = (int)(boxsize - 1)/2; + const unsigned int winsize = 2*w2 + 1U; + const double frac = (boxsize - winsize)/2.; + CImg win(winsize); + for (unsigned int iter = 0; iter=N) return boundary_conditions?ptr[(N - 1)*off]:T(); + return ptr[x*off]; + } + + // Apply box filter of order 0,1,2. + /** + \param boxsize Size of the box window (can be subpixel) + \param order the order of the filter 0,1 or 2. + \param axis Axis along which the filter is computed. Can be { 'x' | 'y' | 'z' | 'c' }. + \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann }. + \param nb_iter Number of filter iterations. + **/ + CImg& boxfilter(const float boxsize, const int order, const char axis='x', + const bool boundary_conditions=true, + const unsigned int nb_iter=1) { + if (is_empty() || !boxsize || (boxsize<=1 && !order)) return *this; + const char naxis = cimg::lowercase(axis); + const float nboxsize = boxsize>=0?boxsize:-boxsize* + (naxis=='x'?_width:naxis=='y'?_height:naxis=='z'?_depth:_spectrum)/100; + switch (naxis) { + case 'x' : { + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=256 && _height*_depth*_spectrum>=16)) + cimg_forYZC(*this,y,z,c) + _cimg_blur_box_apply(data(0,y,z,c),nboxsize,_width,1U,order,boundary_conditions,nb_iter); + } break; + case 'y' : { + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=256 && _height*_depth*_spectrum>=16)) + cimg_forXZC(*this,x,z,c) + _cimg_blur_box_apply(data(x,0,z,c),nboxsize,_height,(ulongT)_width,order,boundary_conditions,nb_iter); + } break; + case 'z' : { + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=256 && _height*_depth*_spectrum>=16)) + cimg_forXYC(*this,x,y,c) + _cimg_blur_box_apply(data(x,y,0,c),nboxsize,_depth,(ulongT)_width*_height,order,boundary_conditions,nb_iter); + } break; + default : { + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=256 && _height*_depth*_spectrum>=16)) + cimg_forXYZ(*this,x,y,z) + _cimg_blur_box_apply(data(x,y,z,0),nboxsize,_spectrum,(ulongT)_width*_height*_depth, + order,boundary_conditions,nb_iter); + } + } + return *this; + } + + // Apply box filter of order 0,1 or 2 \newinstance. + CImg get_boxfilter(const float boxsize, const int order, const char axis='x', + const bool boundary_conditions=true, + const unsigned int nb_iter=1) const { + return CImg(*this,false).boxfilter(boxsize,order,axis,boundary_conditions,nb_iter); + } + + //! Blur image with a box filter. + /** + \param boxsize_x Size of the box window, along the X-axis (can be subpixel). + \param boxsize_y Size of the box window, along the Y-axis (can be subpixel). + \param boxsize_z Size of the box window, along the Z-axis (can be subpixel). + \param boundary_conditions Boundary conditions. Can be { false=dirichlet | true=neumann }. + \param nb_iter Number of filter iterations. + \note + - This is a recursive algorithm, not depending on the values of the box kernel size. + \see blur(). + **/ + CImg& blur_box(const float boxsize_x, const float boxsize_y, const float boxsize_z, + const bool boundary_conditions=true, + const unsigned int nb_iter=1) { + if (is_empty()) return *this; + if (_width>1) boxfilter(boxsize_x,0,'x',boundary_conditions,nb_iter); + if (_height>1) boxfilter(boxsize_y,0,'y',boundary_conditions,nb_iter); + if (_depth>1) boxfilter(boxsize_z,0,'z',boundary_conditions,nb_iter); + return *this; + } + + //! Blur image with a box filter \newinstance. + CImg get_blur_box(const float boxsize_x, const float boxsize_y, const float boxsize_z, + const bool boundary_conditions=true) const { + return CImg(*this,false).blur_box(boxsize_x,boxsize_y,boxsize_z,boundary_conditions); + } + + //! Blur image with a box filter. + /** + \param boxsize Size of the box window (can be subpixel). + \param boundary_conditions Boundary conditions. Can be { 0=dirichlet | 1=neumann }.a + \see deriche(), vanvliet(). + **/ + CImg& blur_box(const float boxsize, const bool boundary_conditions=true) { + const float nboxsize = boxsize>=0?boxsize:-boxsize*cimg::max(_width,_height,_depth)/100; + return blur_box(nboxsize,nboxsize,nboxsize,boundary_conditions); + } + + //! Blur image with a box filter \newinstance. + CImg get_blur_box(const float boxsize, const bool boundary_conditions=true) const { + return CImg(*this,false).blur_box(boxsize,boundary_conditions); + } + + //! Blur image, with the image guided filter. + /** + \param guide Image used to guide the smoothing process. + \param radius Spatial radius. If negative, it is expressed as a percentage of the largest image size. + \param regularization Regularization parameter. + If negative, it is expressed as a percentage of the guide value range. + \note This method implements the filtering algorithm described in: + He, Kaiming; Sun, Jian; Tang, Xiaoou, "Guided Image Filtering," Pattern Analysis and Machine Intelligence, + IEEE Transactions on , vol.35, no.6, pp.1397,1409, June 2013 + **/ + template + CImg& blur_guided(const CImg& guide, const float radius, const float regularization) { + return get_blur_guided(guide,radius,regularization).move_to(*this); + } + + //! Blur image, with the image guided filter \newinstance. + template + CImg get_blur_guided(const CImg& guide, const float radius, const float regularization) const { + if (!is_sameXYZ(guide)) + throw CImgArgumentException(_cimg_instance + "blur_guided(): Invalid size for specified guide image (%u,%u,%u,%u,%p).", + cimg_instance, + guide._width,guide._height,guide._depth,guide._spectrum,guide._data); + if (is_empty() || !radius) return *this; + const int _radius = radius>=0?(int)radius:(int)(-radius*cimg::max(_width,_height,_depth)/100); + float _regularization = regularization; + if (regularization<0) { + T edge_min, edge_max = guide.max_min(edge_min); + if (edge_min==edge_max) return *this; + _regularization = -regularization*(edge_max - edge_min)/100; + } + _regularization = std::max(_regularization,0.01f); + const unsigned int psize = (unsigned int)(1 + 2*_radius); + const CImg N = CImg(_width,_height,_depth,1,1)._blur_guided(psize); + CImg + mean_I = CImg(guide,false)._blur_guided(psize).div(N), + mean_p = CImg(*this,false)._blur_guided(psize).div(N), + cov_Ip = CImg(*this,false).mul(guide)._blur_guided(psize).div(N)-=mean_p.get_mul(mean_I), + var_I = CImg(guide,false).sqr()._blur_guided(psize).div(N)-=mean_I.get_sqr(), + &a = cov_Ip.div(var_I+=_regularization), + &b = mean_p-=a.get_mul(mean_I); + a._blur_guided(psize).div(N); + b._blur_guided(psize).div(N); + return a.mul(guide)+=b; + } + + // [internal] Perform box filter with dirichlet boundary conditions. + CImg& _blur_guided(const unsigned int psize) { + const int p1 = (int)psize/2, p2 = (int)psize - p1; + if (_depth!=1) { + CImg cumul = get_cumulate('z'), cumul2 = cumul.get_shift(0,0,p2,0,1); + (cumul.shift(0,0,-p1,0,1)-=cumul2).move_to(*this); + } + if (_height!=1) { + CImg cumul = get_cumulate('y'), cumul2 = cumul.get_shift(0,p2,0,0,1); + (cumul.shift(0,-p1,0,0,1)-=cumul2).move_to(*this); + } + if (_width!=1) { + CImg cumul = get_cumulate('x'), cumul2 = cumul.get_shift(p2,0,0,0,1); + (cumul.shift(-p1,0,0,0,1)-=cumul2).move_to(*this); + } + return *this; + } + + //! Blur image using patch-based space. + /** + \param sigma_s Amount of blur along the XYZ-axes. + \param sigma_p Amount of blur along the value axis. + \param patch_size Size of the patchs. + \param lookup_size Size of the window to search similar patchs. + \param smoothness Smoothness for the patch comparison. + \param is_fast_approx Tells if a fast approximation of the gaussian function is used or not. + **/ + CImg& blur_patch(const float sigma_s, const float sigma_p, const unsigned int patch_size=3, + const unsigned int lookup_size=4, const float smoothness=0, const bool is_fast_approx=true) { + if (is_empty() || !patch_size || !lookup_size) return *this; + return get_blur_patch(sigma_s,sigma_p,patch_size,lookup_size,smoothness,is_fast_approx).move_to(*this); + } + + //! Blur image using patch-based space \newinstance. + CImg get_blur_patch(const float sigma_s, const float sigma_p, const unsigned int patch_size=3, + const unsigned int lookup_size=4, const float smoothness=0, + const bool is_fast_approx=true) const { + +#define _cimg_blur_patch3d_fast(N) \ + cimg_for##N##XYZ(res,x,y,z) { \ + T *pP = P._data; cimg_forC(res,c) { cimg_get##N##x##N##x##N(img,x,y,z,c,pP,T); pP+=N3; } \ + const int x0 = x - rsize1, y0 = y - rsize1, z0 = z - rsize1, \ + x1 = x + rsize2, y1 = y + rsize2, z1 = z + rsize2; \ + float sum_weights = 0; \ + cimg_for_in##N##XYZ(res,x0,y0,z0,x1,y1,z1,p,q,r) if (cimg::abs(img(x,y,z,0) - img(p,q,r,0))3?0.0f:1.0f; \ + sum_weights+=weight; \ + cimg_forC(res,c) res(x,y,z,c)+=weight*(*this)(p,q,r,c); \ + } \ + if (sum_weights>0) cimg_forC(res,c) res(x,y,z,c)/=sum_weights; \ + else cimg_forC(res,c) res(x,y,z,c) = (Tfloat)((*this)(x,y,z,c)); \ + } + +#define _cimg_blur_patch3d(N) \ + cimg_for##N##XYZ(res,x,y,z) { \ + T *pP = P._data; cimg_forC(res,c) { cimg_get##N##x##N##x##N(img,x,y,z,c,pP,T); pP+=N3; } \ + const int x0 = x - rsize1, y0 = y - rsize1, z0 = z - rsize1, \ + x1 = x + rsize2, y1 = y + rsize2, z1 = z + rsize2; \ + float sum_weights = 0, weight_max = 0; \ + cimg_for_in##N##XYZ(res,x0,y0,z0,x1,y1,z1,p,q,r) if (p!=x || q!=y || r!=z) { \ + T *pQ = Q._data; cimg_forC(res,c) { cimg_get##N##x##N##x##N(img,p,q,r,c,pQ,T); pQ+=N3; } \ + float distance2 = 0; \ + pQ = Q._data; cimg_for(P,pP,T) { const float dI = (float)*pP - (float)*(pQ++); distance2+=dI*dI; } \ + distance2/=Pnorm; \ + const float dx = (float)p - x, dy = (float)q - y, dz = (float)r - z, \ + alldist = distance2 + (dx*dx + dy*dy + dz*dz)/sigma_s2, weight = (float)std::exp(-alldist); \ + if (weight>weight_max) weight_max = weight; \ + sum_weights+=weight; \ + cimg_forC(res,c) res(x,y,z,c)+=weight*(*this)(p,q,r,c); \ + } \ + sum_weights+=weight_max; cimg_forC(res,c) res(x,y,z,c)+=weight_max*(*this)(x,y,z,c); \ + if (sum_weights>0) cimg_forC(res,c) res(x,y,z,c)/=sum_weights; \ + else cimg_forC(res,c) res(x,y,z,c) = (Tfloat)((*this)(x,y,z,c)); \ + } + +#define _cimg_blur_patch2d_fast(N) \ + cimg_for##N##XY(res,x,y) { \ + T *pP = P._data; cimg_forC(res,c) { cimg_get##N##x##N(img,x,y,0,c,pP,T); pP+=N2; } \ + const int x0 = x - rsize1, y0 = y - rsize1, x1 = x + rsize2, y1 = y + rsize2; \ + float sum_weights = 0; \ + cimg_for_in##N##XY(res,x0,y0,x1,y1,p,q) if (cimg::abs(img(x,y,0,0) - img(p,q,0,0))3?0.0f:1.0f; \ + sum_weights+=weight; \ + cimg_forC(res,c) res(x,y,c)+=weight*(*this)(p,q,c); \ + } \ + if (sum_weights>0) cimg_forC(res,c) res(x,y,c)/=sum_weights; \ + else cimg_forC(res,c) res(x,y,c) = (Tfloat)((*this)(x,y,c)); \ + } + +#define _cimg_blur_patch2d(N) \ + cimg_for##N##XY(res,x,y) { \ + T *pP = P._data; cimg_forC(res,c) { cimg_get##N##x##N(img,x,y,0,c,pP,T); pP+=N2; } \ + const int x0 = x - rsize1, y0 = y - rsize1, x1 = x + rsize2, y1 = y + rsize2; \ + float sum_weights = 0, weight_max = 0; \ + cimg_for_in##N##XY(res,x0,y0,x1,y1,p,q) if (p!=x || q!=y) { \ + T *pQ = Q._data; cimg_forC(res,c) { cimg_get##N##x##N(img,p,q,0,c,pQ,T); pQ+=N2; } \ + float distance2 = 0; \ + pQ = Q._data; cimg_for(P,pP,T) { const float dI = (float)*pP - (float)*(pQ++); distance2+=dI*dI; } \ + distance2/=Pnorm; \ + const float dx = (float)p - x, dy = (float)q - y, \ + alldist = distance2 + (dx*dx+dy*dy)/sigma_s2, weight = (float)std::exp(-alldist); \ + if (weight>weight_max) weight_max = weight; \ + sum_weights+=weight; \ + cimg_forC(res,c) res(x,y,c)+=weight*(*this)(p,q,c); \ + } \ + sum_weights+=weight_max; cimg_forC(res,c) res(x,y,c)+=weight_max*(*this)(x,y,c); \ + if (sum_weights>0) cimg_forC(res,c) res(x,y,c)/=sum_weights; \ + else cimg_forC(res,c) res(x,y,c) = (Tfloat)((*this)(x,y,c)); \ + } + + if (is_empty() || !patch_size || !lookup_size) return +*this; + CImg res(_width,_height,_depth,_spectrum,0); + const CImg _img = smoothness>0?get_blur(smoothness):CImg(),&img = smoothness>0?_img:*this; + CImg P(patch_size*patch_size*_spectrum), Q(P); + const float + nsigma_s = sigma_s>=0?sigma_s:-sigma_s*cimg::max(_width,_height,_depth)/100, + sigma_s2 = nsigma_s*nsigma_s, sigma_p2 = sigma_p*sigma_p, sigma_p3 = 3*sigma_p, + Pnorm = P.size()*sigma_p2; + const int rsize2 = (int)lookup_size/2, rsize1 = (int)lookup_size - rsize2 - 1; + const unsigned int N2 = patch_size*patch_size, N3 = N2*patch_size; + cimg::unused(N2,N3); + if (_depth>1) switch (patch_size) { // 3d + case 2 : if (is_fast_approx) _cimg_blur_patch3d_fast(2) else _cimg_blur_patch3d(2) break; + case 3 : if (is_fast_approx) _cimg_blur_patch3d_fast(3) else _cimg_blur_patch3d(3) break; + default : { + const int psize2 = (int)patch_size/2, psize1 = (int)patch_size - psize2 - 1; + if (is_fast_approx) + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(res._width>=32 && res._height*res._depth>=4) + private(P,Q)) + cimg_forXYZ(res,x,y,z) { // Fast + P = img.get_crop(x - psize1,y - psize1,z - psize1,x + psize2,y + psize2,z + psize2,true); + const int x0 = x - rsize1, y0 = y - rsize1, z0 = z - rsize1, + x1 = x + rsize2, y1 = y + rsize2, z1 = z + rsize2; + float sum_weights = 0; + cimg_for_inXYZ(res,x0,y0,z0,x1,y1,z1,p,q,r) if (cimg::abs(img(x,y,z,0)-img(p,q,r,0))3?0.0f:1.0f; + sum_weights+=weight; + cimg_forC(res,c) res(x,y,z,c)+=weight*(*this)(p,q,r,c); + } + if (sum_weights>0) cimg_forC(res,c) res(x,y,z,c)/=sum_weights; + else cimg_forC(res,c) res(x,y,z,c) = (Tfloat)((*this)(x,y,z,c)); + } else + cimg_pragma_openmp(parallel for collapse(2) + if (res._width>=32 && res._height*res._depth>=4) firstprivate(P,Q)) + cimg_forXYZ(res,x,y,z) { // Exact + P = img.get_crop(x - psize1,y - psize1,z - psize1,x + psize2,y + psize2,z + psize2,true); + const int x0 = x - rsize1, y0 = y - rsize1, z0 = z - rsize1, + x1 = x + rsize2, y1 = y + rsize2, z1 = z + rsize2; + float sum_weights = 0, weight_max = 0; + cimg_for_inXYZ(res,x0,y0,z0,x1,y1,z1,p,q,r) if (p!=x || q!=y || r!=z) { + (Q = img.get_crop(p - psize1,q - psize1,r - psize1,p + psize2,q + psize2,r + psize2,true))-=P; + const float + dx = (float)x - p, dy = (float)y - q, dz = (float)z - r, + distance2 = (float)(Q.pow(2).sum()/Pnorm + (dx*dx + dy*dy + dz*dz)/sigma_s2), + weight = (float)std::exp(-distance2); + if (weight>weight_max) weight_max = weight; + sum_weights+=weight; + cimg_forC(res,c) res(x,y,z,c)+=weight*(*this)(p,q,r,c); + } + sum_weights+=weight_max; cimg_forC(res,c) res(x,y,z,c)+=weight_max*(*this)(x,y,z,c); + if (sum_weights>0) cimg_forC(res,c) res(x,y,z,c)/=sum_weights; + else cimg_forC(res,c) res(x,y,z,c) = (Tfloat)((*this)(x,y,z,c)); + } + } + } else switch (patch_size) { // 2d + case 2 : if (is_fast_approx) _cimg_blur_patch2d_fast(2) else _cimg_blur_patch2d(2) break; + case 3 : if (is_fast_approx) _cimg_blur_patch2d_fast(3) else _cimg_blur_patch2d(3) break; + case 4 : if (is_fast_approx) _cimg_blur_patch2d_fast(4) else _cimg_blur_patch2d(4) break; + case 5 : if (is_fast_approx) _cimg_blur_patch2d_fast(5) else _cimg_blur_patch2d(5) break; + case 6 : if (is_fast_approx) _cimg_blur_patch2d_fast(6) else _cimg_blur_patch2d(6) break; + case 7 : if (is_fast_approx) _cimg_blur_patch2d_fast(7) else _cimg_blur_patch2d(7) break; + case 8 : if (is_fast_approx) _cimg_blur_patch2d_fast(8) else _cimg_blur_patch2d(8) break; + case 9 : if (is_fast_approx) _cimg_blur_patch2d_fast(9) else _cimg_blur_patch2d(9) break; + default : { // Fast + const int psize2 = (int)patch_size/2, psize1 = (int)patch_size - psize2 - 1; + if (is_fast_approx) + cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=32 && res._height>=4) firstprivate(P,Q)) + cimg_forXY(res,x,y) { // 2d fast approximation. + P = img.get_crop(x - psize1,y - psize1,x + psize2,y + psize2,true); + const int x0 = x - rsize1, y0 = y - rsize1, x1 = x + rsize2, y1 = y + rsize2; + float sum_weights = 0; + cimg_for_inXY(res,x0,y0,x1,y1,p,q) if (cimg::abs(img(x,y,0)-img(p,q,0))3?0.0f:1.0f; + sum_weights+=weight; + cimg_forC(res,c) res(x,y,c)+=weight*(*this)(p,q,c); + } + if (sum_weights>0) cimg_forC(res,c) res(x,y,c)/=sum_weights; + else cimg_forC(res,c) res(x,y,c) = (Tfloat)((*this)(x,y,c)); + } else + cimg_pragma_openmp(parallel for cimg_openmp_if(res._width>=32 && res._height>=4) firstprivate(P,Q)) + cimg_forXY(res,x,y) { // 2d exact algorithm. + P = img.get_crop(x - psize1,y - psize1,x + psize2,y + psize2,true); + const int x0 = x - rsize1, y0 = y - rsize1, x1 = x + rsize2, y1 = y + rsize2; + float sum_weights = 0, weight_max = 0; + cimg_for_inXY(res,x0,y0,x1,y1,p,q) if (p!=x || q!=y) { + (Q = img.get_crop(p - psize1,q - psize1,p + psize2,q + psize2,true))-=P; + const float + dx = (float)x - p, dy = (float)y - q, + distance2 = (float)(Q.pow(2).sum()/Pnorm + (dx*dx + dy*dy)/sigma_s2), + weight = (float)std::exp(-distance2); + if (weight>weight_max) weight_max = weight; + sum_weights+=weight; + cimg_forC(res,c) res(x,y,c)+=weight*(*this)(p,q,c); + } + sum_weights+=weight_max; cimg_forC(res,c) res(x,y,c)+=weight_max*(*this)(x,y,c); + if (sum_weights>0) cimg_forC(res,c) res(x,y,c)/=sum_weights; + else cimg_forC(res,c) res(x,y,0,c) = (Tfloat)((*this)(x,y,c)); + } + } + } + return res; + } + + //! Blur image with the median filter. + /** + \param n Size of the median filter. + \param threshold Threshold used to discard pixels too far from the current pixel value in the median computation. + **/ + CImg& blur_median(const unsigned int n, const float threshold=0) { + if (!n) return *this; + return get_blur_median(n,threshold).move_to(*this); + } + + //! Blur image with the median filter \newinstance. + CImg get_blur_median(const unsigned int n, const float threshold=0) const { + if (is_empty() || n<=1) return +*this; + CImg res(_width,_height,_depth,_spectrum); + T *ptrd = res._data; + cimg::unused(ptrd); + const int hr = (int)n/2, hl = n - hr - 1; + if (res._depth!=1) { // 3d + if (threshold>0) + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=16 && _height*_depth*_spectrum>=4)) + cimg_forXYZC(*this,x,y,z,c) { // With threshold. + const int + x0 = x - hl, y0 = y - hl, z0 = z - hl, x1 = x + hr, y1 = y + hr, z1 = z + hr, + nx0 = x0<0?0:x0, ny0 = y0<0?0:y0, nz0 = z0<0?0:z0, + nx1 = x1>=width()?width() - 1:x1, ny1 = y1>=height()?height() - 1:y1, nz1 = z1>=depth()?depth() - 1:z1; + const float val0 = (float)(*this)(x,y,z,c); + CImg values(n*n*n); + unsigned int nb_values = 0; + T *ptrd = values.data(); + cimg_for_inXYZ(*this,nx0,ny0,nz0,nx1,ny1,nz1,p,q,r) + if (cimg::abs((float)(*this)(p,q,r,c)-val0)<=threshold) { *(ptrd++) = (*this)(p,q,r,c); ++nb_values; } + res(x,y,z,c) = values.get_shared_points(0,nb_values - 1).median(); + } + else + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width>=16 && _height*_depth*_spectrum>=4)) + cimg_forXYZC(*this,x,y,z,c) { // Without threshold. + const int + x0 = x - hl, y0 = y - hl, z0 = z - hl, x1 = x + hr, y1 = y + hr, z1 = z + hr, + nx0 = x0<0?0:x0, ny0 = y0<0?0:y0, nz0 = z0<0?0:z0, + nx1 = x1>=width()?width() - 1:x1, ny1 = y1>=height()?height() - 1:y1, nz1 = z1>=depth()?depth() - 1:z1; + res(x,y,z,c) = get_crop(nx0,ny0,nz0,c,nx1,ny1,nz1,c).median(); + } + } else { +#define _cimg_median_sort(a,b) if ((a)>(b)) cimg::swap(a,b) + if (res._height!=1) { // 2d + if (threshold>0) + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=16 && _height*_spectrum>=4)) + cimg_forXYC(*this,x,y,c) { // With threshold. + const int + x0 = x - hl, y0 = y - hl, x1 = x + hr, y1 = y + hr, + nx0 = x0<0?0:x0, ny0 = y0<0?0:y0, + nx1 = x1>=width()?width() - 1:x1, ny1 = y1>=height()?height() - 1:y1; + const float val0 = (float)(*this)(x,y,c); + CImg values(n*n); + unsigned int nb_values = 0; + T *ptrd = values.data(); + cimg_for_inXY(*this,nx0,ny0,nx1,ny1,p,q) + if (cimg::abs((float)(*this)(p,q,c)-val0)<=threshold) { *(ptrd++) = (*this)(p,q,c); ++nb_values; } + res(x,y,c) = values.get_shared_points(0,nb_values - 1).median(); + } + else switch (n) { // Without threshold. + case 3 : { + cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2)) + cimg_forC(*this,c) { + T I[9] = { (T)0 }; + cimg_for3x3(*this,x,y,0,c,I,T) + res(x,y,c) = cimg::median(I[0],I[1],I[2],I[3],I[4],I[5],I[6],I[7],I[8]); + } + } break; + case 5 : { + cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2)) + cimg_forC(*this,c) { + T I[25] = { (T)0 }; + cimg_for5x5(*this,x,y,0,c,I,T) + res(x,y,c) = cimg::median(I[0],I[1],I[2],I[3],I[4], + I[5],I[6],I[7],I[8],I[9], + I[10],I[11],I[12],I[13],I[14], + I[15],I[16],I[17],I[18],I[19], + I[20],I[21],I[22],I[23],I[24]); + } + } break; + case 7 : { + cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2)) + cimg_forC(*this,c) { + T I[49] = { (T)0 }; + cimg_for7x7(*this,x,y,0,c,I,T) + res(x,y,c) = cimg::median(I[0],I[1],I[2],I[3],I[4],I[5],I[6], + I[7],I[8],I[9],I[10],I[11],I[12],I[13], + I[14],I[15],I[16],I[17],I[18],I[19],I[20], + I[21],I[22],I[23],I[24],I[25],I[26],I[27], + I[28],I[29],I[30],I[31],I[32],I[33],I[34], + I[35],I[36],I[37],I[38],I[39],I[40],I[41], + I[42],I[43],I[44],I[45],I[46],I[47],I[48]); + } + } break; + default : { + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=16 && _height*_spectrum>=4)) + cimg_forXYC(*this,x,y,c) { + const int + x0 = x - hl, y0 = y - hl, x1 = x + hr, y1 = y + hr, + nx0 = x0<0?0:x0, ny0 = y0<0?0:y0, + nx1 = x1>=width()?width() - 1:x1, ny1 = y1>=height()?height() - 1:y1; + res(x,y,c) = get_crop(nx0,ny0,0,c,nx1,ny1,0,c).median(); + } + } + } + } else { // 1d + + CImg I; + if (threshold>0) + cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=16 && _spectrum>=2)) + cimg_forXC(*this,x,c) { // With threshold. + const int + x0 = x - hl, x1 = x + hr, + nx0 = x0<0?0:x0, nx1 = x1>=width()?width() - 1:x1; + const float val0 = (float)(*this)(x,c); + CImg values(n); + unsigned int nb_values = 0; + T *ptrd = values.data(); + cimg_for_inX(*this,nx0,nx1,p) + if (cimg::abs((float)(*this)(p,c)-val0)<=threshold) { *(ptrd++) = (*this)(p,c); ++nb_values; } + res(x,c) = values.get_shared_points(0,nb_values - 1).median(); + } + else switch (n) { // Without threshold. + case 2 : { + cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2)) + cimg_forC(*this,c) { + I.assign(4); + cimg_for2x2(*this,x,y,0,c,I,T) res(x,c) = (T)(0.5f*(I[0] + I[1])); + } + } break; + case 3 : { + cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2)) + cimg_forC(*this,c) { + I.assign(9); + cimg_for3x3(*this,x,y,0,c,I,T) + res(x,c) = I[3]=16 && _spectrum>=2)) + cimg_forXC(*this,x,c) { + const int + x0 = x - hl, x1 = x + hr, + nx0 = x0<0?0:x0, nx1 = x1>=width()?width() - 1:x1; + res(x,c) = get_crop(nx0,0,0,c,nx1,0,0,c).median(); + } + } + } + } + } + return res; + } + + //! Sharpen image. + /** + \param amplitude Sharpening amplitude + \param sharpen_type Select sharpening method. Can be { false=inverse diffusion | true=shock filters }. + \param edge Edge threshold (shock filters only). + \param alpha Gradient smoothness (shock filters only). + \param sigma Tensor smoothness (shock filters only). + **/ + CImg& sharpen(const float amplitude, const bool sharpen_type=false, const float edge=1, + const float alpha=0, const float sigma=0) { + if (is_empty()) return *this; + T val_min, val_max = max_min(val_min); + const float nedge = edge/2; + CImg velocity(_width,_height,_depth,_spectrum), _veloc_max(_spectrum); + + if (_depth>1) { // 3d + if (sharpen_type) { // Shock filters. + CImg G = (alpha>0?get_blur(alpha).get_structure_tensors():get_structure_tensors()); + if (sigma>0) G.blur(sigma); + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=32 && _height*_depth>=16)) + cimg_forYZ(G,y,z) { + Tfloat *ptrG0 = G.data(0,y,z,0), *ptrG1 = G.data(0,y,z,1), + *ptrG2 = G.data(0,y,z,2), *ptrG3 = G.data(0,y,z,3); + CImg val, vec; + cimg_forX(G,x) { + G.get_tensor_at(x,y,z).symmetric_eigen(val,vec); + if (val[0]<0) val[0] = 0; + if (val[1]<0) val[1] = 0; + if (val[2]<0) val[2] = 0; + *(ptrG0++) = vec(0,0); + *(ptrG1++) = vec(0,1); + *(ptrG2++) = vec(0,2); + *(ptrG3++) = 1 - (Tfloat)std::pow(1 + val[0] + val[1] + val[2],-(Tfloat)nedge); + } + } + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=512 && _spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd = velocity.data(0,0,0,c), veloc_max = 0; + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) { + const Tfloat + u = G(x,y,z,0), + v = G(x,y,z,1), + w = G(x,y,z,2), + amp = G(x,y,z,3), + ixx = Incc + Ipcc - 2*Iccc, + ixy = (Innc + Ippc - Inpc - Ipnc)/4, + ixz = (Incn + Ipcp - Incp - Ipcn)/4, + iyy = Icnc + Icpc - 2*Iccc, + iyz = (Icnn + Icpp - Icnp - Icpn)/4, + izz = Iccn + Iccp - 2*Iccc, + ixf = Incc - Iccc, + ixb = Iccc - Ipcc, + iyf = Icnc - Iccc, + iyb = Iccc - Icpc, + izf = Iccn - Iccc, + izb = Iccc - Iccp, + itt = u*u*ixx + v*v*iyy + w*w*izz + 2*u*v*ixy + 2*u*w*ixz + 2*v*w*iyz, + it = u*cimg::minmod(ixf,ixb) + v*cimg::minmod(iyf,iyb) + w*cimg::minmod(izf,izb), + veloc = -amp*cimg::sign(itt)*cimg::abs(it); + *(ptrd++) = veloc; + if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; + } + _veloc_max[c] = veloc_max; + } + } else // Inverse diffusion. + cimg_forC(*this,c) { + Tfloat *ptrd = velocity.data(0,0,0,c), veloc_max = 0; + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) { + const Tfloat veloc = -Ipcc - Incc - Icpc - Icnc - Iccp - Iccn + 6*Iccc; + *(ptrd++) = veloc; + if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; + } + _veloc_max[c] = veloc_max; + } + } else { // 2d. + if (sharpen_type) { // Shock filters. + CImg G = (alpha>0?get_blur(alpha).get_structure_tensors():get_structure_tensors()); + if (sigma>0) G.blur(sigma); + cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=32 && _height>=16)) + cimg_forY(G,y) { + CImg val, vec; + Tfloat *ptrG0 = G.data(0,y,0,0), *ptrG1 = G.data(0,y,0,1), *ptrG2 = G.data(0,y,0,2); + cimg_forX(G,x) { + G.get_tensor_at(x,y).symmetric_eigen(val,vec); + if (val[0]<0) val[0] = 0; + if (val[1]<0) val[1] = 0; + *(ptrG0++) = vec(0,0); + *(ptrG1++) = vec(0,1); + *(ptrG2++) = 1 - (Tfloat)std::pow(1 + val[0] + val[1],-(Tfloat)nedge); + } + } + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=512 && _spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd = velocity.data(0,0,0,c), veloc_max = 0; + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,0,c,I,Tfloat) { + const Tfloat + u = G(x,y,0), + v = G(x,y,1), + amp = G(x,y,2), + ixx = Inc + Ipc - 2*Icc, + ixy = (Inn + Ipp - Inp - Ipn)/4, + iyy = Icn + Icp - 2*Icc, + ixf = Inc - Icc, + ixb = Icc - Ipc, + iyf = Icn - Icc, + iyb = Icc - Icp, + itt = u*u*ixx + v*v*iyy + 2*u*v*ixy, + it = u*cimg::minmod(ixf,ixb) + v*cimg::minmod(iyf,iyb), + veloc = -amp*cimg::sign(itt)*cimg::abs(it); + *(ptrd++) = veloc; + if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; + } + _veloc_max[c] = veloc_max; + } + } else // Inverse diffusion. + cimg_forC(*this,c) { + Tfloat *ptrd = velocity.data(0,0,0,c), veloc_max = 0; + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,0,c,I,Tfloat) { + const Tfloat veloc = -Ipc - Inc - Icp - Icn + 4*Icc; + *(ptrd++) = veloc; + if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; + } + _veloc_max[c] = veloc_max; + } + } + const Tfloat veloc_max = _veloc_max.max(); + if (veloc_max<=0) return *this; + return ((velocity*=amplitude/veloc_max)+=*this).cut(val_min,val_max).move_to(*this); + } + + //! Sharpen image \newinstance. + CImg get_sharpen(const float amplitude, const bool sharpen_type=false, const float edge=1, + const float alpha=0, const float sigma=0) const { + return (+*this).sharpen(amplitude,sharpen_type,edge,alpha,sigma); + } + + //! Return image gradient. + /** + \param axes Axes considered for the gradient computation, as a C-string (e.g "xy"). + \param scheme = Numerical scheme used for the gradient computation: + - -1 = Backward finite differences + - 0 = Centered finite differences + - 1 = Forward finite differences + - 2 = Using Sobel kernels + - 3 = Using rotation invariant kernels + - 4 = Using Deriche recusrsive filter. + - 5 = Using Van Vliet recusrsive filter. + **/ + CImgList get_gradient(const char *const axes=0, const int scheme=3) const { + CImgList grad(2,_width,_height,_depth,_spectrum); + bool is_3d = false; + if (axes) { + for (unsigned int a = 0; axes[a]; ++a) { + const char axis = cimg::lowercase(axes[a]); + switch (axis) { + case 'x' : case 'y' : break; + case 'z' : is_3d = true; break; + default : + throw CImgArgumentException(_cimg_instance + "get_gradient(): Invalid specified axis '%c'.", + cimg_instance, + axis); + } + } + } else is_3d = (_depth>1); + if (is_3d) { + CImg(_width,_height,_depth,_spectrum).move_to(grad); + switch (scheme) { // 3d. + case -1 : { // Backward finite differences. + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=1048576 && _spectrum>=2)) + cimg_forC(*this,c) { + const ulongT off = (ulongT)c*_width*_height*_depth; + Tfloat *ptrd0 = grad[0]._data + off, *ptrd1 = grad[1]._data + off, *ptrd2 = grad[2]._data + off; + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) { + *(ptrd0++) = Iccc - Ipcc; + *(ptrd1++) = Iccc - Icpc; + *(ptrd2++) = Iccc - Iccp; + } + } + } break; + case 1 : { // Forward finite differences. + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=1048576 && _spectrum>=2)) + cimg_forC(*this,c) { + const ulongT off = (ulongT)c*_width*_height*_depth; + Tfloat *ptrd0 = grad[0]._data + off, *ptrd1 = grad[1]._data + off, *ptrd2 = grad[2]._data + off; + CImg_2x2x2(I,Tfloat); + cimg_for2x2x2(*this,x,y,z,c,I,Tfloat) { + *(ptrd0++) = Incc - Iccc; + *(ptrd1++) = Icnc - Iccc; + *(ptrd2++) = Iccn - Iccc; + } + } + } break; + case 4 : { // Deriche filter with low standard variation. + grad[0] = get_deriche(0,1,'x'); + grad[1] = get_deriche(0,1,'y'); + grad[2] = get_deriche(0,1,'z'); + } break; + case 5 : { // Van Vliet filter with low standard variation. + grad[0] = get_vanvliet(0,1,'x'); + grad[1] = get_vanvliet(0,1,'y'); + grad[2] = get_vanvliet(0,1,'z'); + } break; + default : { // Central finite differences. + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=1048576 && _spectrum>=2)) + cimg_forC(*this,c) { + const ulongT off = (ulongT)c*_width*_height*_depth; + Tfloat *ptrd0 = grad[0]._data + off, *ptrd1 = grad[1]._data + off, *ptrd2 = grad[2]._data + off; + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) { + *(ptrd0++) = (Incc - Ipcc)/2; + *(ptrd1++) = (Icnc - Icpc)/2; + *(ptrd2++) = (Iccn - Iccp)/2; + } + } + } + } + } else switch (scheme) { // 2d. + case -1 : { // Backward finite differences. + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width*_height>=1048576 && _depth*_spectrum>=2)) + cimg_forZC(*this,z,c) { + const ulongT off = (ulongT)c*_width*_height*_depth + z*_width*_height; + Tfloat *ptrd0 = grad[0]._data + off, *ptrd1 = grad[1]._data + off; + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,z,c,I,Tfloat) { + *(ptrd0++) = Icc - Ipc; + *(ptrd1++) = Icc - Icp; + } + } + } break; + case 1 : { // Forward finite differences. + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width*_height>=1048576 && _depth*_spectrum>=2)) + cimg_forZC(*this,z,c) { + const ulongT off = (ulongT)c*_width*_height*_depth + z*_width*_height; + Tfloat *ptrd0 = grad[0]._data + off, *ptrd1 = grad[1]._data + off; + CImg_2x2(I,Tfloat); + cimg_for2x2(*this,x,y,z,c,I,Tfloat) { + *(ptrd0++) = Inc - Icc; + *(ptrd1++) = Icn - Icc; + } + } + } break; + case 2 : { // Sobel scheme. + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width*_height>=1048576 && _depth*_spectrum>=2)) + cimg_forZC(*this,z,c) { + const ulongT off = (ulongT)c*_width*_height*_depth + z*_width*_height; + Tfloat *ptrd0 = grad[0]._data + off, *ptrd1 = grad[1]._data + off; + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,z,c,I,Tfloat) { + *(ptrd0++) = -Ipp - 2*Ipc - Ipn + Inp + 2*Inc + Inn; + *(ptrd1++) = -Ipp - 2*Icp - Inp + Ipn + 2*Icn + Inn; + } + } + } break; + case 3 : { // Rotation invariant kernel. + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width*_height>=1048576 && _depth*_spectrum>=2)) + cimg_forZC(*this,z,c) { + const ulongT off = (ulongT)c*_width*_height*_depth + z*_width*_height; + Tfloat *ptrd0 = grad[0]._data + off, *ptrd1 = grad[1]._data + off; + CImg_3x3(I,Tfloat); + const Tfloat a = (Tfloat)(0.25f*(2 - std::sqrt(2.0f))), b = (Tfloat)(0.5f*(std::sqrt(2.0f) - 1)); + cimg_for3x3(*this,x,y,z,c,I,Tfloat) { + *(ptrd0++) = -a*Ipp - b*Ipc - a*Ipn + a*Inp + b*Inc + a*Inn; + *(ptrd1++) = -a*Ipp - b*Icp - a*Inp + a*Ipn + b*Icn + a*Inn; + } + } + } break; + case 4 : { // Van Vliet filter with low standard variation + grad[0] = get_deriche(0,1,'x'); + grad[1] = get_deriche(0,1,'y'); + } break; + case 5 : { // Deriche filter with low standard variation + grad[0] = get_vanvliet(0,1,'x'); + grad[1] = get_vanvliet(0,1,'y'); + } break; + default : { // Central finite differences + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width*_height>=1048576 && _depth*_spectrum>=2)) + cimg_forZC(*this,z,c) { + const ulongT off = (ulongT)c*_width*_height*_depth + z*_width*_height; + Tfloat *ptrd0 = grad[0]._data + off, *ptrd1 = grad[1]._data + off; + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,z,c,I,Tfloat) { + *(ptrd0++) = (Inc - Ipc)/2; + *(ptrd1++) = (Icn - Icp)/2; + } + } + } + } + if (!axes) return grad; + CImgList res; + for (unsigned int l = 0; axes[l]; ++l) { + const char axis = cimg::lowercase(axes[l]); + switch (axis) { + case 'x' : res.insert(grad[0]); break; + case 'y' : res.insert(grad[1]); break; + case 'z' : res.insert(grad[2]); break; + } + } + grad.assign(); + return res; + } + + //! Return image hessian. + /** + \param axes Axes considered for the hessian computation, as a C-string (e.g "xy"). + **/ + CImgList get_hessian(const char *const axes=0) const { + CImgList res; + const char *naxes = axes, *const def_axes2d = "xxxyyy", *const def_axes3d = "xxxyxzyyyzzz"; + if (!axes) naxes = _depth>1?def_axes3d:def_axes2d; + const unsigned int lmax = (unsigned int)std::strlen(naxes); + if (lmax%2) + throw CImgArgumentException(_cimg_instance + "get_hessian(): Invalid specified axes '%s'.", + cimg_instance, + naxes); + + res.assign(lmax/2,_width,_height,_depth,_spectrum); + if (!cimg::strcasecmp(naxes,def_axes3d)) { // 3d + + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=1048576 && _spectrum>=2)) + cimg_forC(*this,c) { + const ulongT off = (ulongT)c*_width*_height*_depth; + Tfloat + *ptrd0 = res[0]._data + off, *ptrd1 = res[1]._data + off, *ptrd2 = res[2]._data + off, + *ptrd3 = res[3]._data + off, *ptrd4 = res[4]._data + off, *ptrd5 = res[5]._data + off; + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) { + *(ptrd0++) = Ipcc + Incc - 2*Iccc; // Ixx + *(ptrd1++) = (Ippc + Innc - Ipnc - Inpc)/4; // Ixy + *(ptrd2++) = (Ipcp + Incn - Ipcn - Incp)/4; // Ixz + *(ptrd3++) = Icpc + Icnc - 2*Iccc; // Iyy + *(ptrd4++) = (Icpp + Icnn - Icpn - Icnp)/4; // Iyz + *(ptrd5++) = Iccn + Iccp - 2*Iccc; // Izz + } + } + } else if (!cimg::strcasecmp(naxes,def_axes2d)) { // 2d + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width*_height>=1048576 && _depth*_spectrum>=2)) + cimg_forZC(*this,z,c) { + const ulongT off = (ulongT)c*_width*_height*_depth + z*_width*_height; + Tfloat *ptrd0 = res[0]._data + off, *ptrd1 = res[1]._data + off, *ptrd2 = res[2]._data + off; + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,z,c,I,Tfloat) { + *(ptrd0++) = Ipc + Inc - 2*Icc; // Ixx + *(ptrd1++) = (Ipp + Inn - Ipn - Inp)/4; // Ixy + *(ptrd2++) = Icp + Icn - 2*Icc; // Iyy + } + } + } else for (unsigned int l = 0; laxis2) cimg::swap(axis1,axis2); + bool valid_axis = false; + if (axis1=='x' && axis2=='x') { // Ixx + valid_axis = true; + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width*_height>=1048576 && _depth*_spectrum>=2)) + cimg_forZC(*this,z,c) { + Tfloat *ptrd = res[l2].data(0,0,z,c); + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,z,c,I,Tfloat) *(ptrd++) = Ipc + Inc - 2*Icc; + } + } + else if (axis1=='x' && axis2=='y') { // Ixy + valid_axis = true; + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width*_height>=1048576 && _depth*_spectrum>=2)) + cimg_forZC(*this,z,c) { + Tfloat *ptrd = res[l2].data(0,0,z,c); + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,z,c,I,Tfloat) *(ptrd++) = (Ipp + Inn - Ipn - Inp)/4; + } + } + else if (axis1=='x' && axis2=='z') { // Ixz + valid_axis = true; + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=1048576 && _spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd = res[l2].data(0,0,0,c); + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) *(ptrd++) = (Ipcp + Incn - Ipcn - Incp)/4; + } + } + else if (axis1=='y' && axis2=='y') { // Iyy + valid_axis = true; + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width*_height>=1048576 && _depth*_spectrum>=2)) + cimg_forZC(*this,z,c) { + Tfloat *ptrd = res[l2].data(0,0,z,c); + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,z,c,I,Tfloat) *(ptrd++) = Icp + Icn - 2*Icc; + } + } + else if (axis1=='y' && axis2=='z') { // Iyz + valid_axis = true; + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=1048576 && _spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd = res[l2].data(0,0,0,c); + CImg_3x3x3(I,Tfloat); + cimg_forC(*this,c) cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) *(ptrd++) = (Icpp + Icnn - Icpn - Icnp)/4; + } + } + else if (axis1=='z' && axis2=='z') { // Izz + valid_axis = true; + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=1048576 && _spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd = res[l2].data(0,0,0,c); + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) *(ptrd++) = Iccn + Iccp - 2*Iccc; + } + } + else if (!valid_axis) + throw CImgArgumentException(_cimg_instance + "get_hessian(): Invalid specified axes '%s'.", + cimg_instance, + naxes); + } + return res; + } + + //! Compute image laplacian. + CImg& laplacian() { + return get_laplacian().move_to(*this); + } + + //! Compute image laplacian \newinstance. + CImg get_laplacian() const { + if (is_empty()) return CImg(); + CImg res(_width,_height,_depth,_spectrum); + if (_depth>1) { // 3d + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=1048576 && _spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd = res.data(0,0,0,c); + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) *(ptrd++) = Incc + Ipcc + Icnc + Icpc + Iccn + Iccp - 6*Iccc; + } + } else if (_height>1) { // 2d + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=1048576 && _depth*_spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd = res.data(0,0,0,c); + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,0,c,I,Tfloat) *(ptrd++) = Inc + Ipc + Icn + Icp - 4*Icc; + } + } else { // 1d + cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=1048576 && _height*_depth*_spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd = res.data(0,0,0,c); + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,0,c,I,Tfloat) *(ptrd++) = Inc + Ipc - 2*Icc; + } + } + return res; + } + + //! Compute the structure tensor field of an image. + /** + \param is_fwbw_scheme scheme. Can be { false=centered | true=forward-backward } + **/ + CImg& structure_tensors(const bool is_fwbw_scheme=false) { + return get_structure_tensors(is_fwbw_scheme).move_to(*this); + } + + //! Compute the structure tensor field of an image \newinstance. + CImg get_structure_tensors(const bool is_fwbw_scheme=false) const { + if (is_empty()) return *this; + CImg res; + if (_depth>1) { // 3d + res.assign(_width,_height,_depth,6,0); + if (!is_fwbw_scheme) { // Classical central finite differences + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=1048576 && _spectrum>=2)) + cimg_forC(*this,c) { + Tfloat + *ptrd0 = res.data(0,0,0,0), *ptrd1 = res.data(0,0,0,1), *ptrd2 = res.data(0,0,0,2), + *ptrd3 = res.data(0,0,0,3), *ptrd4 = res.data(0,0,0,4), *ptrd5 = res.data(0,0,0,5); + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) { + const Tfloat + ix = (Incc - Ipcc)/2, + iy = (Icnc - Icpc)/2, + iz = (Iccn - Iccp)/2; + *(ptrd0++)+=ix*ix; + *(ptrd1++)+=ix*iy; + *(ptrd2++)+=ix*iz; + *(ptrd3++)+=iy*iy; + *(ptrd4++)+=iy*iz; + *(ptrd5++)+=iz*iz; + } + } + } else { // Forward/backward finite differences. + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height*_depth>=1048576 && _spectrum>=2)) + cimg_forC(*this,c) { + Tfloat + *ptrd0 = res.data(0,0,0,0), *ptrd1 = res.data(0,0,0,1), *ptrd2 = res.data(0,0,0,2), + *ptrd3 = res.data(0,0,0,3), *ptrd4 = res.data(0,0,0,4), *ptrd5 = res.data(0,0,0,5); + CImg_3x3x3(I,Tfloat); + cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) { + const Tfloat + ixf = Incc - Iccc, ixb = Iccc - Ipcc, + iyf = Icnc - Iccc, iyb = Iccc - Icpc, + izf = Iccn - Iccc, izb = Iccc - Iccp; + *(ptrd0++)+=(ixf*ixf + ixb*ixb)/2; + *(ptrd1++)+=(ixf*iyf + ixf*iyb + ixb*iyf + ixb*iyb)/4; + *(ptrd2++)+=(ixf*izf + ixf*izb + ixb*izf + ixb*izb)/4; + *(ptrd3++)+=(iyf*iyf + iyb*iyb)/2; + *(ptrd4++)+=(iyf*izf + iyf*izb + iyb*izf + iyb*izb)/4; + *(ptrd5++)+=(izf*izf + izb*izb)/2; + } + } + } + } else { // 2d + res.assign(_width,_height,_depth,3,0); + if (!is_fwbw_scheme) { // Classical central finite differences + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=1048576 && _depth*_spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd0 = res.data(0,0,0,0), *ptrd1 = res.data(0,0,0,1), *ptrd2 = res.data(0,0,0,2); + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,0,c,I,Tfloat) { + const Tfloat + ix = (Inc - Ipc)/2, + iy = (Icn - Icp)/2; + *(ptrd0++)+=ix*ix; + *(ptrd1++)+=ix*iy; + *(ptrd2++)+=iy*iy; + } + } + } else { // Forward/backward finite differences (version 2). + cimg_pragma_openmp(parallel for cimg_openmp_if(_width*_height>=1048576 && _depth*_spectrum>=2)) + cimg_forC(*this,c) { + Tfloat *ptrd0 = res.data(0,0,0,0), *ptrd1 = res.data(0,0,0,1), *ptrd2 = res.data(0,0,0,2); + CImg_3x3(I,Tfloat); + cimg_for3x3(*this,x,y,0,c,I,Tfloat) { + const Tfloat + ixf = Inc - Icc, ixb = Icc - Ipc, + iyf = Icn - Icc, iyb = Icc - Icp; + *(ptrd0++)+=(ixf*ixf + ixb*ixb)/2; + *(ptrd1++)+=(ixf*iyf + ixf*iyb + ixb*iyf + ixb*iyb)/4; + *(ptrd2++)+=(iyf*iyf + iyb*iyb)/2; + } + } + } + } + return res; + } + + //! Compute field of diffusion tensors for edge-preserving smoothing. + /** + \param sharpness Sharpness + \param anisotropy Anisotropy + \param alpha Standard deviation of the gradient blur. + \param sigma Standard deviation of the structure tensor blur. + \param is_sqrt Tells if the square root of the tensor field is computed instead. + **/ + CImg& diffusion_tensors(const float sharpness=0.7f, const float anisotropy=0.6f, + const float alpha=0.6f, const float sigma=1.1f, const bool is_sqrt=false) { + CImg res; + const float + nsharpness = std::max(sharpness,1e-5f), + power1 = (is_sqrt?0.5f:1)*nsharpness, + power2 = power1/(1e-7f + 1 - anisotropy); + blur(alpha).normalize(0,(T)255); + + if (_depth>1) { // 3d + get_structure_tensors().move_to(res).blur(sigma); + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=256 && _height*_depth>=256)) + cimg_forYZ(*this,y,z) { + Tfloat + *ptrd0 = res.data(0,y,z,0), *ptrd1 = res.data(0,y,z,1), *ptrd2 = res.data(0,y,z,2), + *ptrd3 = res.data(0,y,z,3), *ptrd4 = res.data(0,y,z,4), *ptrd5 = res.data(0,y,z,5); + CImg val(3), vec(3,3); + cimg_forX(*this,x) { + res.get_tensor_at(x,y,z).symmetric_eigen(val,vec); + const float + _l1 = val[2], _l2 = val[1], _l3 = val[0], + l1 = _l1>0?_l1:0, l2 = _l2>0?_l2:0, l3 = _l3>0?_l3:0, + ux = vec(0,0), uy = vec(0,1), uz = vec(0,2), + vx = vec(1,0), vy = vec(1,1), vz = vec(1,2), + wx = vec(2,0), wy = vec(2,1), wz = vec(2,2), + n1 = (float)std::pow(1 + l1 + l2 + l3,-power1), + n2 = (float)std::pow(1 + l1 + l2 + l3,-power2); + *(ptrd0++) = n1*(ux*ux + vx*vx) + n2*wx*wx; + *(ptrd1++) = n1*(ux*uy + vx*vy) + n2*wx*wy; + *(ptrd2++) = n1*(ux*uz + vx*vz) + n2*wx*wz; + *(ptrd3++) = n1*(uy*uy + vy*vy) + n2*wy*wy; + *(ptrd4++) = n1*(uy*uz + vy*vz) + n2*wy*wz; + *(ptrd5++) = n1*(uz*uz + vz*vz) + n2*wz*wz; + } + } + } else { // for 2d images + get_structure_tensors().move_to(res).blur(sigma); + cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=256 && _height>=256)) + cimg_forY(*this,y) { + Tfloat *ptrd0 = res.data(0,y,0,0), *ptrd1 = res.data(0,y,0,1), *ptrd2 = res.data(0,y,0,2); + CImg val(2), vec(2,2); + cimg_forX(*this,x) { + res.get_tensor_at(x,y).symmetric_eigen(val,vec); + const float + _l1 = val[1], _l2 = val[0], + l1 = _l1>0?_l1:0, l2 = _l2>0?_l2:0, + ux = vec(1,0), uy = vec(1,1), + vx = vec(0,0), vy = vec(0,1), + n1 = (float)std::pow(1 + l1 + l2,-power1), + n2 = (float)std::pow(1 + l1 + l2,-power2); + *(ptrd0++) = n1*ux*ux + n2*vx*vx; + *(ptrd1++) = n1*ux*uy + n2*vx*vy; + *(ptrd2++) = n1*uy*uy + n2*vy*vy; + } + } + } + return res.move_to(*this); + } + + //! Compute field of diffusion tensors for edge-preserving smoothing \newinstance. + CImg get_diffusion_tensors(const float sharpness=0.7f, const float anisotropy=0.6f, + const float alpha=0.6f, const float sigma=1.1f, const bool is_sqrt=false) const { + return CImg(*this,false).diffusion_tensors(sharpness,anisotropy,alpha,sigma,is_sqrt); + } + + //! Estimate displacement field between two images. + /** + \param source Reference image. + \param smoothness Smoothness of estimated displacement field. + \param precision Precision required for algorithm convergence. + \param nb_scales Number of scales used to estimate the displacement field. + \param iteration_max Maximum number of iterations allowed for one scale. + \param is_backward If false, match I2(X + U(X)) = I1(X), else match I2(X) = I1(X - U(X)). + \param guide Image used as the initial correspondence estimate for the algorithm. + 'guide' may have a last channel with boolean values (0=false | other=true) that + tells for each pixel if its correspondence vector is constrained to its initial value (constraint mask). + **/ + CImg& displacement(const CImg& source, const float smoothness=0.1f, const float precision=5.0f, + const unsigned int nb_scales=0, const unsigned int iteration_max=10000, + const bool is_backward=false, + const CImg& guide=CImg::const_empty()) { + return get_displacement(source,smoothness,precision,nb_scales,iteration_max,is_backward,guide). + move_to(*this); + } + + //! Estimate displacement field between two images \newinstance. + CImg get_displacement(const CImg& source, + const float smoothness=0.1f, const float precision=5.0f, + const unsigned int nb_scales=0, const unsigned int iteration_max=10000, + const bool is_backward=false, + const CImg& guide=CImg::const_empty()) const { + if (is_empty() || !source) return +*this; + if (!is_sameXYZC(source)) + throw CImgArgumentException(_cimg_instance + "displacement(): Instance and source image (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + source._width,source._height,source._depth,source._spectrum,source._data); + if (precision<0) + throw CImgArgumentException(_cimg_instance + "displacement(): Invalid specified precision %g " + "(should be >=0)", + cimg_instance, + precision); + + const bool is_3d = source._depth>1; + const unsigned int constraint = is_3d?3:2; + + if (guide && + (guide._width!=_width || guide._height!=_height || guide._depth!=_depth || guide._spectrum0?nb_scales: + (unsigned int)cimg::round(std::log(mins/8.0)/std::log(1.5),1,1); + + const float _precision = (float)std::pow(10.0,-(double)precision); + float sm, sM = source.max_min(sm), tm, tM = max_min(tm); + const float sdelta = sm==sM?1:(sM - sm), tdelta = tm==tM?1:(tM - tm); + + CImg U, V; + floatT bound = 0; + for (int scale = (int)_nb_scales - 1; scale>=0; --scale) { + const float factor = (float)std::pow(1.5,(double)scale); + const unsigned int + _sw = (unsigned int)(_width/factor), sw = _sw?_sw:1, + _sh = (unsigned int)(_height/factor), sh = _sh?_sh:1, + _sd = (unsigned int)(_depth/factor), sd = _sd?_sd:1; + if (sw<5 && sh<5 && (!is_3d || sd<5)) continue; // skip too small scales. + const CImg + I1 = (source.get_resize(sw,sh,sd,-100,2)-=sm)/=sdelta, + I2 = (get_resize(I1,2)-=tm)/=tdelta; + if (guide._spectrum>constraint) guide.get_resize(I2._width,I2._height,I2._depth,-100,1).move_to(V); + if (U) (U*=1.5f).resize(I2._width,I2._height,I2._depth,-100,3); + else { + if (guide) + guide.get_shared_channels(0,is_3d?2:1).get_resize(I2._width,I2._height,I2._depth,-100,2).move_to(U); + else U.assign(I2._width,I2._height,I2._depth,is_3d?3:2,0); + } + + float dt = 2, energy = cimg::type::max(); + const CImgList dI = is_backward?I1.get_gradient():I2.get_gradient(); + + for (unsigned int iteration = 0; iteration=0) // Isotropic regularization. + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_height*_depth>=8 && _width>=16) + reduction(+:_energy)) + cimg_forYZ(U,y,z) { + const int + _p1y = y?y - 1:0, _n1y = yx) U(x,y,z,0) = (float)x; + if (U(x,y,z,1)>y) U(x,y,z,1) = (float)y; + if (U(x,y,z,2)>z) U(x,y,z,2) = (float)z; + bound = (float)x - _width; if (U(x,y,z,0)<=bound) U(x,y,z,0) = bound; + bound = (float)y - _height; if (U(x,y,z,1)<=bound) U(x,y,z,1) = bound; + bound = (float)z - _depth; if (U(x,y,z,2)<=bound) U(x,y,z,2) = bound; + } else { + if (U(x,y,z,0)<-x) U(x,y,z,0) = -(float)x; + if (U(x,y,z,1)<-y) U(x,y,z,1) = -(float)y; + if (U(x,y,z,2)<-z) U(x,y,z,2) = -(float)z; + bound = (float)_width - x; if (U(x,y,z,0)>=bound) U(x,y,z,0) = bound; + bound = (float)_height - y; if (U(x,y,z,1)>=bound) U(x,y,z,1) = bound; + bound = (float)_depth - z; if (U(x,y,z,2)>=bound) U(x,y,z,2) = bound; + } + _energy+=delta_I*delta_I + smoothness*_energy_regul; + } + if (V) cimg_forXYZ(V,x,y,z) if (V(x,y,z,3)) { // Apply constraints. + U(x,y,z,0) = V(x,y,z,0)/factor; + U(x,y,z,1) = V(x,y,z,1)/factor; + U(x,y,z,2) = V(x,y,z,2)/factor; + } + } else { // Anisotropic regularization. + const float nsmoothness = -smoothness; + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_height*_depth>=8 && _width>=16) + reduction(+:_energy)) + cimg_forYZ(U,y,z) { + const int + _p1y = y?y - 1:0, _n1y = yx) U(x,y,z,0) = (float)x; + if (U(x,y,z,1)>y) U(x,y,z,1) = (float)y; + if (U(x,y,z,2)>z) U(x,y,z,2) = (float)z; + bound = (float)x - _width; if (U(x,y,z,0)<=bound) U(x,y,z,0) = bound; + bound = (float)y - _height; if (U(x,y,z,1)<=bound) U(x,y,z,1) = bound; + bound = (float)z - _depth; if (U(x,y,z,2)<=bound) U(x,y,z,2) = bound; + } else { + if (U(x,y,z,0)<-x) U(x,y,z,0) = -(float)x; + if (U(x,y,z,1)<-y) U(x,y,z,1) = -(float)y; + if (U(x,y,z,2)<-z) U(x,y,z,2) = -(float)z; + bound = (float)_width - x; if (U(x,y,z,0)>=bound) U(x,y,z,0) = bound; + bound = (float)_height - y; if (U(x,y,z,1)>=bound) U(x,y,z,1) = bound; + bound = (float)_depth - z; if (U(x,y,z,2)>=bound) U(x,y,z,2) = bound; + } + _energy+=delta_I*delta_I + nsmoothness*_energy_regul; + } + if (V) cimg_forXYZ(V,x,y,z) if (V(x,y,z,3)) { // Apply constraints. + U(x,y,z,0) = V(x,y,z,0)/factor; + U(x,y,z,1) = V(x,y,z,1)/factor; + U(x,y,z,2) = V(x,y,z,2)/factor; + } + } + } + } else { // 2d version. + if (smoothness>=0) // Isotropic regularization. + cimg_pragma_openmp(parallel for cimg_openmp_if(_height>=8 && _width>=16) reduction(+:_energy)) + cimg_forY(U,y) { + const int _p1y = y?y - 1:0, _n1y = yx) U(x,y,0) = (float)x; + if (U(x,y,1)>y) U(x,y,1) = (float)y; + bound = (float)x - _width; if (U(x,y,0)<=bound) U(x,y,0) = bound; + bound = (float)y - _height; if (U(x,y,1)<=bound) U(x,y,1) = bound; + } else { + if (U(x,y,0)<-x) U(x,y,0) = -(float)x; + if (U(x,y,1)<-y) U(x,y,1) = -(float)y; + bound = (float)_width - x; if (U(x,y,0)>=bound) U(x,y,0) = bound; + bound = (float)_height - y; if (U(x,y,1)>=bound) U(x,y,1) = bound; + } + _energy+=delta_I*delta_I + smoothness*_energy_regul; + } + if (V) cimg_forX(V,x) if (V(x,y,2)) { // Apply constraints. + U(x,y,0) = V(x,y,0)/factor; + U(x,y,1) = V(x,y,1)/factor; + } + } else { // Anisotropic regularization. + const float nsmoothness = -smoothness; + cimg_pragma_openmp(parallel for cimg_openmp_if(_height>=8 && _width>=16) reduction(+:_energy)) + cimg_forY(U,y) { + const int _p1y = y?y - 1:0, _n1y = yx) U(x,y,0) = (float)x; + if (U(x,y,1)>y) U(x,y,1) = (float)y; + bound = (float)x - _width; if (U(x,y,0)<=bound) U(x,y,0) = bound; + bound = (float)y - _height; if (U(x,y,1)<=bound) U(x,y,1) = bound; + } else { + if (U(x,y,0)<-x) U(x,y,0) = -(float)x; + if (U(x,y,1)<-y) U(x,y,1) = -(float)y; + bound = (float)_width - x; if (U(x,y,0)>=bound) U(x,y,0) = bound; + bound = (float)_height - y; if (U(x,y,1)>=bound) U(x,y,1) = bound; + } + _energy+=delta_I*delta_I + nsmoothness*_energy_regul; + } + if (V) cimg_forX(V,x) if (V(x,y,2)) { // Apply constraints. + U(x,y,0) = V(x,y,0)/factor; + U(x,y,1) = V(x,y,1)/factor; + } + } + } + } + const float d_energy = (_energy - energy)/(sw*sh*sd); + if (d_energy<=0 && -d_energy<_precision) break; + if (d_energy>0) dt*=0.5f; + energy = _energy; + } + } + return U; + } + + //! Compute correspondence map between two images, using the patch-match algorithm. + /** + \param patch_image The image containing the reference patches to match with the instance image. + \param patch_width Width of the patch used for matching. + \param patch_height Height of the patch used for matching. + \param patch_depth Depth of the patch used for matching. + \param nb_iterations Number of patch-match iterations. + \param nb_randoms Number of randomization attempts (per pixel). + \param guide Image used as the initial correspondence estimate for the algorithm. + 'guide' may have a last channel with boolean values (0=false | other=true) that + tells for each pixel if its correspondence vector is constrained to its initial value (constraint mask). + \param[out] matching_score Returned as the image of matching scores. + \note + The patch-match algorithm is described in this paper: + Connelly Barnes, Eli Shechtman, Adam Finkelstein, Dan B Goldman(2009), + PatchMatch: A Randomized Correspondence Algorithm for Structural Image Editing + **/ + template + CImg& patchmatch(const CImg& patch_image, + const unsigned int patch_width, + const unsigned int patch_height, + const unsigned int patch_depth, + const unsigned int nb_iterations, + const unsigned int nb_randoms, + const CImg &guide, + CImg &matching_score) { + return get_patchmatch(patch_image,patch_width,patch_height,patch_depth, + nb_iterations,nb_randoms,guide,matching_score).move_to(*this); + } + + //! Compute correspondence map between two images, using the patch-match algorithm \newinstance. + template + CImg get_patchmatch(const CImg& patch_image, + const unsigned int patch_width, + const unsigned int patch_height, + const unsigned int patch_depth, + const unsigned int nb_iterations, + const unsigned int nb_randoms, + const CImg &guide, + CImg &matching_score) const { + return _patchmatch(patch_image,patch_width,patch_height,patch_depth, + nb_iterations,nb_randoms, + guide,true,matching_score); + } + + //! Compute correspondence map between two images, using the patch-match algorithm \overloading. + template + CImg& patchmatch(const CImg& patch_image, + const unsigned int patch_width, + const unsigned int patch_height, + const unsigned int patch_depth, + const unsigned int nb_iterations, + const unsigned int nb_randoms, + const CImg &guide) { + return get_patchmatch(patch_image,patch_width,patch_height,patch_depth, + nb_iterations,nb_randoms,guide).move_to(*this); + } + + //! Compute correspondence map between two images, using the patch-match algorithm \overloading. + template + CImg get_patchmatch(const CImg& patch_image, + const unsigned int patch_width, + const unsigned int patch_height, + const unsigned int patch_depth, + const unsigned int nb_iterations, + const unsigned int nb_randoms, + const CImg &guide) const { + return _patchmatch(patch_image,patch_width,patch_height,patch_depth, + nb_iterations,nb_randoms, + guide,false,CImg::empty()); + } + + //! Compute correspondence map between two images, using the patch-match algorithm \overloading. + CImg& patchmatch(const CImg& patch_image, + const unsigned int patch_width, + const unsigned int patch_height, + const unsigned int patch_depth=1, + const unsigned int nb_iterations=5, + const unsigned int nb_randoms=5) { + return get_patchmatch(patch_image,patch_width,patch_height,patch_depth, + nb_iterations,nb_randoms).move_to(*this); + } + + //! Compute correspondence map between two images, using the patch-match algorithm \overloading. + CImg get_patchmatch(const CImg& patch_image, + const unsigned int patch_width, + const unsigned int patch_height, + const unsigned int patch_depth=1, + const unsigned int nb_iterations=5, + const unsigned int nb_randoms=5) const { + return _patchmatch(patch_image,patch_width,patch_height,patch_depth, + nb_iterations,nb_randoms, + CImg::const_empty(), + false,CImg::empty()); + } + + template + CImg _patchmatch(const CImg& patch_image, + const unsigned int patch_width, + const unsigned int patch_height, + const unsigned int patch_depth, + const unsigned int nb_iterations, + const unsigned int nb_randoms, + const CImg &guide, + const bool is_matching_score, + CImg &matching_score) const { + if (is_empty()) return CImg::const_empty(); + if (patch_image._spectrum!=_spectrum) + throw CImgArgumentException(_cimg_instance + "patchmatch(): Instance image and specified patch image (%u,%u,%u,%u,%p) " + "have different spectrums.", + cimg_instance, + patch_image._width,patch_image._height,patch_image._depth,patch_image._spectrum, + patch_image._data); + if (patch_width>_width || patch_height>_height || patch_depth>_depth) + throw CImgArgumentException(_cimg_instance + "patchmatch(): Specified patch size %ux%ux%u is bigger than the dimensions " + "of the instance image.", + cimg_instance,patch_width,patch_height,patch_depth); + if (patch_width>patch_image._width || patch_height>patch_image._height || patch_depth>patch_image._depth) + throw CImgArgumentException(_cimg_instance + "patchmatch(): Specified patch size %ux%ux%u is bigger than the dimensions " + "of the patch image image (%u,%u,%u,%u,%p).", + cimg_instance,patch_width,patch_height,patch_depth, + patch_image._width,patch_image._height,patch_image._depth,patch_image._spectrum, + patch_image._data); + const unsigned int + _constraint = patch_image._depth>1?3:2, + constraint = guide._spectrum>_constraint?_constraint:0; + + if (guide && + (guide._width!=_width || guide._height!=_height || guide._depth!=_depth || guide._spectrum<_constraint)) + throw CImgArgumentException(_cimg_instance + "patchmatch(): Specified guide (%u,%u,%u,%u,%p) has invalid dimensions " + "considering instance and patch image image (%u,%u,%u,%u,%p).", + cimg_instance, + guide._width,guide._height,guide._depth,guide._spectrum,guide._data, + patch_image._width,patch_image._height,patch_image._depth,patch_image._spectrum, + patch_image._data); + + CImg map(_width,_height,_depth,patch_image._depth>1?3:2); + CImg score(_width,_height,_depth); + const int + psizew = (int)patch_width, psizew1 = psizew/2, psizew2 = psizew - psizew1 - 1, + psizeh = (int)patch_height, psizeh1 = psizeh/2, psizeh2 = psizeh - psizeh1 - 1, + psized = (int)patch_depth, psized1 = psized/2, psized2 = psized - psized1 - 1; + + if (_depth>1 || patch_image._depth>1) { // 3d version. + + // Initialize correspondence map. + if (guide) cimg_forXYZ(*this,x,y,z) { // User-defined initialization. + const int + cx1 = x<=psizew1?x:(x::inf()); + } else cimg_forXYZ(*this,x,y,z) { // Random initialization. + const int + cx1 = x<=psizew1?x:(x::inf()); + } + + // Start iteration loop. + for (unsigned int iter = 0; iter64 && iter0) { // Compare with left neighbor. + const int u = map(x - 1,y,z,0), v = map(x - 1,y,z,1), w = map(x - 1,y,z,2); + if (u>=cx1 - 1 && u=cy1 && v=cz1 && w0) { // Compare with up neighbor. + const int u = map(x,y - 1,z,0), v = map(x,y - 1,z,1), w = map(x,y - 1,z,2); + if (u>=cx1 && u=cy1 - 1 && v=cz1 && w0) { // Compare with backward neighbor. + const int u = map(x,y,z - 1,0), v = map(x,y,z - 1,1), w = map(x,y,z - 1,2); + if (u>=cx1 && u=cy1 && v=cz1 - 1 && w=cx1 + 1 && u=cy1 && v=cz1 && w=cx1 && u=cy1 + 1 && v=cz1 && w=cx1 && u=cy1 && v=cz1 + 1 && w::inf()); + } else cimg_forXY(*this,x,y) { // Random initialization. + const int + cx1 = x<=psizew1?x:(x::inf()); + } + + // Start iteration loop. + for (unsigned int iter = 0; iter64 && iter0) { // Compare with left neighbor. + const int u = map(x - 1,y,0), v = map(x - 1,y,1); + if (u>=cx1 - 1 && u=cy1 && v0) { // Compare with up neighbor. + const int u = map(x,y - 1,0), v = map(x,y - 1,1); + if (u>=cx1 && u=cy1 - 1 && v=cx1 + 1 && u=cy1 && v=cx1 && u=cy1 + 1 && v& img1, const CImg& img2, + const unsigned int psizew, const unsigned int psizeh, + const int x1, const int y1, + const int x2, const int y2, + const float max_ssd) { // 2d version. + const T *p1 = img1.data(x1,y1), *p2 = img2.data(x2,y2); + const ulongT + offx1 = (ulongT)img1._width - psizew, + offx2 = (ulongT)img2._width - psizew, + offy1 = (ulongT)img1._width*img1._height - psizeh*img1._width, + offy2 = (ulongT)img2._width*img2._height - psizeh*img2._width; + float ssd = 0; + cimg_forC(img1,c) { + for (unsigned int j = 0; jmax_ssd) return max_ssd; + p1+=offx1; p2+=offx2; + } + p1+=offy1; p2+=offy2; + } + return ssd; + } + + static float _patchmatch(const CImg& img1, const CImg& img2, + const unsigned int psizew, const unsigned int psizeh, const unsigned int psized, + const int x1, const int y1, const int z1, + const int x2, const int y2, const int z2, + const float max_ssd) { // 3d version. + const T *p1 = img1.data(x1,y1,z1), *p2 = img2.data(x2,y2,z2); + const ulongT + offx1 = (ulongT)img1._width - psizew, + offx2 = (ulongT)img2._width - psizew, + offy1 = (ulongT)img1._width*img1._height - psizeh*img1._width - psizew, + offy2 = (ulongT)img2._width*img2._height - psizeh*img2._width - psizew, + offz1 = (ulongT)img1._width*img1._height*img1._depth - psized*img1._width*img1._height - + psizeh*img1._width - psizew, + offz2 = (ulongT)img2._width*img2._height*img2._depth - psized*img2._width*img2._height - + psizeh*img2._width - psizew; + float ssd = 0; + cimg_forC(img1,c) { + for (unsigned int k = 0; kmax_ssd) return max_ssd; + p1+=offx1; p2+=offx2; + } + p1+=offy1; p2+=offy2; + } + p1+=offz1; p2+=offz2; + } + return ssd; + } + + //! Compute Euclidean distance function to a specified value. + /** + \param value Reference value. + \param metric Type of metric. Can be { 0=Chebyshev | 1=Manhattan | 2=Euclidean | 3=Squared-euclidean }. + \note + The distance transform implementation has been submitted by A. Meijster, and implements + the article 'W.H. Hesselink, A. Meijster, J.B.T.M. Roerdink, + "A general algorithm for computing distance transforms in linear time.", + In: Mathematical Morphology and its Applications to Image and Signal Processing, + J. Goutsias, L. Vincent, and D.S. Bloomberg (eds.), Kluwer, 2000, pp. 331-340.' + The submitted code has then been modified to fit CImg coding style and constraints. + **/ + CImg& distance(const T& value, const unsigned int metric=2) { + if (is_empty()) return *this; + if (cimg::type::string()!=cimg::type::string()) // For datatype < int. + return CImg(*this,false).distance((Tint)value,metric). + cut((Tint)cimg::type::min(),(Tint)cimg::type::max()).move_to(*this); + bool is_value = false; + cimg_for(*this,ptr,T) *ptr = *ptr==value?is_value=true,(T)0:(T)std::max(0,99999999); // (avoid VC++ warning) + if (!is_value) return fill(cimg::type::max()); + switch (metric) { + case 0 : return _distance_core(_distance_sep_cdt,_distance_dist_cdt); // Chebyshev. + case 1 : return _distance_core(_distance_sep_mdt,_distance_dist_mdt); // Manhattan. + case 3 : return _distance_core(_distance_sep_edt,_distance_dist_edt); // Squared Euclidean. + default : return _distance_core(_distance_sep_edt,_distance_dist_edt).sqrt(); // Euclidean. + } + return *this; + } + + //! Compute distance to a specified value \newinstance. + CImg get_distance(const T& value, const unsigned int metric=2) const { + return CImg(*this,false).distance((Tfloat)value,metric); + } + + static longT _distance_sep_edt(const longT i, const longT u, const longT *const g) { + return (u*u - i*i + g[u] - g[i])/(2*(u - i)); + } + + static longT _distance_dist_edt(const longT x, const longT i, const longT *const g) { + return (x - i)*(x - i) + g[i]; + } + + static longT _distance_sep_mdt(const longT i, const longT u, const longT *const g) { + return (u - i<=g[u] - g[i]?999999999:(g[u] - g[i] + u + i)/2); + } + + static longT _distance_dist_mdt(const longT x, const longT i, const longT *const g) { + return (x=0) && f(t[q],s[q],g)>f(t[q],u,g)) { --q; } + if (q<0) { q = 0; s[0] = u; } + else { const longT w = 1 + sep(s[q], u, g); if (w<(longT)len) { ++q; s[q] = u; t[q] = w; }} + } + for (int u = (int)len - 1; u>=0; --u) { dt[u] = f(u,s[q],g); if (u==t[q]) --q; } // Backward scan. + } + + CImg& _distance_core(longT (*const sep)(const longT, const longT, const longT *const), + longT (*const f)(const longT, const longT, const longT *const)) { + // Check for g++ 4.9.X, as OpenMP seems to crash for this particular function. I have no clues why. +#define cimg_is_gcc49x (__GNUC__==4 && __GNUC_MINOR__==9) + + const ulongT wh = (ulongT)_width*_height; +#if defined(cimg_use_openmp) && !cimg_is_gcc49x + cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2)) +#endif + cimg_forC(*this,c) { + CImg g(_width), dt(_width), s(_width), t(_width); + CImg img = get_shared_channel(c); +#if defined(cimg_use_openmp) && !cimg_is_gcc49x + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_width>=512 && _height*_depth>=16) + firstprivate(g,dt,s,t)) +#endif + cimg_forYZ(*this,y,z) { // Over X-direction. + cimg_forX(*this,x) g[x] = (longT)img(x,y,z,0,wh); + _distance_scan(_width,g,sep,f,s,t,dt); + cimg_forX(*this,x) img(x,y,z,0,wh) = (T)dt[x]; + } + if (_height>1) { + g.assign(_height); dt.assign(_height); s.assign(_height); t.assign(_height); +#if defined(cimg_use_openmp) && !cimg_is_gcc49x + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_height>=512 && _width*_depth>=16) + firstprivate(g,dt,s,t)) +#endif + cimg_forXZ(*this,x,z) { // Over Y-direction. + cimg_forY(*this,y) g[y] = (longT)img(x,y,z,0,wh); + _distance_scan(_height,g,sep,f,s,t,dt); + cimg_forY(*this,y) img(x,y,z,0,wh) = (T)dt[y]; + } + } + if (_depth>1) { + g.assign(_depth); dt.assign(_depth); s.assign(_depth); t.assign(_depth); +#if defined(cimg_use_openmp) && !cimg_is_gcc49x + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if(_depth>=512 && _width*_height>=16) + firstprivate(g,dt,s,t)) +#endif + cimg_forXY(*this,x,y) { // Over Z-direction. + cimg_forZ(*this,z) g[z] = (longT)img(x,y,z,0,wh); + _distance_scan(_depth,g,sep,f,s,t,dt); + cimg_forZ(*this,z) img(x,y,z,0,wh) = (T)dt[z]; + } + } + } + return *this; + } + + //! Compute chamfer distance to a specified value, with a custom metric. + /** + \param value Reference value. + \param metric_mask Metric mask. + \note The algorithm code has been initially proposed by A. Meijster, and modified by D. Tschumperlé. + **/ + template + CImg& distance(const T& value, const CImg& metric_mask) { + if (is_empty()) return *this; + bool is_value = false; + cimg_for(*this,ptr,T) *ptr = *ptr==value?is_value=true,0:(T)999999999; + if (!is_value) return fill(cimg::type::max()); + const ulongT wh = (ulongT)_width*_height; + cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2)) + cimg_forC(*this,c) { + CImg img = get_shared_channel(c); + cimg_pragma_openmp(parallel for collapse(3) cimg_openmp_if(_width*_height*_depth>=1024)) + cimg_forXYZ(metric_mask,dx,dy,dz) { + const t weight = metric_mask(dx,dy,dz); + if (weight) { + for (int z = dz, nz = 0; z=0; --z,--nz) { // Backward scan. + for (int y = height() - 1 - dy, ny = height() - 1; y>=0; --y,--ny) { + for (int x = width() - 1 - dx, nx = width() - 1; x>=0; --x,--nx) { + const T dd = img(nx,ny,nz,0,wh) + weight; + if (dd + CImg get_distance(const T& value, const CImg& metric_mask) const { + return CImg(*this,false).distance(value,metric_mask); + } + + //! Compute distance to a specified value, according to a custom metric (use dijkstra algorithm). + /** + \param value Reference value. + \param metric Field of distance potentials. + \param is_high_connectivity Tells if the algorithm uses low or high connectivity. + \param[out] return_path An image containing the nodes of the minimal path. + **/ + template + CImg& distance_dijkstra(const T& value, const CImg& metric, const bool is_high_connectivity, + CImg& return_path) { + return get_distance_dijkstra(value,metric,is_high_connectivity,return_path).move_to(*this); + } + + //! Compute distance map to a specified value, according to a custom metric (use dijkstra algorithm) \newinstance. + template + CImg::type> + get_distance_dijkstra(const T& value, const CImg& metric, const bool is_high_connectivity, + CImg& return_path) const { + if (is_empty()) return return_path.assign(); + if (!is_sameXYZ(metric)) + throw CImgArgumentException(_cimg_instance + "distance_dijkstra(): image instance and metric map (%u,%u,%u,%u) " + "have incompatible dimensions.", + cimg_instance, + metric._width,metric._height,metric._depth,metric._spectrum); + typedef typename cimg::superset::type td; // Type used for computing cumulative distances. + CImg result(_width,_height,_depth,_spectrum), Q; + CImg is_queued(_width,_height,_depth,1); + if (return_path) return_path.assign(_width,_height,_depth,_spectrum); + + cimg_forC(*this,c) { + const CImg img = get_shared_channel(c); + const CImg met = metric.get_shared_channel(c%metric._spectrum); + CImg res = result.get_shared_channel(c); + CImg path = return_path?return_path.get_shared_channel(c):CImg(); + unsigned int sizeQ = 0; + + // Detect initial seeds. + is_queued.fill(0); + cimg_forXYZ(img,x,y,z) if (img(x,y,z)==value) { + Q._priority_queue_insert(is_queued,sizeQ,0,x,y,z); + res(x,y,z) = 0; + if (path) path(x,y,z) = (to)0; + } + + // Start distance propagation. + while (sizeQ) { + + // Get and remove point with minimal potential from the queue. + const int x = (int)Q(0,1), y = (int)Q(0,2), z = (int)Q(0,3); + const td P = (td)-Q(0,0); + Q._priority_queue_remove(sizeQ); + + // Update neighbors. + td npot = 0; + if (x - 1>=0 && Q._priority_queue_insert(is_queued,sizeQ,-(npot=met(x - 1,y,z) + P),x - 1,y,z)) { + res(x - 1,y,z) = npot; if (path) path(x - 1,y,z) = (to)2; + } + if (x + 1=0 && Q._priority_queue_insert(is_queued,sizeQ,-(npot=met(x,y - 1,z) + P),x,y - 1,z)) { + res(x,y - 1,z) = npot; if (path) path(x,y - 1,z) = (to)8; + } + if (y + 1=0 && Q._priority_queue_insert(is_queued,sizeQ,-(npot=met(x,y,z - 1) + P),x,y,z - 1)) { + res(x,y,z - 1) = npot; if (path) path(x,y,z - 1) = (to)32; + } + if (z + 1=0 && y - 1>=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x - 1,y - 1,z) + P)),x - 1,y - 1,z)) { + res(x - 1,y - 1,z) = npot; if (path) path(x - 1,y - 1,z) = (to)10; + } + if (x + 1=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x + 1,y - 1,z) + P)),x + 1,y - 1,z)) { + res(x + 1,y - 1,z) = npot; if (path) path(x + 1,y - 1,z) = (to)9; + } + if (x - 1>=0 && y + 1=0) { // Diagonal neighbors on slice z - 1. + if (x - 1>=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x - 1,y,z - 1) + P)),x - 1,y,z - 1)) { + res(x - 1,y,z - 1) = npot; if (path) path(x - 1,y,z - 1) = (to)34; + } + if (x + 1=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x,y - 1,z - 1) + P)),x,y - 1,z - 1)) { + res(x,y - 1,z - 1) = npot; if (path) path(x,y - 1,z - 1) = (to)40; + } + if (y + 1=0 && y - 1>=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt3*met(x - 1,y - 1,z - 1) + P)), + x - 1,y - 1,z - 1)) { + res(x - 1,y - 1,z - 1) = npot; if (path) path(x - 1,y - 1,z - 1) = (to)42; + } + if (x + 1=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt3*met(x + 1,y - 1,z - 1) + P)), + x + 1,y - 1,z - 1)) { + res(x + 1,y - 1,z - 1) = npot; if (path) path(x + 1,y - 1,z - 1) = (to)41; + } + if (x - 1>=0 && y + 1=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x - 1,y,z + 1) + P)),x - 1,y,z + 1)) { + res(x - 1,y,z + 1) = npot; if (path) path(x - 1,y,z + 1) = (to)18; + } + if (x + 1=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt2*met(x,y - 1,z + 1) + P)),x,y - 1,z + 1)) { + res(x,y - 1,z + 1) = npot; if (path) path(x,y - 1,z + 1) = (to)24; + } + if (y + 1=0 && y - 1>=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt3*met(x - 1,y - 1,z + 1) + P)), + x - 1,y - 1,z + 1)) { + res(x - 1,y - 1,z + 1) = npot; if (path) path(x - 1,y - 1,z + 1) = (to)26; + } + if (x + 1=0 && + Q._priority_queue_insert(is_queued,sizeQ,-(npot=(td)(sqrt3*met(x + 1,y - 1,z + 1) + P)), + x + 1,y - 1,z + 1)) { + res(x + 1,y - 1,z + 1) = npot; if (path) path(x + 1,y - 1,z + 1) = (to)25; + } + if (x - 1>=0 && y + 1 + CImg& distance_dijkstra(const T& value, const CImg& metric, + const bool is_high_connectivity=false) { + return get_distance_dijkstra(value,metric,is_high_connectivity).move_to(*this); + } + + //! Compute distance map to a specified value, according to a custom metric (use dijkstra algorithm). \newinstance. + template + CImg get_distance_dijkstra(const T& value, const CImg& metric, + const bool is_high_connectivity=false) const { + CImg return_path; + return get_distance_dijkstra(value,metric,is_high_connectivity,return_path); + } + + //! Compute distance map to one source point, according to a custom metric (use fast marching algorithm). + /** + \param value Reference value. + \param metric Field of distance potentials. + **/ + template + CImg& distance_eikonal(const T& value, const CImg& metric) { + return get_distance_eikonal(value,metric).move_to(*this); + } + + //! Compute distance map to one source point, according to a custom metric (use fast marching algorithm). + template + CImg get_distance_eikonal(const T& value, const CImg& metric) const { + if (is_empty()) return *this; + if (!is_sameXYZ(metric)) + throw CImgArgumentException(_cimg_instance + "distance_eikonal(): image instance and metric map (%u,%u,%u,%u) have " + "incompatible dimensions.", + cimg_instance, + metric._width,metric._height,metric._depth,metric._spectrum); + CImg result(_width,_height,_depth,_spectrum,cimg::type::max()), Q; + CImg state(_width,_height,_depth); // -1=far away, 0=narrow, 1=frozen. + + cimg_pragma_openmp(parallel for cimg_openmp_if(_spectrum>=2) firstprivate(Q,state)) + cimg_forC(*this,c) { + const CImg img = get_shared_channel(c); + const CImg met = metric.get_shared_channel(c%metric._spectrum); + CImg res = result.get_shared_channel(c); + unsigned int sizeQ = 0; + state.fill(-1); + + // Detect initial seeds. + Tfloat *ptr1 = res._data; char *ptr2 = state._data; + cimg_for(img,ptr0,T) { if (*ptr0==value) { *ptr1 = 0; *ptr2 = 1; } ++ptr1; ++ptr2; } + + // Initialize seeds neighbors. + ptr2 = state._data; + cimg_forXYZ(img,x,y,z) if (*(ptr2++)==1) { + if (x - 1>=0 && state(x - 1,y,z)==-1) { + const Tfloat dist = res(x - 1,y,z) = __distance_eikonal(res,met(x - 1,y,z),x - 1,y,z); + Q._eik_priority_queue_insert(state,sizeQ,-dist,x - 1,y,z); + } + if (x + 1=0 && state(x,y - 1,z)==-1) { + const Tfloat dist = res(x,y - 1,z) = __distance_eikonal(res,met(x,y - 1,z),x,y - 1,z); + Q._eik_priority_queue_insert(state,sizeQ,-dist,x,y - 1,z); + } + if (y + 1=0 && state(x,y,z - 1)==-1) { + const Tfloat dist = res(x,y,z - 1) = __distance_eikonal(res,met(x,y,z - 1),x,y,z - 1); + Q._eik_priority_queue_insert(state,sizeQ,-dist,x,y,z - 1); + } + if (z + 1=0) { + if (x - 1>=0 && state(x - 1,y,z)!=1) { + const Tfloat dist = __distance_eikonal(res,met(x - 1,y,z),x - 1,y,z); + if (dist=0 && state(x,y - 1,z)!=1) { + const Tfloat dist = __distance_eikonal(res,met(x,y - 1,z),x,y - 1,z); + if (dist=0 && state(x,y,z - 1)!=1) { + const Tfloat dist = __distance_eikonal(res,met(x,y,z - 1),x,y,z - 1); + if (dist& res, const Tfloat P, + const int x=0, const int y=0, const int z=0) const { + const Tfloat M = (Tfloat)cimg::type::max(); + T T1 = (T)std::min(x - 1>=0?res(x - 1,y,z):M,x + 11) { // 3d. + T + T2 = (T)std::min(y - 1>=0?res(x,y - 1,z):M,y + 1=0?res(x,y,z - 1):M,z + 1T2) cimg::swap(T1,T2); + if (T2>T3) cimg::swap(T2,T3); + if (T1>T2) cimg::swap(T1,T2); + if (P<=0) return (Tfloat)T1; + if (T31) { // 2d. + T T2 = (T)std::min(y - 1>=0?res(x,y - 1,z):M,y + 1T2) cimg::swap(T1,T2); + if (P<=0) return (Tfloat)T1; + if (T2 + void _eik_priority_queue_insert(CImg& state, unsigned int& siz, const t value, + const unsigned int x, const unsigned int y, const unsigned int z) { + if (state(x,y,z)>0) return; + state(x,y,z) = 0; + if (++siz>=_width) { if (!is_empty()) resize(_width*2,4,1,1,0); else assign(64,4); } + (*this)(siz - 1,0) = (T)value; (*this)(siz - 1,1) = (T)x; (*this)(siz - 1,2) = (T)y; (*this)(siz - 1,3) = (T)z; + for (unsigned int pos = siz - 1, par = 0; pos && value>(*this)(par=(pos + 1)/2 - 1,0); pos = par) { + cimg::swap((*this)(pos,0),(*this)(par,0)); cimg::swap((*this)(pos,1),(*this)(par,1)); + cimg::swap((*this)(pos,2),(*this)(par,2)); cimg::swap((*this)(pos,3),(*this)(par,3)); + } + } + + //! Compute distance function to 0-valued isophotes, using the Eikonal PDE. + /** + \param nb_iterations Number of PDE iterations. + \param band_size Size of the narrow band. + \param time_step Time step of the PDE iterations. + **/ + CImg& distance_eikonal(const unsigned int nb_iterations, const float band_size=0, const float time_step=0.5f) { + if (is_empty()) return *this; + CImg velocity(*this); + for (unsigned int iteration = 0; iteration1) { // 3d + CImg_3x3x3(I,Tfloat); + cimg_forC(*this,c) cimg_for3x3x3(*this,x,y,z,c,I,Tfloat) if (band_size<=0 || cimg::abs(Iccc)0?(Incc - Iccc):(Iccc - Ipcc), + iy = gy*sgn>0?(Icnc - Iccc):(Iccc - Icpc), + iz = gz*sgn>0?(Iccn - Iccc):(Iccc - Iccp), + ng = 1e-5f + cimg::hypot(gx,gy,gz), + ngx = gx/ng, + ngy = gy/ng, + ngz = gz/ng, + veloc = sgn*(ngx*ix + ngy*iy + ngz*iz - 1); + *(ptrd++) = veloc; + if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; + } else *(ptrd++) = 0; + } else { // 2d version + CImg_3x3(I,Tfloat); + cimg_forC(*this,c) cimg_for3x3(*this,x,y,0,c,I,Tfloat) if (band_size<=0 || cimg::abs(Icc)0?(Inc - Icc):(Icc - Ipc), + iy = gy*sgn>0?(Icn - Icc):(Icc - Icp), + ng = std::max((Tfloat)1e-5,cimg::hypot(gx,gy)), + ngx = gx/ng, + ngy = gy/ng, + veloc = sgn*(ngx*ix + ngy*iy - 1); + *(ptrd++) = veloc; + if (veloc>veloc_max) veloc_max = veloc; else if (-veloc>veloc_max) veloc_max = -veloc; + } else *(ptrd++) = 0; + } + if (veloc_max>0) *this+=(velocity*=time_step/veloc_max); + } + return *this; + } + + //! Compute distance function to 0-valued isophotes, using the Eikonal PDE \newinstance. + CImg get_distance_eikonal(const unsigned int nb_iterations, const float band_size=0, + const float time_step=0.5f) const { + return CImg(*this,false).distance_eikonal(nb_iterations,band_size,time_step); + } + + //! Compute Haar multiscale wavelet transform. + /** + \param axis Axis considered for the transform. + \param invert Set inverse of direct transform. + \param nb_scales Number of scales used for the transform. + **/ + CImg& haar(const char axis, const bool invert=false, const unsigned int nb_scales=1) { + return get_haar(axis,invert,nb_scales).move_to(*this); + } + + //! Compute Haar multiscale wavelet transform \newinstance. + CImg get_haar(const char axis, const bool invert=false, const unsigned int nb_scales=1) const { + if (is_empty() || !nb_scales) return +*this; + CImg res; + const Tfloat sqrt2 = std::sqrt(2.0f); + if (nb_scales==1) { + switch (cimg::lowercase(axis)) { // Single scale transform + case 'x' : { + const unsigned int w = _width/2; + if (w) { + if ((w%2) && w!=1) + throw CImgInstanceException(_cimg_instance + "haar(): Sub-image width %u is not even.", + cimg_instance, + w); + + res.assign(_width,_height,_depth,_spectrum); + if (invert) cimg_forYZC(*this,y,z,c) { // Inverse transform along X + for (unsigned int x = 0, xw = w, x2 = 0; x& haar(const bool invert=false, const unsigned int nb_scales=1) { + return get_haar(invert,nb_scales).move_to(*this); + } + + //! Compute Haar multiscale wavelet transform \newinstance. + CImg get_haar(const bool invert=false, const unsigned int nb_scales=1) const { + CImg res; + if (nb_scales==1) { // Single scale transform + if (_width>1) get_haar('x',invert,1).move_to(res); + if (_height>1) { if (res) res.haar('y',invert,1); else get_haar('y',invert,1).move_to(res); } + if (_depth>1) { if (res) res.haar('z',invert,1); else get_haar('z',invert,1).move_to(res); } + if (res) return res; + } else { // Multi-scale transform + if (invert) { // Inverse transform + res.assign(*this); + if (_width>1) { + if (_height>1) { + if (_depth>1) { + unsigned int w = _width, h = _height, d = _depth; + for (unsigned int s = 1; w && h && d && s1) { + unsigned int w = _width, d = _depth; + for (unsigned int s = 1; w && d && s1) { + if (_depth>1) { + unsigned int h = _height, d = _depth; + for (unsigned int s = 1; h && d && s1) { + unsigned int d = _depth; + for (unsigned int s = 1; d && s1) { + if (_height>1) { + if (_depth>1) + for (unsigned int s = 1, w = _width/2, h = _height/2, d = _depth/2; w && h && d && s1) for (unsigned int s = 1, w = _width/2, d = _depth/2; w && d && s1) { + if (_depth>1) + for (unsigned int s = 1, h = _height/2, d = _depth/2; h && d && s1) for (unsigned int s = 1, d = _depth/2; d && s get_FFT(const char axis, const bool is_invert=false) const { + CImgList res(*this,CImg()); + CImg::FFT(res[0],res[1],axis,is_invert); + return res; + } + + //! Compute n-d Fast Fourier Transform. + /* + \param is_invert Tells if the forward (\c false) or inverse (\c true) FFT is computed. + **/ + CImgList get_FFT(const bool is_invert=false) const { + CImgList res(*this,CImg()); + CImg::FFT(res[0],res[1],is_invert); + return res; + } + + //! Compute 1d Fast Fourier Transform, along a specified axis. + /** + \param[in,out] real Real part of the pixel values. + \param[in,out] imag Imaginary part of the pixel values. + \param axis Axis along which the FFT is computed. + \param is_invert Tells if the forward (\c false) or inverse (\c true) FFT is computed. + **/ + static void FFT(CImg& real, CImg& imag, const char axis, const bool is_invert=false) { + if (!real) + throw CImgInstanceException("CImg<%s>::FFT(): Specified real part is empty.", + pixel_type()); + + if (!imag) imag.assign(real._width,real._height,real._depth,real._spectrum,(T)0); + if (!real.is_sameXYZC(imag)) + throw CImgInstanceException("CImg<%s>::FFT(): Specified real part (%u,%u,%u,%u,%p) and " + "imaginary part (%u,%u,%u,%u,%p) have different dimensions.", + pixel_type(), + real._width,real._height,real._depth,real._spectrum,real._data, + imag._width,imag._height,imag._depth,imag._spectrum,imag._data); +#ifdef cimg_use_fftw3 + cimg::mutex(12); + fftw_complex *data_in; + fftw_plan data_plan; + + switch (cimg::lowercase(axis)) { + case 'x' : { // Fourier along X, using FFTW library. + data_in = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*real._width); + if (!data_in) throw CImgInstanceException("CImgList<%s>::FFT(): Failed to allocate memory (%s) " + "for computing FFT of image (%u,%u,%u,%u) along the X-axis.", + pixel_type(), + cimg::strbuffersize(sizeof(fftw_complex)*real._width), + real._width,real._height,real._depth,real._spectrum); + + data_plan = fftw_plan_dft_1d(real._width,data_in,data_in,is_invert?FFTW_BACKWARD:FFTW_FORWARD,FFTW_ESTIMATE); + cimg_forYZC(real,y,z,c) { + T *ptrr = real.data(0,y,z,c), *ptri = imag.data(0,y,z,c); + double *ptrd = (double*)data_in; + cimg_forX(real,x) { *(ptrd++) = (double)*(ptrr++); *(ptrd++) = (double)*(ptri++); } + fftw_execute(data_plan); + const unsigned int fact = real._width; + if (is_invert) cimg_forX(real,x) { *(--ptri) = (T)(*(--ptrd)/fact); *(--ptrr) = (T)(*(--ptrd)/fact); } + else cimg_forX(real,x) { *(--ptri) = (T)*(--ptrd); *(--ptrr) = (T)*(--ptrd); } + } + } break; + case 'y' : { // Fourier along Y, using FFTW library. + data_in = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * real._height); + if (!data_in) throw CImgInstanceException("CImgList<%s>::FFT(): Failed to allocate memory (%s) " + "for computing FFT of image (%u,%u,%u,%u) along the Y-axis.", + pixel_type(), + cimg::strbuffersize(sizeof(fftw_complex)*real._height), + real._width,real._height,real._depth,real._spectrum); + + data_plan = fftw_plan_dft_1d(real._height,data_in,data_in,is_invert?FFTW_BACKWARD:FFTW_FORWARD,FFTW_ESTIMATE); + const unsigned int off = real._width; + cimg_forXZC(real,x,z,c) { + T *ptrr = real.data(x,0,z,c), *ptri = imag.data(x,0,z,c); + double *ptrd = (double*)data_in; + cimg_forY(real,y) { *(ptrd++) = (double)*ptrr; *(ptrd++) = (double)*ptri; ptrr+=off; ptri+=off; } + fftw_execute(data_plan); + const unsigned int fact = real._height; + if (is_invert) + cimg_forY(real,y) { ptrr-=off; ptri-=off; *ptri = (T)(*(--ptrd)/fact); *ptrr = (T)(*(--ptrd)/fact); } + else cimg_forY(real,y) { ptrr-=off; ptri-=off; *ptri = (T)*(--ptrd); *ptrr = (T)*(--ptrd); } + } + } break; + case 'z' : { // Fourier along Z, using FFTW library. + data_in = (fftw_complex*)fftw_malloc(sizeof(fftw_complex) * real._depth); + if (!data_in) throw CImgInstanceException("CImgList<%s>::FFT(): Failed to allocate memory (%s) " + "for computing FFT of image (%u,%u,%u,%u) along the Z-axis.", + pixel_type(), + cimg::strbuffersize(sizeof(fftw_complex)*real._depth), + real._width,real._height,real._depth,real._spectrum); + + data_plan = fftw_plan_dft_1d(real._depth,data_in,data_in,is_invert?FFTW_BACKWARD:FFTW_FORWARD,FFTW_ESTIMATE); + const ulongT off = (ulongT)real._width*real._height; + cimg_forXYC(real,x,y,c) { + T *ptrr = real.data(x,y,0,c), *ptri = imag.data(x,y,0,c); + double *ptrd = (double*)data_in; + cimg_forZ(real,z) { *(ptrd++) = (double)*ptrr; *(ptrd++) = (double)*ptri; ptrr+=off; ptri+=off; } + fftw_execute(data_plan); + const unsigned int fact = real._depth; + if (is_invert) + cimg_forZ(real,z) { ptrr-=off; ptri-=off; *ptri = (T)(*(--ptrd)/fact); *ptrr = (T)(*(--ptrd)/fact); } + else cimg_forZ(real,z) { ptrr-=off; ptri-=off; *ptri = (T)*(--ptrd); *ptrr = (T)*(--ptrd); } + } + } break; + default : + throw CImgArgumentException("CImgList<%s>::FFT(): Invalid specified axis '%c' for real and imaginary parts " + "(%u,%u,%u,%u) " + "(should be { x | y | z }).", + pixel_type(),axis, + real._width,real._height,real._depth,real._spectrum); + } + fftw_destroy_plan(data_plan); + fftw_free(data_in); + cimg::mutex(12,0); +#else + switch (cimg::lowercase(axis)) { + case 'x' : { // Fourier along X, using built-in functions. + const unsigned int N = real._width, N2 = N>>1; + if (((N - 1)&N) && N!=1) + throw CImgInstanceException("CImgList<%s>::FFT(): Specified real and imaginary parts (%u,%u,%u,%u) " + "have non 2^N dimension along the X-axis.", + pixel_type(), + real._width,real._height,real._depth,real._spectrum); + + for (unsigned int i = 0, j = 0; ii) cimg_forYZC(real,y,z,c) { + cimg::swap(real(i,y,z,c),real(j,y,z,c)); + cimg::swap(imag(i,y,z,c),imag(j,y,z,c)); + if (j=m; j-=m, m = n, n>>=1) {} + } + for (unsigned int delta = 2; delta<=N; delta<<=1) { + const unsigned int delta2 = delta>>1; + for (unsigned int i = 0; i>1; + if (((N - 1)&N) && N!=1) + throw CImgInstanceException("CImgList<%s>::FFT(): Specified real and imaginary parts (%u,%u,%u,%u) " + "have non 2^N dimension along the Y-axis.", + pixel_type(), + real._width,real._height,real._depth,real._spectrum); + + for (unsigned int i = 0, j = 0; ii) cimg_forXZC(real,x,z,c) { + cimg::swap(real(x,i,z,c),real(x,j,z,c)); + cimg::swap(imag(x,i,z,c),imag(x,j,z,c)); + if (j=m; j-=m, m = n, n>>=1) {} + } + for (unsigned int delta = 2; delta<=N; delta<<=1) { + const unsigned int delta2 = (delta>>1); + for (unsigned int i = 0; i>1; + if (((N - 1)&N) && N!=1) + throw CImgInstanceException("CImgList<%s>::FFT(): Specified real and imaginary parts (%u,%u,%u,%u) " + "have non 2^N dimension along the Z-axis.", + pixel_type(), + real._width,real._height,real._depth,real._spectrum); + + for (unsigned int i = 0, j = 0; ii) cimg_forXYC(real,x,y,c) { + cimg::swap(real(x,y,i,c),real(x,y,j,c)); + cimg::swap(imag(x,y,i,c),imag(x,y,j,c)); + if (j=m; j-=m, m = n, n>>=1) {} + } + for (unsigned int delta = 2; delta<=N; delta<<=1) { + const unsigned int delta2 = (delta>>1); + for (unsigned int i = 0; i::FFT(): Invalid specified axis '%c' for real and imaginary parts " + "(%u,%u,%u,%u) " + "(should be { x | y | z }).", + pixel_type(),axis, + real._width,real._height,real._depth,real._spectrum); + } +#endif + } + + //! Compute n-d Fast Fourier Transform. + /** + \param[in,out] real Real part of the pixel values. + \param[in,out] imag Imaginary part of the pixel values. + \param is_invert Tells if the forward (\c false) or inverse (\c true) FFT is computed. + \param nb_threads Number of parallel threads used for the computation. + Use \c 0 to set this to the number of available cpus. + **/ + static void FFT(CImg& real, CImg& imag, const bool is_invert=false, const unsigned int nb_threads=0) { + if (!real) + throw CImgInstanceException("CImgList<%s>::FFT(): Empty specified real part.", + pixel_type()); + + if (!imag) imag.assign(real._width,real._height,real._depth,real._spectrum,(T)0); + if (!real.is_sameXYZC(imag)) + throw CImgInstanceException("CImgList<%s>::FFT(): Specified real part (%u,%u,%u,%u,%p) and " + "imaginary part (%u,%u,%u,%u,%p) have different dimensions.", + pixel_type(), + real._width,real._height,real._depth,real._spectrum,real._data, + imag._width,imag._height,imag._depth,imag._spectrum,imag._data); + +#ifdef cimg_use_fftw3 + cimg::mutex(12); +#ifndef cimg_use_fftw3_singlethread + const unsigned int _nb_threads = nb_threads?nb_threads:cimg::nb_cpus(); + static int fftw_st = fftw_init_threads(); + cimg::unused(fftw_st); + fftw_plan_with_nthreads(_nb_threads); +#else + cimg::unused(nb_threads); +#endif + fftw_complex *data_in = (fftw_complex*)fftw_malloc(sizeof(fftw_complex)*real._width*real._height*real._depth); + if (!data_in) throw CImgInstanceException("CImgList<%s>::FFT(): Failed to allocate memory (%s) " + "for computing FFT of image (%u,%u,%u,%u).", + pixel_type(), + cimg::strbuffersize(sizeof(fftw_complex)*real._width* + real._height*real._depth*real._spectrum), + real._width,real._height,real._depth,real._spectrum); + + fftw_plan data_plan; + const ulongT w = (ulongT)real._width, wh = w*real._height, whd = wh*real._depth; + data_plan = fftw_plan_dft_3d(real._width,real._height,real._depth,data_in,data_in, + is_invert?FFTW_BACKWARD:FFTW_FORWARD,FFTW_ESTIMATE); + cimg_forC(real,c) { + T *ptrr = real.data(0,0,0,c), *ptri = imag.data(0,0,0,c); + double *ptrd = (double*)data_in; + for (unsigned int x = 0; x1) FFT(real,imag,'z',is_invert); + if (real._height>1) FFT(real,imag,'y',is_invert); + if (real._width>1) FFT(real,imag,'x',is_invert); +#endif + } + + //@} + //------------------------------------- + // + //! \name 3d Objects Management + //@{ + //------------------------------------- + + //! Shift 3d object's vertices. + /** + \param tx X-coordinate of the 3d displacement vector. + \param ty Y-coordinate of the 3d displacement vector. + \param tz Z-coordinate of the 3d displacement vector. + **/ + CImg& shift_object3d(const float tx, const float ty=0, const float tz=0) { + if (_height!=3 || _depth>1 || _spectrum>1) + throw CImgInstanceException(_cimg_instance + "shift_object3d(): Instance is not a set of 3d vertices.", + cimg_instance); + + get_shared_row(0)+=tx; get_shared_row(1)+=ty; get_shared_row(2)+=tz; + return *this; + } + + //! Shift 3d object's vertices \newinstance. + CImg get_shift_object3d(const float tx, const float ty=0, const float tz=0) const { + return CImg(*this,false).shift_object3d(tx,ty,tz); + } + + //! Shift 3d object's vertices, so that it becomes centered. + /** + \note The object center is computed as its barycenter. + **/ + CImg& shift_object3d() { + if (_height!=3 || _depth>1 || _spectrum>1) + throw CImgInstanceException(_cimg_instance + "shift_object3d(): Instance is not a set of 3d vertices.", + cimg_instance); + + CImg xcoords = get_shared_row(0), ycoords = get_shared_row(1), zcoords = get_shared_row(2); + float + xm, xM = (float)xcoords.max_min(xm), + ym, yM = (float)ycoords.max_min(ym), + zm, zM = (float)zcoords.max_min(zm); + xcoords-=(xm + xM)/2; ycoords-=(ym + yM)/2; zcoords-=(zm + zM)/2; + return *this; + } + + //! Shift 3d object's vertices, so that it becomes centered \newinstance. + CImg get_shift_object3d() const { + return CImg(*this,false).shift_object3d(); + } + + //! Resize 3d object. + /** + \param sx Width of the 3d object's bounding box. + \param sy Height of the 3d object's bounding box. + \param sz Depth of the 3d object's bounding box. + **/ + CImg& resize_object3d(const float sx, const float sy=-100, const float sz=-100) { + if (_height!=3 || _depth>1 || _spectrum>1) + throw CImgInstanceException(_cimg_instance + "resize_object3d(): Instance is not a set of 3d vertices.", + cimg_instance); + + CImg xcoords = get_shared_row(0), ycoords = get_shared_row(1), zcoords = get_shared_row(2); + float + xm, xM = (float)xcoords.max_min(xm), + ym, yM = (float)ycoords.max_min(ym), + zm, zM = (float)zcoords.max_min(zm); + if (xm0) xcoords*=sx/(xM-xm); else xcoords*=-sx/100; } + if (ym0) ycoords*=sy/(yM-ym); else ycoords*=-sy/100; } + if (zm0) zcoords*=sz/(zM-zm); else zcoords*=-sz/100; } + return *this; + } + + //! Resize 3d object \newinstance. + CImg get_resize_object3d(const float sx, const float sy=-100, const float sz=-100) const { + return CImg(*this,false).resize_object3d(sx,sy,sz); + } + + //! Resize 3d object to unit size. + CImg resize_object3d() { + if (_height!=3 || _depth>1 || _spectrum>1) + throw CImgInstanceException(_cimg_instance + "resize_object3d(): Instance is not a set of 3d vertices.", + cimg_instance); + + CImg xcoords = get_shared_row(0), ycoords = get_shared_row(1), zcoords = get_shared_row(2); + float + xm, xM = (float)xcoords.max_min(xm), + ym, yM = (float)ycoords.max_min(ym), + zm, zM = (float)zcoords.max_min(zm); + const float dx = xM - xm, dy = yM - ym, dz = zM - zm, dmax = cimg::max(dx,dy,dz); + if (dmax>0) { xcoords/=dmax; ycoords/=dmax; zcoords/=dmax; } + return *this; + } + + //! Resize 3d object to unit size \newinstance. + CImg get_resize_object3d() const { + return CImg(*this,false).resize_object3d(); + } + + //! Merge two 3d objects together. + /** + \param[in,out] primitives Primitives data of the current 3d object. + \param obj_vertices Vertices data of the additional 3d object. + \param obj_primitives Primitives data of the additional 3d object. + **/ + template + CImg& append_object3d(CImgList& primitives, const CImg& obj_vertices, + const CImgList& obj_primitives) { + if (!obj_vertices || !obj_primitives) return *this; + if (obj_vertices._height!=3 || obj_vertices._depth>1 || obj_vertices._spectrum>1) + throw CImgInstanceException(_cimg_instance + "append_object3d(): Specified vertice image (%u,%u,%u,%u,%p) is not a " + "set of 3d vertices.", + cimg_instance, + obj_vertices._width,obj_vertices._height, + obj_vertices._depth,obj_vertices._spectrum,obj_vertices._data); + + if (is_empty()) { primitives.assign(obj_primitives); return assign(obj_vertices); } + if (_height!=3 || _depth>1 || _spectrum>1) + throw CImgInstanceException(_cimg_instance + "append_object3d(): Instance is not a set of 3d vertices.", + cimg_instance); + + const unsigned int P = _width; + append(obj_vertices,'x'); + const unsigned int N = primitives._width; + primitives.insert(obj_primitives); + for (unsigned int i = N; i &p = primitives[i]; + switch (p.size()) { + case 1 : p[0]+=P; break; // Point. + case 5 : p[0]+=P; p[1]+=P; break; // Sphere. + case 2 : case 6 : p[0]+=P; p[1]+=P; break; // Segment. + case 3 : case 9 : p[0]+=P; p[1]+=P; p[2]+=P; break; // Triangle. + case 4 : case 12 : p[0]+=P; p[1]+=P; p[2]+=P; p[3]+=P; break; // Rectangle. + } + } + return *this; + } + + //! Texturize primitives of a 3d object. + /** + \param[in,out] primitives Primitives data of the 3d object. + \param[in,out] colors Colors data of the 3d object. + \param texture Texture image to map to 3d object. + \param coords Texture-mapping coordinates. + **/ + template + const CImg& texturize_object3d(CImgList& primitives, CImgList& colors, + const CImg& texture, const CImg& coords=CImg::const_empty()) const { + if (is_empty()) return *this; + if (_height!=3) + throw CImgInstanceException(_cimg_instance + "texturize_object3d(): image instance is not a set of 3d points.", + cimg_instance); + if (coords && (coords._width!=_width || coords._height!=2)) + throw CImgArgumentException(_cimg_instance + "texturize_object3d(): Invalid specified texture coordinates (%u,%u,%u,%u,%p).", + cimg_instance, + coords._width,coords._height,coords._depth,coords._spectrum,coords._data); + CImg _coords; + if (!coords) { // If no texture coordinates specified, do a default XY-projection. + _coords.assign(_width,2); + float + xmin, xmax = (float)get_shared_row(0).max_min(xmin), + ymin, ymax = (float)get_shared_row(1).max_min(ymin), + dx = xmax>xmin?xmax-xmin:1, + dy = ymax>ymin?ymax-ymin:1; + cimg_forX(*this,p) { + _coords(p,0) = (int)(((*this)(p,0) - xmin)*texture._width/dx); + _coords(p,1) = (int)(((*this)(p,1) - ymin)*texture._height/dy); + } + } else _coords = coords; + + int texture_ind = -1; + cimglist_for(primitives,l) { + CImg &p = primitives[l]; + const unsigned int siz = p.size(); + switch (siz) { + case 1 : { // Point. + const unsigned int i0 = (unsigned int)p[0]; + const int x0 = _coords(i0,0), y0 = _coords(i0,1); + texture.get_vector_at(x0<=0?0:x0>=texture.width()?texture.width() - 1:x0, + y0<=0?0:y0>=texture.height()?texture.height() - 1:y0).move_to(colors[l]); + } break; + case 2 : case 6 : { // Line. + const unsigned int i0 = (unsigned int)p[0], i1 = (unsigned int)p[1]; + const int + x0 = _coords(i0,0), y0 = _coords(i0,1), + x1 = _coords(i1,0), y1 = _coords(i1,1); + if (texture_ind<0) colors[texture_ind=l].assign(texture,false); + else colors[l].assign(colors[texture_ind],true); + CImg::vector(i0,i1,x0,y0,x1,y1).move_to(p); + } break; + case 3 : case 9 : { // Triangle. + const unsigned int i0 = (unsigned int)p[0], i1 = (unsigned int)p[1], i2 = (unsigned int)p[2]; + const int + x0 = _coords(i0,0), y0 = _coords(i0,1), + x1 = _coords(i1,0), y1 = _coords(i1,1), + x2 = _coords(i2,0), y2 = _coords(i2,1); + if (texture_ind<0) colors[texture_ind=l].assign(texture,false); + else colors[l].assign(colors[texture_ind],true); + CImg::vector(i0,i1,i2,x0,y0,x1,y1,x2,y2).move_to(p); + } break; + case 4 : case 12 : { // Quadrangle. + const unsigned int + i0 = (unsigned int)p[0], i1 = (unsigned int)p[1], i2 = (unsigned int)p[2], i3 = (unsigned int)p[3]; + const int + x0 = _coords(i0,0), y0 = _coords(i0,1), + x1 = _coords(i1,0), y1 = _coords(i1,1), + x2 = _coords(i2,0), y2 = _coords(i2,1), + x3 = _coords(i3,0), y3 = _coords(i3,1); + if (texture_ind<0) colors[texture_ind=l].assign(texture,false); + else colors[l].assign(colors[texture_ind],true); + CImg::vector(i0,i1,i2,i3,x0,y0,x1,y1,x2,y2,x3,y3).move_to(p); + } break; + } + } + return *this; + } + + //! Generate a 3d elevation of the image instance. + /** + \param[out] primitives The returned list of the 3d object primitives + (template type \e tf should be at least \e unsigned \e int). + \param[out] colors The returned list of the 3d object colors. + \param elevation The input elevation map. + \return The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + const CImg img("reference.jpg"); + CImgList faces3d; + CImgList colors3d; + const CImg points3d = img.get_elevation3d(faces3d,colors3d,img.get_norm()*0.2); + CImg().display_object3d("Elevation3d",points3d,faces3d,colors3d); + \endcode + \image html ref_elevation3d.jpg + **/ + template + CImg get_elevation3d(CImgList& primitives, CImgList& colors, const CImg& elevation) const { + if (!is_sameXY(elevation) || elevation._depth>1 || elevation._spectrum>1) + throw CImgArgumentException(_cimg_instance + "get_elevation3d(): Instance and specified elevation (%u,%u,%u,%u,%p) " + "have incompatible dimensions.", + cimg_instance, + elevation._width,elevation._height,elevation._depth, + elevation._spectrum,elevation._data); + if (is_empty()) return *this; + float m, M = (float)max_min(m); + if (M==m) ++M; + colors.assign(); + const unsigned int size_x1 = _width - 1, size_y1 = _height - 1; + for (unsigned int y = 0; y1?((*this)(x,y,1) - m)*255/(M-m):r), + b = (unsigned char)(_spectrum>2?((*this)(x,y,2) - m)*255/(M-m):_spectrum>1?0:r); + CImg::vector((tc)r,(tc)g,(tc)b).move_to(colors); + } + const typename CImg::_functor2d_int func(elevation); + return elevation3d(primitives,func,0,0,_width - 1.0f,_height - 1.0f,_width,_height); + } + + //! Generate the 3d projection planes of the image instance. + /** + \param[out] primitives Primitives data of the returned 3d object. + \param[out] colors Colors data of the returned 3d object. + \param x0 X-coordinate of the projection point. + \param y0 Y-coordinate of the projection point. + \param z0 Z-coordinate of the projection point. + \param normalize_colors Tells if the created textures have normalized colors. + **/ + template + CImg get_projections3d(CImgList& primitives, CImgList& colors, + const unsigned int x0, const unsigned int y0, const unsigned int z0, + const bool normalize_colors=false) const { + float m = 0, M = 0, delta = 1; + if (normalize_colors) { m = (float)min_max(M); delta = 255/(m==M?1:M-m); } + const unsigned int + _x0 = (x0>=_width)?_width - 1:x0, + _y0 = (y0>=_height)?_height - 1:y0, + _z0 = (z0>=_depth)?_depth - 1:z0; + CImg img_xy, img_xz, img_yz; + if (normalize_colors) { + ((get_crop(0,0,_z0,0,_width - 1,_height - 1,_z0,_spectrum - 1)-=m)*=delta).move_to(img_xy); + ((get_crop(0,_y0,0,0,_width - 1,_y0,_depth - 1,_spectrum - 1)-=m)*=delta).resize(_width,_depth,1,-100,-1). + move_to(img_xz); + ((get_crop(_x0,0,0,0,_x0,_height - 1,_depth - 1,_spectrum - 1)-=m)*=delta).resize(_height,_depth,1,-100,-1). + move_to(img_yz); + } else { + get_crop(0,0,_z0,0,_width - 1,_height - 1,_z0,_spectrum - 1).move_to(img_xy); + get_crop(0,_y0,0,0,_width - 1,_y0,_depth - 1,_spectrum - 1).resize(_width,_depth,1,-100,-1).move_to(img_xz); + get_crop(_x0,0,0,0,_x0,_height - 1,_depth - 1,_spectrum - 1).resize(_height,_depth,1,-100,-1).move_to(img_yz); + } + CImg points(12,3,1,1, + 0,_width - 1,_width - 1,0, 0,_width - 1,_width - 1,0, _x0,_x0,_x0,_x0, + 0,0,_height - 1,_height - 1, _y0,_y0,_y0,_y0, 0,_height - 1,_height - 1,0, + _z0,_z0,_z0,_z0, 0,0,_depth - 1,_depth - 1, 0,0,_depth - 1,_depth - 1); + primitives.assign(); + CImg::vector(0,1,2,3,0,0,img_xy._width - 1,0,img_xy._width - 1,img_xy._height - 1,0,img_xy._height - 1). + move_to(primitives); + CImg::vector(4,5,6,7,0,0,img_xz._width - 1,0,img_xz._width - 1,img_xz._height - 1,0,img_xz._height - 1). + move_to(primitives); + CImg::vector(8,9,10,11,0,0,img_yz._width - 1,0,img_yz._width - 1,img_yz._height - 1,0,img_yz._height - 1). + move_to(primitives); + colors.assign(); + img_xy.move_to(colors); + img_xz.move_to(colors); + img_yz.move_to(colors); + return points; + } + + //! Generate a isoline of the image instance as a 3d object. + /** + \param[out] primitives The returned list of the 3d object primitives + (template type \e tf should be at least \e unsigned \e int). + \param isovalue The returned list of the 3d object colors. + \param size_x The number of subdivisions along the X-axis. + \param size_y The number of subdisivions along the Y-axis. + \return The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + const CImg img("reference.jpg"); + CImgList faces3d; + const CImg points3d = img.get_isoline3d(faces3d,100); + CImg().display_object3d("Isoline3d",points3d,faces3d,colors3d); + \endcode + \image html ref_isoline3d.jpg + **/ + template + CImg get_isoline3d(CImgList& primitives, const float isovalue, + const int size_x=-100, const int size_y=-100) const { + if (_spectrum>1) + throw CImgInstanceException(_cimg_instance + "get_isoline3d(): Instance is not a scalar image.", + cimg_instance); + if (_depth>1) + throw CImgInstanceException(_cimg_instance + "get_isoline3d(): Instance is not a 2d image.", + cimg_instance); + primitives.assign(); + if (is_empty()) return *this; + CImg vertices; + if ((size_x==-100 && size_y==-100) || (size_x==width() && size_y==height())) { + const _functor2d_int func(*this); + vertices = isoline3d(primitives,func,isovalue,0,0,width() - 1.0f,height() - 1.0f,width(),height()); + } else { + const _functor2d_float func(*this); + vertices = isoline3d(primitives,func,isovalue,0,0,width() - 1.0f,height() - 1.0f,size_x,size_y); + } + return vertices; + } + + //! Generate an isosurface of the image instance as a 3d object. + /** + \param[out] primitives The returned list of the 3d object primitives + (template type \e tf should be at least \e unsigned \e int). + \param isovalue The returned list of the 3d object colors. + \param size_x Number of subdivisions along the X-axis. + \param size_y Number of subdisivions along the Y-axis. + \param size_z Number of subdisivions along the Z-axis. + \return The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + const CImg img = CImg("reference.jpg").resize(-100,-100,20); + CImgList faces3d; + const CImg points3d = img.get_isosurface3d(faces3d,100); + CImg().display_object3d("Isosurface3d",points3d,faces3d,colors3d); + \endcode + \image html ref_isosurface3d.jpg + **/ + template + CImg get_isosurface3d(CImgList& primitives, const float isovalue, + const int size_x=-100, const int size_y=-100, const int size_z=-100) const { + if (_spectrum>1) + throw CImgInstanceException(_cimg_instance + "get_isosurface3d(): Instance is not a scalar image.", + cimg_instance); + primitives.assign(); + if (is_empty()) return *this; + CImg vertices; + if ((size_x==-100 && size_y==-100 && size_z==-100) || (size_x==width() && size_y==height() && size_z==depth())) { + const _functor3d_int func(*this); + vertices = isosurface3d(primitives,func,isovalue,0,0,0,width() - 1.0f,height() - 1.0f,depth() - 1.0f, + width(),height(),depth()); + } else { + const _functor3d_float func(*this); + vertices = isosurface3d(primitives,func,isovalue,0,0,0,width() - 1.0f,height() - 1.0f,depth() - 1.0f, + size_x,size_y,size_z); + } + return vertices; + } + + //! Compute 3d elevation of a function as a 3d object. + /** + \param[out] primitives Primitives data of the resulting 3d object. + \param func Elevation function. Is of type float (*func)(const float x,const float y). + \param x0 X-coordinate of the starting point. + \param y0 Y-coordinate of the starting point. + \param x1 X-coordinate of the ending point. + \param y1 Y-coordinate of the ending point. + \param size_x Resolution of the function along the X-axis. + \param size_y Resolution of the function along the Y-axis. + **/ + template + static CImg elevation3d(CImgList& primitives, const tfunc& func, + const float x0, const float y0, const float x1, const float y1, + const int size_x=256, const int size_y=256) { + const float + nx0 = x0=0?size_x:(nx1-nx0)*-size_x/100), + nsize_x = _nsize_x?_nsize_x:1, nsize_x1 = nsize_x - 1, + _nsize_y = (unsigned int)(size_y>=0?size_y:(ny1-ny0)*-size_y/100), + nsize_y = _nsize_y?_nsize_y:1, nsize_y1 = nsize_y - 1; + if (nsize_x<2 || nsize_y<2) + throw CImgArgumentException("CImg<%s>::elevation3d(): Invalid specified size (%d,%d).", + pixel_type(), + nsize_x,nsize_y); + + CImg vertices(nsize_x*nsize_y,3); + floatT *ptr_x = vertices.data(0,0), *ptr_y = vertices.data(0,1), *ptr_z = vertices.data(0,2); + for (unsigned int y = 0; y + static CImg elevation3d(CImgList& primitives, const char *const expression, + const float x0, const float y0, const float x1, const float y1, + const int size_x=256, const int size_y=256) { + const _functor2d_expr func(expression); + return elevation3d(primitives,func,x0,y0,x1,y1,size_x,size_y); + } + + //! Compute 0-isolines of a function, as a 3d object. + /** + \param[out] primitives Primitives data of the resulting 3d object. + \param func Elevation function. Is of type float (*func)(const float x,const float y). + \param isovalue Isovalue to extract from function. + \param x0 X-coordinate of the starting point. + \param y0 Y-coordinate of the starting point. + \param x1 X-coordinate of the ending point. + \param y1 Y-coordinate of the ending point. + \param size_x Resolution of the function along the X-axis. + \param size_y Resolution of the function along the Y-axis. + \note Use the marching squares algorithm for extracting the isolines. + **/ + template + static CImg isoline3d(CImgList& primitives, const tfunc& func, const float isovalue, + const float x0, const float y0, const float x1, const float y1, + const int size_x=256, const int size_y=256) { + static const unsigned int edges[16] = { 0x0, 0x9, 0x3, 0xa, 0x6, 0xf, 0x5, 0xc, 0xc, + 0x5, 0xf, 0x6, 0xa, 0x3, 0x9, 0x0 }; + static const int segments[16][4] = { { -1,-1,-1,-1 }, { 0,3,-1,-1 }, { 0,1,-1,-1 }, { 1,3,-1,-1 }, + { 1,2,-1,-1 }, { 0,1,2,3 }, { 0,2,-1,-1 }, { 2,3,-1,-1 }, + { 2,3,-1,-1 }, { 0,2,-1,-1}, { 0,3,1,2 }, { 1,2,-1,-1 }, + { 1,3,-1,-1 }, { 0,1,-1,-1}, { 0,3,-1,-1}, { -1,-1,-1,-1 } }; + const unsigned int + _nx = (unsigned int)(size_x>=0?size_x:cimg::round((x1-x0)*-size_x/100 + 1)), + _ny = (unsigned int)(size_y>=0?size_y:cimg::round((y1-y0)*-size_y/100 + 1)), + nx = _nx?_nx:1, + ny = _ny?_ny:1, + nxm1 = nx - 1, + nym1 = ny - 1; + primitives.assign(); + if (!nxm1 || !nym1) return CImg(); + const float dx = (x1 - x0)/nxm1, dy = (y1 - y0)/nym1; + CImgList vertices; + CImg indices1(nx,1,1,2,-1), indices2(nx,1,1,2); + CImg values1(nx), values2(nx); + float X = x0, Y = y0, nX = X + dx, nY = Y + dy; + + // Fill first line with values + cimg_forX(values1,x) { values1(x) = (float)func(X,Y); X+=dx; } + + // Run the marching squares algorithm + for (unsigned int yi = 0, nyi = 1; yi::vector(Xi,Y,0).move_to(vertices); + } + if ((edge&2) && indices1(nxi,1)<0) { + const float Yi = Y + (isovalue-val1)*dy/(val2-val1); + indices1(nxi,1) = vertices.width(); + CImg::vector(nX,Yi,0).move_to(vertices); + } + if ((edge&4) && indices2(xi,0)<0) { + const float Xi = X + (isovalue-val3)*dx/(val2-val3); + indices2(xi,0) = vertices.width(); + CImg::vector(Xi,nY,0).move_to(vertices); + } + if ((edge&8) && indices1(xi,1)<0) { + const float Yi = Y + (isovalue-val0)*dy/(val3-val0); + indices1(xi,1) = vertices.width(); + CImg::vector(X,Yi,0).move_to(vertices); + } + + // Create segments + for (const int *segment = segments[configuration]; *segment!=-1; ) { + const unsigned int p0 = (unsigned int)*(segment++), p1 = (unsigned int)*(segment++); + const tf + i0 = (tf)(_isoline3d_indice(p0,indices1,indices2,xi,nxi)), + i1 = (tf)(_isoline3d_indice(p1,indices1,indices2,xi,nxi)); + CImg::vector(i0,i1).move_to(primitives); + } + } + } + values1.swap(values2); + indices1.swap(indices2); + } + return vertices>'x'; + } + + //! Compute isolines of a function, as a 3d object \overloading. + template + static CImg isoline3d(CImgList& primitives, const char *const expression, const float isovalue, + const float x0, const float y0, const float x1, const float y1, + const int size_x=256, const int size_y=256) { + const _functor2d_expr func(expression); + return isoline3d(primitives,func,isovalue,x0,y0,x1,y1,size_x,size_y); + } + + template + static int _isoline3d_indice(const unsigned int edge, const CImg& indices1, const CImg& indices2, + const unsigned int x, const unsigned int nx) { + switch (edge) { + case 0 : return (int)indices1(x,0); + case 1 : return (int)indices1(nx,1); + case 2 : return (int)indices2(x,0); + case 3 : return (int)indices1(x,1); + } + return 0; + } + + //! Compute isosurface of a function, as a 3d object. + /** + \param[out] primitives Primitives data of the resulting 3d object. + \param func Implicit function. Is of type float (*func)(const float x, const float y, const float z). + \param isovalue Isovalue to extract. + \param x0 X-coordinate of the starting point. + \param y0 Y-coordinate of the starting point. + \param z0 Z-coordinate of the starting point. + \param x1 X-coordinate of the ending point. + \param y1 Y-coordinate of the ending point. + \param z1 Z-coordinate of the ending point. + \param size_x Resolution of the elevation function along the X-axis. + \param size_y Resolution of the elevation function along the Y-axis. + \param size_z Resolution of the elevation function along the Z-axis. + \note Use the marching cubes algorithm for extracting the isosurface. + **/ + template + static CImg isosurface3d(CImgList& primitives, const tfunc& func, const float isovalue, + const float x0, const float y0, const float z0, + const float x1, const float y1, const float z1, + const int size_x=32, const int size_y=32, const int size_z=32) { + static const unsigned int edges[256] = { + 0x000, 0x109, 0x203, 0x30a, 0x406, 0x50f, 0x605, 0x70c, 0x80c, 0x905, 0xa0f, 0xb06, 0xc0a, 0xd03, 0xe09, 0xf00, + 0x190, 0x99 , 0x393, 0x29a, 0x596, 0x49f, 0x795, 0x69c, 0x99c, 0x895, 0xb9f, 0xa96, 0xd9a, 0xc93, 0xf99, 0xe90, + 0x230, 0x339, 0x33 , 0x13a, 0x636, 0x73f, 0x435, 0x53c, 0xa3c, 0xb35, 0x83f, 0x936, 0xe3a, 0xf33, 0xc39, 0xd30, + 0x3a0, 0x2a9, 0x1a3, 0xaa , 0x7a6, 0x6af, 0x5a5, 0x4ac, 0xbac, 0xaa5, 0x9af, 0x8a6, 0xfaa, 0xea3, 0xda9, 0xca0, + 0x460, 0x569, 0x663, 0x76a, 0x66 , 0x16f, 0x265, 0x36c, 0xc6c, 0xd65, 0xe6f, 0xf66, 0x86a, 0x963, 0xa69, 0xb60, + 0x5f0, 0x4f9, 0x7f3, 0x6fa, 0x1f6, 0xff , 0x3f5, 0x2fc, 0xdfc, 0xcf5, 0xfff, 0xef6, 0x9fa, 0x8f3, 0xbf9, 0xaf0, + 0x650, 0x759, 0x453, 0x55a, 0x256, 0x35f, 0x55 , 0x15c, 0xe5c, 0xf55, 0xc5f, 0xd56, 0xa5a, 0xb53, 0x859, 0x950, + 0x7c0, 0x6c9, 0x5c3, 0x4ca, 0x3c6, 0x2cf, 0x1c5, 0xcc , 0xfcc, 0xec5, 0xdcf, 0xcc6, 0xbca, 0xac3, 0x9c9, 0x8c0, + 0x8c0, 0x9c9, 0xac3, 0xbca, 0xcc6, 0xdcf, 0xec5, 0xfcc, 0xcc , 0x1c5, 0x2cf, 0x3c6, 0x4ca, 0x5c3, 0x6c9, 0x7c0, + 0x950, 0x859, 0xb53, 0xa5a, 0xd56, 0xc5f, 0xf55, 0xe5c, 0x15c, 0x55 , 0x35f, 0x256, 0x55a, 0x453, 0x759, 0x650, + 0xaf0, 0xbf9, 0x8f3, 0x9fa, 0xef6, 0xfff, 0xcf5, 0xdfc, 0x2fc, 0x3f5, 0xff , 0x1f6, 0x6fa, 0x7f3, 0x4f9, 0x5f0, + 0xb60, 0xa69, 0x963, 0x86a, 0xf66, 0xe6f, 0xd65, 0xc6c, 0x36c, 0x265, 0x16f, 0x66 , 0x76a, 0x663, 0x569, 0x460, + 0xca0, 0xda9, 0xea3, 0xfaa, 0x8a6, 0x9af, 0xaa5, 0xbac, 0x4ac, 0x5a5, 0x6af, 0x7a6, 0xaa , 0x1a3, 0x2a9, 0x3a0, + 0xd30, 0xc39, 0xf33, 0xe3a, 0x936, 0x83f, 0xb35, 0xa3c, 0x53c, 0x435, 0x73f, 0x636, 0x13a, 0x33 , 0x339, 0x230, + 0xe90, 0xf99, 0xc93, 0xd9a, 0xa96, 0xb9f, 0x895, 0x99c, 0x69c, 0x795, 0x49f, 0x596, 0x29a, 0x393, 0x99 , 0x190, + 0xf00, 0xe09, 0xd03, 0xc0a, 0xb06, 0xa0f, 0x905, 0x80c, 0x70c, 0x605, 0x50f, 0x406, 0x30a, 0x203, 0x109, 0x000 + }; + + static const int triangles[256][16] = { + { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 1, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 8, 3, 9, 8, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 3, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 2, 10, 0, 2, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 8, 3, 2, 10, 8, 10, 9, 8, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 11, 2, 8, 11, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 9, 0, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 11, 2, 1, 9, 11, 9, 8, 11, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 10, 1, 11, 10, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 10, 1, 0, 8, 10, 8, 11, 10, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 9, 0, 3, 11, 9, 11, 10, 9, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 3, 0, 7, 3, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 1, 9, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 1, 9, 4, 7, 1, 7, 3, 1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 10, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 4, 7, 3, 0, 4, 1, 2, 10, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 2, 10, 9, 0, 2, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 10, 9, 2, 9, 7, 2, 7, 3, 7, 9, 4, -1, -1, -1, -1 }, + { 8, 4, 7, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 11, 4, 7, 11, 2, 4, 2, 0, 4, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 0, 1, 8, 4, 7, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 7, 11, 9, 4, 11, 9, 11, 2, 9, 2, 1, -1, -1, -1, -1 }, + { 3, 10, 1, 3, 11, 10, 7, 8, 4, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 11, 10, 1, 4, 11, 1, 0, 4, 7, 11, 4, -1, -1, -1, -1 }, + { 4, 7, 8, 9, 0, 11, 9, 11, 10, 11, 0, 3, -1, -1, -1, -1 }, + { 4, 7, 11, 4, 11, 9, 9, 11, 10, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 5, 4, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 5, 4, 1, 5, 0, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 8, 5, 4, 8, 3, 5, 3, 1, 5, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 10, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 0, 8, 1, 2, 10, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 2, 10, 5, 4, 2, 4, 0, 2, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 10, 5, 3, 2, 5, 3, 5, 4, 3, 4, 8, -1, -1, -1, -1 }, + { 9, 5, 4, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 11, 2, 0, 8, 11, 4, 9, 5, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 5, 4, 0, 1, 5, 2, 3, 11, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 1, 5, 2, 5, 8, 2, 8, 11, 4, 8, 5, -1, -1, -1, -1 }, + { 10, 3, 11, 10, 1, 3, 9, 5, 4, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 9, 5, 0, 8, 1, 8, 10, 1, 8, 11, 10, -1, -1, -1, -1 }, + { 5, 4, 0, 5, 0, 11, 5, 11, 10, 11, 0, 3, -1, -1, -1, -1 }, + { 5, 4, 8, 5, 8, 10, 10, 8, 11, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 7, 8, 5, 7, 9, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 3, 0, 9, 5, 3, 5, 7, 3, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 7, 8, 0, 1, 7, 1, 5, 7, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 7, 8, 9, 5, 7, 10, 1, 2, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 1, 2, 9, 5, 0, 5, 3, 0, 5, 7, 3, -1, -1, -1, -1 }, + { 8, 0, 2, 8, 2, 5, 8, 5, 7, 10, 5, 2, -1, -1, -1, -1 }, + { 2, 10, 5, 2, 5, 3, 3, 5, 7, -1, -1, -1, -1, -1, -1, -1 }, + { 7, 9, 5, 7, 8, 9, 3, 11, 2, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 5, 7, 9, 7, 2, 9, 2, 0, 2, 7, 11, -1, -1, -1, -1 }, + { 2, 3, 11, 0, 1, 8, 1, 7, 8, 1, 5, 7, -1, -1, -1, -1 }, + { 11, 2, 1, 11, 1, 7, 7, 1, 5, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 5, 8, 8, 5, 7, 10, 1, 3, 10, 3, 11, -1, -1, -1, -1 }, + { 5, 7, 0, 5, 0, 9, 7, 11, 0, 1, 0, 10, 11, 10, 0, -1 }, + { 11, 10, 0, 11, 0, 3, 10, 5, 0, 8, 0, 7, 5, 7, 0, -1 }, + { 11, 10, 5, 7, 11, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 3, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 0, 1, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 8, 3, 1, 9, 8, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 6, 5, 2, 6, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 6, 5, 1, 2, 6, 3, 0, 8, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 6, 5, 9, 0, 6, 0, 2, 6, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 9, 8, 5, 8, 2, 5, 2, 6, 3, 2, 8, -1, -1, -1, -1 }, + { 2, 3, 11, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 11, 0, 8, 11, 2, 0, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 1, 9, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 10, 6, 1, 9, 2, 9, 11, 2, 9, 8, 11, -1, -1, -1, -1 }, + { 6, 3, 11, 6, 5, 3, 5, 1, 3, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 11, 0, 11, 5, 0, 5, 1, 5, 11, 6, -1, -1, -1, -1 }, + { 3, 11, 6, 0, 3, 6, 0, 6, 5, 0, 5, 9, -1, -1, -1, -1 }, + { 6, 5, 9, 6, 9, 11, 11, 9, 8, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 10, 6, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 3, 0, 4, 7, 3, 6, 5, 10, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 9, 0, 5, 10, 6, 8, 4, 7, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 6, 5, 1, 9, 7, 1, 7, 3, 7, 9, 4, -1, -1, -1, -1 }, + { 6, 1, 2, 6, 5, 1, 4, 7, 8, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 5, 5, 2, 6, 3, 0, 4, 3, 4, 7, -1, -1, -1, -1 }, + { 8, 4, 7, 9, 0, 5, 0, 6, 5, 0, 2, 6, -1, -1, -1, -1 }, + { 7, 3, 9, 7, 9, 4, 3, 2, 9, 5, 9, 6, 2, 6, 9, -1 }, + { 3, 11, 2, 7, 8, 4, 10, 6, 5, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 10, 6, 4, 7, 2, 4, 2, 0, 2, 7, 11, -1, -1, -1, -1 }, + { 0, 1, 9, 4, 7, 8, 2, 3, 11, 5, 10, 6, -1, -1, -1, -1 }, + { 9, 2, 1, 9, 11, 2, 9, 4, 11, 7, 11, 4, 5, 10, 6, -1 }, + { 8, 4, 7, 3, 11, 5, 3, 5, 1, 5, 11, 6, -1, -1, -1, -1 }, + { 5, 1, 11, 5, 11, 6, 1, 0, 11, 7, 11, 4, 0, 4, 11, -1 }, + { 0, 5, 9, 0, 6, 5, 0, 3, 6, 11, 6, 3, 8, 4, 7, -1 }, + { 6, 5, 9, 6, 9, 11, 4, 7, 9, 7, 11, 9, -1, -1, -1, -1 }, + { 10, 4, 9, 6, 4, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 10, 6, 4, 9, 10, 0, 8, 3, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 0, 1, 10, 6, 0, 6, 4, 0, -1, -1, -1, -1, -1, -1, -1 }, + { 8, 3, 1, 8, 1, 6, 8, 6, 4, 6, 1, 10, -1, -1, -1, -1 }, + { 1, 4, 9, 1, 2, 4, 2, 6, 4, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 0, 8, 1, 2, 9, 2, 4, 9, 2, 6, 4, -1, -1, -1, -1 }, + { 0, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 8, 3, 2, 8, 2, 4, 4, 2, 6, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 4, 9, 10, 6, 4, 11, 2, 3, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 2, 2, 8, 11, 4, 9, 10, 4, 10, 6, -1, -1, -1, -1 }, + { 3, 11, 2, 0, 1, 6, 0, 6, 4, 6, 1, 10, -1, -1, -1, -1 }, + { 6, 4, 1, 6, 1, 10, 4, 8, 1, 2, 1, 11, 8, 11, 1, -1 }, + { 9, 6, 4, 9, 3, 6, 9, 1, 3, 11, 6, 3, -1, -1, -1, -1 }, + { 8, 11, 1, 8, 1, 0, 11, 6, 1, 9, 1, 4, 6, 4, 1, -1 }, + { 3, 11, 6, 3, 6, 0, 0, 6, 4, -1, -1, -1, -1, -1, -1, -1 }, + { 6, 4, 8, 11, 6, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 7, 10, 6, 7, 8, 10, 8, 9, 10, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 7, 3, 0, 10, 7, 0, 9, 10, 6, 7, 10, -1, -1, -1, -1 }, + { 10, 6, 7, 1, 10, 7, 1, 7, 8, 1, 8, 0, -1, -1, -1, -1 }, + { 10, 6, 7, 10, 7, 1, 1, 7, 3, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 6, 1, 6, 8, 1, 8, 9, 8, 6, 7, -1, -1, -1, -1 }, + { 2, 6, 9, 2, 9, 1, 6, 7, 9, 0, 9, 3, 7, 3, 9, -1 }, + { 7, 8, 0, 7, 0, 6, 6, 0, 2, -1, -1, -1, -1, -1, -1, -1 }, + { 7, 3, 2, 6, 7, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 3, 11, 10, 6, 8, 10, 8, 9, 8, 6, 7, -1, -1, -1, -1 }, + { 2, 0, 7, 2, 7, 11, 0, 9, 7, 6, 7, 10, 9, 10, 7, -1 }, + { 1, 8, 0, 1, 7, 8, 1, 10, 7, 6, 7, 10, 2, 3, 11, -1 }, + { 11, 2, 1, 11, 1, 7, 10, 6, 1, 6, 7, 1, -1, -1, -1, -1 }, + { 8, 9, 6, 8, 6, 7, 9, 1, 6, 11, 6, 3, 1, 3, 6, -1 }, + { 0, 9, 1, 11, 6, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 7, 8, 0, 7, 0, 6, 3, 11, 0, 11, 6, 0, -1, -1, -1, -1 }, + { 7, 11, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 0, 8, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 1, 9, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 8, 1, 9, 8, 3, 1, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 1, 2, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 10, 3, 0, 8, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 9, 0, 2, 10, 9, 6, 11, 7, -1, -1, -1, -1, -1, -1, -1 }, + { 6, 11, 7, 2, 10, 3, 10, 8, 3, 10, 9, 8, -1, -1, -1, -1 }, + { 7, 2, 3, 6, 2, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 7, 0, 8, 7, 6, 0, 6, 2, 0, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 7, 6, 2, 3, 7, 0, 1, 9, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 6, 2, 1, 8, 6, 1, 9, 8, 8, 7, 6, -1, -1, -1, -1 }, + { 10, 7, 6, 10, 1, 7, 1, 3, 7, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 7, 6, 1, 7, 10, 1, 8, 7, 1, 0, 8, -1, -1, -1, -1 }, + { 0, 3, 7, 0, 7, 10, 0, 10, 9, 6, 10, 7, -1, -1, -1, -1 }, + { 7, 6, 10, 7, 10, 8, 8, 10, 9, -1, -1, -1, -1, -1, -1, -1 }, + { 6, 8, 4, 11, 8, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 6, 11, 3, 0, 6, 0, 4, 6, -1, -1, -1, -1, -1, -1, -1 }, + { 8, 6, 11, 8, 4, 6, 9, 0, 1, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 4, 6, 9, 6, 3, 9, 3, 1, 11, 3, 6, -1, -1, -1, -1 }, + { 6, 8, 4, 6, 11, 8, 2, 10, 1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 10, 3, 0, 11, 0, 6, 11, 0, 4, 6, -1, -1, -1, -1 }, + { 4, 11, 8, 4, 6, 11, 0, 2, 9, 2, 10, 9, -1, -1, -1, -1 }, + { 10, 9, 3, 10, 3, 2, 9, 4, 3, 11, 3, 6, 4, 6, 3, -1 }, + { 8, 2, 3, 8, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 4, 2, 4, 6, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 9, 0, 2, 3, 4, 2, 4, 6, 4, 3, 8, -1, -1, -1, -1 }, + { 1, 9, 4, 1, 4, 2, 2, 4, 6, -1, -1, -1, -1, -1, -1, -1 }, + { 8, 1, 3, 8, 6, 1, 8, 4, 6, 6, 10, 1, -1, -1, -1, -1 }, + { 10, 1, 0, 10, 0, 6, 6, 0, 4, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 6, 3, 4, 3, 8, 6, 10, 3, 0, 3, 9, 10, 9, 3, -1 }, + { 10, 9, 4, 6, 10, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 9, 5, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 3, 4, 9, 5, 11, 7, 6, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 0, 1, 5, 4, 0, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1 }, + { 11, 7, 6, 8, 3, 4, 3, 5, 4, 3, 1, 5, -1, -1, -1, -1 }, + { 9, 5, 4, 10, 1, 2, 7, 6, 11, -1, -1, -1, -1, -1, -1, -1 }, + { 6, 11, 7, 1, 2, 10, 0, 8, 3, 4, 9, 5, -1, -1, -1, -1 }, + { 7, 6, 11, 5, 4, 10, 4, 2, 10, 4, 0, 2, -1, -1, -1, -1 }, + { 3, 4, 8, 3, 5, 4, 3, 2, 5, 10, 5, 2, 11, 7, 6, -1 }, + { 7, 2, 3, 7, 6, 2, 5, 4, 9, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 5, 4, 0, 8, 6, 0, 6, 2, 6, 8, 7, -1, -1, -1, -1 }, + { 3, 6, 2, 3, 7, 6, 1, 5, 0, 5, 4, 0, -1, -1, -1, -1 }, + { 6, 2, 8, 6, 8, 7, 2, 1, 8, 4, 8, 5, 1, 5, 8, -1 }, + { 9, 5, 4, 10, 1, 6, 1, 7, 6, 1, 3, 7, -1, -1, -1, -1 }, + { 1, 6, 10, 1, 7, 6, 1, 0, 7, 8, 7, 0, 9, 5, 4, -1 }, + { 4, 0, 10, 4, 10, 5, 0, 3, 10, 6, 10, 7, 3, 7, 10, -1 }, + { 7, 6, 10, 7, 10, 8, 5, 4, 10, 4, 8, 10, -1, -1, -1, -1 }, + { 6, 9, 5, 6, 11, 9, 11, 8, 9, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 6, 11, 0, 6, 3, 0, 5, 6, 0, 9, 5, -1, -1, -1, -1 }, + { 0, 11, 8, 0, 5, 11, 0, 1, 5, 5, 6, 11, -1, -1, -1, -1 }, + { 6, 11, 3, 6, 3, 5, 5, 3, 1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 10, 9, 5, 11, 9, 11, 8, 11, 5, 6, -1, -1, -1, -1 }, + { 0, 11, 3, 0, 6, 11, 0, 9, 6, 5, 6, 9, 1, 2, 10, -1 }, + { 11, 8, 5, 11, 5, 6, 8, 0, 5, 10, 5, 2, 0, 2, 5, -1 }, + { 6, 11, 3, 6, 3, 5, 2, 10, 3, 10, 5, 3, -1, -1, -1, -1 }, + { 5, 8, 9, 5, 2, 8, 5, 6, 2, 3, 8, 2, -1, -1, -1, -1 }, + { 9, 5, 6, 9, 6, 0, 0, 6, 2, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 5, 8, 1, 8, 0, 5, 6, 8, 3, 8, 2, 6, 2, 8, -1 }, + { 1, 5, 6, 2, 1, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 3, 6, 1, 6, 10, 3, 8, 6, 5, 6, 9, 8, 9, 6, -1 }, + { 10, 1, 0, 10, 0, 6, 9, 5, 0, 5, 6, 0, -1, -1, -1, -1 }, + { 0, 3, 8, 5, 6, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 5, 6, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 11, 5, 10, 7, 5, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 11, 5, 10, 11, 7, 5, 8, 3, 0, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 11, 7, 5, 10, 11, 1, 9, 0, -1, -1, -1, -1, -1, -1, -1 }, + { 10, 7, 5, 10, 11, 7, 9, 8, 1, 8, 3, 1, -1, -1, -1, -1 }, + { 11, 1, 2, 11, 7, 1, 7, 5, 1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 3, 1, 2, 7, 1, 7, 5, 7, 2, 11, -1, -1, -1, -1 }, + { 9, 7, 5, 9, 2, 7, 9, 0, 2, 2, 11, 7, -1, -1, -1, -1 }, + { 7, 5, 2, 7, 2, 11, 5, 9, 2, 3, 2, 8, 9, 8, 2, -1 }, + { 2, 5, 10, 2, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1 }, + { 8, 2, 0, 8, 5, 2, 8, 7, 5, 10, 2, 5, -1, -1, -1, -1 }, + { 9, 0, 1, 5, 10, 3, 5, 3, 7, 3, 10, 2, -1, -1, -1, -1 }, + { 9, 8, 2, 9, 2, 1, 8, 7, 2, 10, 2, 5, 7, 5, 2, -1 }, + { 1, 3, 5, 3, 7, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 7, 0, 7, 1, 1, 7, 5, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 0, 3, 9, 3, 5, 5, 3, 7, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 8, 7, 5, 9, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 8, 4, 5, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1 }, + { 5, 0, 4, 5, 11, 0, 5, 10, 11, 11, 3, 0, -1, -1, -1, -1 }, + { 0, 1, 9, 8, 4, 10, 8, 10, 11, 10, 4, 5, -1, -1, -1, -1 }, + { 10, 11, 4, 10, 4, 5, 11, 3, 4, 9, 4, 1, 3, 1, 4, -1 }, + { 2, 5, 1, 2, 8, 5, 2, 11, 8, 4, 5, 8, -1, -1, -1, -1 }, + { 0, 4, 11, 0, 11, 3, 4, 5, 11, 2, 11, 1, 5, 1, 11, -1 }, + { 0, 2, 5, 0, 5, 9, 2, 11, 5, 4, 5, 8, 11, 8, 5, -1 }, + { 9, 4, 5, 2, 11, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 5, 10, 3, 5, 2, 3, 4, 5, 3, 8, 4, -1, -1, -1, -1 }, + { 5, 10, 2, 5, 2, 4, 4, 2, 0, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 10, 2, 3, 5, 10, 3, 8, 5, 4, 5, 8, 0, 1, 9, -1 }, + { 5, 10, 2, 5, 2, 4, 1, 9, 2, 9, 4, 2, -1, -1, -1, -1 }, + { 8, 4, 5, 8, 5, 3, 3, 5, 1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 4, 5, 1, 0, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 8, 4, 5, 8, 5, 3, 9, 0, 5, 0, 3, 5, -1, -1, -1, -1 }, + { 9, 4, 5, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 11, 7, 4, 9, 11, 9, 10, 11, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 8, 3, 4, 9, 7, 9, 11, 7, 9, 10, 11, -1, -1, -1, -1 }, + { 1, 10, 11, 1, 11, 4, 1, 4, 0, 7, 4, 11, -1, -1, -1, -1 }, + { 3, 1, 4, 3, 4, 8, 1, 10, 4, 7, 4, 11, 10, 11, 4, -1 }, + { 4, 11, 7, 9, 11, 4, 9, 2, 11, 9, 1, 2, -1, -1, -1, -1 }, + { 9, 7, 4, 9, 11, 7, 9, 1, 11, 2, 11, 1, 0, 8, 3, -1 }, + { 11, 7, 4, 11, 4, 2, 2, 4, 0, -1, -1, -1, -1, -1, -1, -1 }, + { 11, 7, 4, 11, 4, 2, 8, 3, 4, 3, 2, 4, -1, -1, -1, -1 }, + { 2, 9, 10, 2, 7, 9, 2, 3, 7, 7, 4, 9, -1, -1, -1, -1 }, + { 9, 10, 7, 9, 7, 4, 10, 2, 7, 8, 7, 0, 2, 0, 7, -1 }, + { 3, 7, 10, 3, 10, 2, 7, 4, 10, 1, 10, 0, 4, 0, 10, -1 }, + { 1, 10, 2, 8, 7, 4, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 9, 1, 4, 1, 7, 7, 1, 3, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 9, 1, 4, 1, 7, 0, 8, 1, 8, 7, 1, -1, -1, -1, -1 }, + { 4, 0, 3, 7, 4, 3, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 4, 8, 7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 10, 8, 10, 11, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 0, 9, 3, 9, 11, 11, 9, 10, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 1, 10, 0, 10, 8, 8, 10, 11, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 1, 10, 11, 3, 10, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 2, 11, 1, 11, 9, 9, 11, 8, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 0, 9, 3, 9, 11, 1, 2, 9, 2, 11, 9, -1, -1, -1, -1 }, + { 0, 2, 11, 8, 0, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 3, 2, 11, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 3, 8, 2, 8, 10, 10, 8, 9, -1, -1, -1, -1, -1, -1, -1 }, + { 9, 10, 2, 0, 9, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 2, 3, 8, 2, 8, 10, 0, 1, 8, 1, 10, 8, -1, -1, -1, -1 }, + { 1, 10, 2, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 1, 3, 8, 9, 1, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 9, 1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { 0, 3, 8, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 }, + { -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1 } + }; + + const unsigned int + _nx = (unsigned int)(size_x>=0?size_x:cimg::round((x1-x0)*-size_x/100 + 1)), + _ny = (unsigned int)(size_y>=0?size_y:cimg::round((y1-y0)*-size_y/100 + 1)), + _nz = (unsigned int)(size_z>=0?size_z:cimg::round((z1-z0)*-size_z/100 + 1)), + nx = _nx?_nx:1, + ny = _ny?_ny:1, + nz = _nz?_nz:1, + nxm1 = nx - 1, + nym1 = ny - 1, + nzm1 = nz - 1; + primitives.assign(); + if (!nxm1 || !nym1 || !nzm1) return CImg(); + const float dx = (x1 - x0)/nxm1, dy = (y1 - y0)/nym1, dz = (z1 - z0)/nzm1; + CImgList vertices; + CImg indices1(nx,ny,1,3,-1), indices2(indices1); + CImg values1(nx,ny), values2(nx,ny); + float X = 0, Y = 0, Z = 0, nX = 0, nY = 0, nZ = 0; + + // Fill the first plane with function values + Y = y0; + cimg_forY(values1,y) { + X = x0; + cimg_forX(values1,x) { values1(x,y) = (float)func(X,Y,z0); X+=dx; } + Y+=dy; + } + + // Run Marching Cubes algorithm + Z = z0; nZ = Z + dz; + for (unsigned int zi = 0; zi::vector(Xi,Y,Z).move_to(vertices); + } + if ((edge&2) && indices1(nxi,yi,1)<0) { + const float Yi = Y + (isovalue-val1)*dy/(val2-val1); + indices1(nxi,yi,1) = vertices.width(); + CImg::vector(nX,Yi,Z).move_to(vertices); + } + if ((edge&4) && indices1(xi,nyi,0)<0) { + const float Xi = X + (isovalue-val3)*dx/(val2-val3); + indices1(xi,nyi,0) = vertices.width(); + CImg::vector(Xi,nY,Z).move_to(vertices); + } + if ((edge&8) && indices1(xi,yi,1)<0) { + const float Yi = Y + (isovalue-val0)*dy/(val3-val0); + indices1(xi,yi,1) = vertices.width(); + CImg::vector(X,Yi,Z).move_to(vertices); + } + if ((edge&16) && indices2(xi,yi,0)<0) { + const float Xi = X + (isovalue-val4)*dx/(val5-val4); + indices2(xi,yi,0) = vertices.width(); + CImg::vector(Xi,Y,nZ).move_to(vertices); + } + if ((edge&32) && indices2(nxi,yi,1)<0) { + const float Yi = Y + (isovalue-val5)*dy/(val6-val5); + indices2(nxi,yi,1) = vertices.width(); + CImg::vector(nX,Yi,nZ).move_to(vertices); + } + if ((edge&64) && indices2(xi,nyi,0)<0) { + const float Xi = X + (isovalue-val7)*dx/(val6-val7); + indices2(xi,nyi,0) = vertices.width(); + CImg::vector(Xi,nY,nZ).move_to(vertices); + } + if ((edge&128) && indices2(xi,yi,1)<0) { + const float Yi = Y + (isovalue-val4)*dy/(val7-val4); + indices2(xi,yi,1) = vertices.width(); + CImg::vector(X,Yi,nZ).move_to(vertices); + } + if ((edge&256) && indices1(xi,yi,2)<0) { + const float Zi = Z+ (isovalue-val0)*dz/(val4-val0); + indices1(xi,yi,2) = vertices.width(); + CImg::vector(X,Y,Zi).move_to(vertices); + } + if ((edge&512) && indices1(nxi,yi,2)<0) { + const float Zi = Z + (isovalue-val1)*dz/(val5-val1); + indices1(nxi,yi,2) = vertices.width(); + CImg::vector(nX,Y,Zi).move_to(vertices); + } + if ((edge&1024) && indices1(nxi,nyi,2)<0) { + const float Zi = Z + (isovalue-val2)*dz/(val6-val2); + indices1(nxi,nyi,2) = vertices.width(); + CImg::vector(nX,nY,Zi).move_to(vertices); + } + if ((edge&2048) && indices1(xi,nyi,2)<0) { + const float Zi = Z + (isovalue-val3)*dz/(val7-val3); + indices1(xi,nyi,2) = vertices.width(); + CImg::vector(X,nY,Zi).move_to(vertices); + } + + // Create triangles + for (const int *triangle = triangles[configuration]; *triangle!=-1; ) { + const unsigned int + p0 = (unsigned int)*(triangle++), + p1 = (unsigned int)*(triangle++), + p2 = (unsigned int)*(triangle++); + const tf + i0 = (tf)(_isosurface3d_indice(p0,indices1,indices2,xi,yi,nxi,nyi)), + i1 = (tf)(_isosurface3d_indice(p1,indices1,indices2,xi,yi,nxi,nyi)), + i2 = (tf)(_isosurface3d_indice(p2,indices1,indices2,xi,yi,nxi,nyi)); + CImg::vector(i0,i2,i1).move_to(primitives); + } + } + } + } + cimg::swap(values1,values2); + cimg::swap(indices1,indices2); + } + return vertices>'x'; + } + + //! Compute isosurface of a function, as a 3d object \overloading. + template + static CImg isosurface3d(CImgList& primitives, const char *const expression, const float isovalue, + const float x0, const float y0, const float z0, + const float x1, const float y1, const float z1, + const int dx=32, const int dy=32, const int dz=32) { + const _functor3d_expr func(expression); + return isosurface3d(primitives,func,isovalue,x0,y0,z0,x1,y1,z1,dx,dy,dz); + } + + template + static int _isosurface3d_indice(const unsigned int edge, const CImg& indices1, const CImg& indices2, + const unsigned int x, const unsigned int y, + const unsigned int nx, const unsigned int ny) { + switch (edge) { + case 0 : return indices1(x,y,0); + case 1 : return indices1(nx,y,1); + case 2 : return indices1(x,ny,0); + case 3 : return indices1(x,y,1); + case 4 : return indices2(x,y,0); + case 5 : return indices2(nx,y,1); + case 6 : return indices2(x,ny,0); + case 7 : return indices2(x,y,1); + case 8 : return indices1(x,y,2); + case 9 : return indices1(nx,y,2); + case 10 : return indices1(nx,ny,2); + case 11 : return indices1(x,ny,2); + } + return 0; + } + + // Define functors for accessing image values (used in previous functions). + struct _functor2d_int { + const CImg& ref; + _functor2d_int(const CImg& pref):ref(pref) {} + float operator()(const float x, const float y) const { + return (float)ref((int)x,(int)y); + } + }; + + struct _functor2d_float { + const CImg& ref; + _functor2d_float(const CImg& pref):ref(pref) {} + float operator()(const float x, const float y) const { + return (float)ref._linear_atXY(x,y); + } + }; + + struct _functor2d_expr { + _cimg_math_parser *mp; + ~_functor2d_expr() { mp->end(); delete mp; } + _functor2d_expr(const char *const expr):mp(0) { + mp = new _cimg_math_parser(expr,0,CImg::const_empty(),0); + } + float operator()(const float x, const float y) const { + return (float)(*mp)(x,y,0,0); + } + }; + + struct _functor3d_int { + const CImg& ref; + _functor3d_int(const CImg& pref):ref(pref) {} + float operator()(const float x, const float y, const float z) const { + return (float)ref((int)x,(int)y,(int)z); + } + }; + + struct _functor3d_float { + const CImg& ref; + _functor3d_float(const CImg& pref):ref(pref) {} + float operator()(const float x, const float y, const float z) const { + return (float)ref._linear_atXYZ(x,y,z); + } + }; + + struct _functor3d_expr { + _cimg_math_parser *mp; + ~_functor3d_expr() { mp->end(); delete mp; } + _functor3d_expr(const char *const expr):mp(0) { + mp = new _cimg_math_parser(expr,0,CImg::const_empty(),0); + } + float operator()(const float x, const float y, const float z) const { + return (float)(*mp)(x,y,z,0); + } + }; + + struct _functor4d_int { + const CImg& ref; + _functor4d_int(const CImg& pref):ref(pref) {} + float operator()(const float x, const float y, const float z, const unsigned int c) const { + return (float)ref((int)x,(int)y,(int)z,c); + } + }; + + //! Generate a 3d box object. + /** + \param[out] primitives The returned list of the 3d object primitives + (template type \e tf should be at least \e unsigned \e int). + \param size_x The width of the box (dimension along the X-axis). + \param size_y The height of the box (dimension along the Y-axis). + \param size_z The depth of the box (dimension along the Z-axis). + \return The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + CImgList faces3d; + const CImg points3d = CImg::box3d(faces3d,10,20,30); + CImg().display_object3d("Box3d",points3d,faces3d); + \endcode + \image html ref_box3d.jpg + **/ + template + static CImg box3d(CImgList& primitives, + const float size_x=200, const float size_y=100, const float size_z=100) { + primitives.assign(6,1,4,1,1, 0,3,2,1, 4,5,6,7, 0,1,5,4, 3,7,6,2, 0,4,7,3, 1,2,6,5); + return CImg(8,3,1,1, + 0.,size_x,size_x, 0., 0.,size_x,size_x, 0., + 0., 0.,size_y,size_y, 0., 0.,size_y,size_y, + 0., 0., 0., 0.,size_z,size_z,size_z,size_z); + } + + //! Generate a 3d cone. + /** + \param[out] primitives The returned list of the 3d object primitives + (template type \e tf should be at least \e unsigned \e int). + \param radius The radius of the cone basis. + \param size_z The cone's height. + \param subdivisions The number of basis angular subdivisions. + \return The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + CImgList faces3d; + const CImg points3d = CImg::cone3d(faces3d,50); + CImg().display_object3d("Cone3d",points3d,faces3d); + \endcode + \image html ref_cone3d.jpg + **/ + template + static CImg cone3d(CImgList& primitives, + const float radius=50, const float size_z=100, const unsigned int subdivisions=24) { + primitives.assign(); + if (!subdivisions) return CImg(); + CImgList vertices(2,1,3,1,1, + 0.,0.,size_z, + 0.,0.,0.); + for (float delta = 360.0f/subdivisions, angle = 0; angle<360; angle+=delta) { + const float a = (float)(angle*cimg::PI/180); + CImg::vector((float)(radius*std::cos(a)),(float)(radius*std::sin(a)),0).move_to(vertices); + } + const unsigned int nbr = vertices._width - 2; + for (unsigned int p = 0; p::vector(1,next,curr).move_to(primitives); + CImg::vector(0,curr,next).move_to(primitives); + } + return vertices>'x'; + } + + //! Generate a 3d cylinder. + /** + \param[out] primitives The returned list of the 3d object primitives + (template type \e tf should be at least \e unsigned \e int). + \param radius The radius of the cylinder basis. + \param size_z The cylinder's height. + \param subdivisions The number of basis angular subdivisions. + \return The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + CImgList faces3d; + const CImg points3d = CImg::cylinder3d(faces3d,50); + CImg().display_object3d("Cylinder3d",points3d,faces3d); + \endcode + \image html ref_cylinder3d.jpg + **/ + template + static CImg cylinder3d(CImgList& primitives, + const float radius=50, const float size_z=100, const unsigned int subdivisions=24) { + primitives.assign(); + if (!subdivisions) return CImg(); + CImgList vertices(2,1,3,1,1, + 0.,0.,0., + 0.,0.,size_z); + for (float delta = 360.0f/subdivisions, angle = 0; angle<360; angle+=delta) { + const float a = (float)(angle*cimg::PI/180); + CImg::vector((float)(radius*std::cos(a)),(float)(radius*std::sin(a)),0.0f).move_to(vertices); + CImg::vector((float)(radius*std::cos(a)),(float)(radius*std::sin(a)),size_z).move_to(vertices); + } + const unsigned int nbr = (vertices._width - 2)/2; + for (unsigned int p = 0; p::vector(0,next,curr).move_to(primitives); + CImg::vector(1,curr + 1,next + 1).move_to(primitives); + CImg::vector(curr,next,next + 1,curr + 1).move_to(primitives); + } + return vertices>'x'; + } + + //! Generate a 3d torus. + /** + \param[out] primitives The returned list of the 3d object primitives + (template type \e tf should be at least \e unsigned \e int). + \param radius1 The large radius. + \param radius2 The small radius. + \param subdivisions1 The number of angular subdivisions for the large radius. + \param subdivisions2 The number of angular subdivisions for the small radius. + \return The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + CImgList faces3d; + const CImg points3d = CImg::torus3d(faces3d,20,4); + CImg().display_object3d("Torus3d",points3d,faces3d); + \endcode + \image html ref_torus3d.jpg + **/ + template + static CImg torus3d(CImgList& primitives, + const float radius1=100, const float radius2=30, + const unsigned int subdivisions1=24, const unsigned int subdivisions2=12) { + primitives.assign(); + if (!subdivisions1 || !subdivisions2) return CImg(); + CImgList vertices; + for (unsigned int v = 0; v::vector(x,y,z).move_to(vertices); + } + } + for (unsigned int vv = 0; vv::vector(svv + nu,svv + uu,snv + uu,snv + nu).move_to(primitives); + } + } + return vertices>'x'; + } + + //! Generate a 3d XY-plane. + /** + \param[out] primitives The returned list of the 3d object primitives + (template type \e tf should be at least \e unsigned \e int). + \param size_x The width of the plane (dimension along the X-axis). + \param size_y The height of the plane (dimensions along the Y-axis). + \param subdivisions_x The number of planar subdivisions along the X-axis. + \param subdivisions_y The number of planar subdivisions along the Y-axis. + \return The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + CImgList faces3d; + const CImg points3d = CImg::plane3d(faces3d,100,50); + CImg().display_object3d("Plane3d",points3d,faces3d); + \endcode + \image html ref_plane3d.jpg + **/ + template + static CImg plane3d(CImgList& primitives, + const float size_x=100, const float size_y=100, + const unsigned int subdivisions_x=10, const unsigned int subdivisions_y=10) { + primitives.assign(); + if (!subdivisions_x || !subdivisions_y) return CImg(); + CImgList vertices; + const unsigned int w = subdivisions_x + 1, h = subdivisions_y + 1; + const float fx = (float)size_x/w, fy = (float)size_y/h; + for (unsigned int y = 0; y::vector(fx*x,fy*y,0).move_to(vertices); + for (unsigned int y = 0; y::vector(off1,off4,off3,off2).move_to(primitives); + } + return vertices>'x'; + } + + //! Generate a 3d sphere. + /** + \param[out] primitives The returned list of the 3d object primitives + (template type \e tf should be at least \e unsigned \e int). + \param radius The radius of the sphere (dimension along the X-axis). + \param subdivisions The number of recursive subdivisions from an initial icosahedron. + \return The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + CImgList faces3d; + const CImg points3d = CImg::sphere3d(faces3d,100,4); + CImg().display_object3d("Sphere3d",points3d,faces3d); + \endcode + \image html ref_sphere3d.jpg + **/ + template + static CImg sphere3d(CImgList& primitives, + const float radius=50, const unsigned int subdivisions=3) { + + // Create initial icosahedron + primitives.assign(); + const double tmp = (1 + std::sqrt(5.0f))/2, a = 1.0/std::sqrt(1 + tmp*tmp), b = tmp*a; + CImgList vertices(12,1,3,1,1, b,a,0.0, -b,a,0.0, -b,-a,0.0, b,-a,0.0, a,0.0,b, a,0.0,-b, + -a,0.0,-b, -a,0.0,b, 0.0,b,a, 0.0,-b,a, 0.0,-b,-a, 0.0,b,-a); + primitives.assign(20,1,3,1,1, 4,8,7, 4,7,9, 5,6,11, 5,10,6, 0,4,3, 0,3,5, 2,7,1, 2,1,6, + 8,0,11, 8,11,1, 9,10,3, 9,2,10, 8,4,0, 11,0,5, 4,9,3, + 5,3,10, 7,8,1, 6,1,11, 7,2,9, 6,10,2); + // edge - length/2 + float he = (float)a; + + // Recurse subdivisions + for (unsigned int i = 0; i::vector(nx0,ny0,nz0).move_to(vertices); i0 = vertices.width() - 1; } + if (i1<0) { CImg::vector(nx1,ny1,nz1).move_to(vertices); i1 = vertices.width() - 1; } + if (i2<0) { CImg::vector(nx2,ny2,nz2).move_to(vertices); i2 = vertices.width() - 1; } + primitives.remove(0); + CImg::vector(p0,i0,i1).move_to(primitives); + CImg::vector((tf)i0,(tf)p1,(tf)i2).move_to(primitives); + CImg::vector((tf)i1,(tf)i2,(tf)p2).move_to(primitives); + CImg::vector((tf)i1,(tf)i0,(tf)i2).move_to(primitives); + } + } + return (vertices>'x')*=radius; + } + + //! Generate a 3d ellipsoid. + /** + \param[out] primitives The returned list of the 3d object primitives + (template type \e tf should be at least \e unsigned \e int). + \param tensor The tensor which gives the shape and size of the ellipsoid. + \param subdivisions The number of recursive subdivisions from an initial stretched icosahedron. + \return The N vertices (xi,yi,zi) of the 3d object as a Nx3 CImg image (0<=i<=N - 1). + \par Example + \code + CImgList faces3d; + const CImg tensor = CImg::diagonal(10,7,3), + points3d = CImg::ellipsoid3d(faces3d,tensor,4); + CImg().display_object3d("Ellipsoid3d",points3d,faces3d); + \endcode + \image html ref_ellipsoid3d.jpg + **/ + template + static CImg ellipsoid3d(CImgList& primitives, + const CImg& tensor, const unsigned int subdivisions=3) { + primitives.assign(); + if (!subdivisions) return CImg(); + CImg S, V; + tensor.symmetric_eigen(S,V); + const float orient = + (V(0,1)*V(1,2) - V(0,2)*V(1,1))*V(2,0) + + (V(0,2)*V(1,0) - V(0,0)*V(1,2))*V(2,1) + + (V(0,0)*V(1,1) - V(0,1)*V(1,0))*V(2,2); + if (orient<0) { V(2,0) = -V(2,0); V(2,1) = -V(2,1); V(2,2) = -V(2,2); } + const float l0 = S[0], l1 = S[1], l2 = S[2]; + CImg vertices = sphere3d(primitives,1.0,subdivisions); + vertices.get_shared_row(0)*=l0; + vertices.get_shared_row(1)*=l1; + vertices.get_shared_row(2)*=l2; + return V*vertices; + } + + //! Convert 3d object into a CImg3d representation. + /** + \param primitives Primitives data of the 3d object. + \param colors Colors data of the 3d object. + \param opacities Opacities data of the 3d object. + \param full_check Tells if full checking of the 3d object must be performed. + **/ + template + CImg& object3dtoCImg3d(const CImgList& primitives, + const CImgList& colors, + const to& opacities, + const bool full_check=true) { + return get_object3dtoCImg3d(primitives,colors,opacities,full_check).move_to(*this); + } + + //! Convert 3d object into a CImg3d representation \overloading. + template + CImg& object3dtoCImg3d(const CImgList& primitives, + const CImgList& colors, + const bool full_check=true) { + return get_object3dtoCImg3d(primitives,colors,full_check).move_to(*this); + } + + //! Convert 3d object into a CImg3d representation \overloading. + template + CImg& object3dtoCImg3d(const CImgList& primitives, + const bool full_check=true) { + return get_object3dtoCImg3d(primitives,full_check).move_to(*this); + } + + //! Convert 3d object into a CImg3d representation \overloading. + CImg& object3dtoCImg3d(const bool full_check=true) { + return get_object3dtoCImg3d(full_check).move_to(*this); + } + + //! Convert 3d object into a CImg3d representation \newinstance. + template + CImg get_object3dtoCImg3d(const CImgList& primitives, + const CImgList& colors, + const to& opacities, + const bool full_check=true) const { + CImg error_message(1024); + if (!is_object3d(primitives,colors,opacities,full_check,error_message)) + throw CImgInstanceException(_cimg_instance + "object3dtoCImg3d(): Invalid specified 3d object (%u,%u) (%s).", + cimg_instance,_width,primitives._width,error_message.data()); + CImg res(1,_size_object3dtoCImg3d(primitives,colors,opacities)); + float *ptrd = res._data; + + // Put magick number. + *(ptrd++) = 'C' + 0.5f; *(ptrd++) = 'I' + 0.5f; *(ptrd++) = 'm' + 0.5f; + *(ptrd++) = 'g' + 0.5f; *(ptrd++) = '3' + 0.5f; *(ptrd++) = 'd' + 0.5f; + + // Put number of vertices and primitives. + *(ptrd++) = cimg::uint2float(_width); + *(ptrd++) = cimg::uint2float(primitives._width); + + // Put vertex data. + if (is_empty() || !primitives) return res; + const T *ptrx = data(0,0), *ptry = data(0,1), *ptrz = data(0,2); + cimg_forX(*this,p) { + *(ptrd++) = (float)*(ptrx++); + *(ptrd++) = (float)*(ptry++); + *(ptrd++) = (float)*(ptrz++); + } + + // Put primitive data. + cimglist_for(primitives,p) { + *(ptrd++) = (float)primitives[p].size(); + const tp *ptrp = primitives[p]._data; + cimg_foroff(primitives[p],i) *(ptrd++) = cimg::uint2float((unsigned int)*(ptrp++)); + } + + // Put color/texture data. + const unsigned int csiz = std::min(colors._width,primitives._width); + for (int c = 0; c<(int)csiz; ++c) { + const CImg& color = colors[c]; + const tc *ptrc = color._data; + if (color.size()==3) { *(ptrd++) = (float)*(ptrc++); *(ptrd++) = (float)*(ptrc++); *(ptrd++) = (float)*ptrc; } + else { + *(ptrd++) = -128.0f; + int shared_ind = -1; + if (color.is_shared()) for (int i = 0; i + float* _object3dtoCImg3d(const CImgList& opacities, float *ptrd) const { + cimglist_for(opacities,o) { + const CImg& opacity = opacities[o]; + const to *ptro = opacity._data; + if (opacity.size()==1) *(ptrd++) = (float)*ptro; + else { + *(ptrd++) = -128.0f; + int shared_ind = -1; + if (opacity.is_shared()) for (int i = 0; i + float* _object3dtoCImg3d(const CImg& opacities, float *ptrd) const { + const to *ptro = opacities._data; + cimg_foroff(opacities,o) *(ptrd++) = (float)*(ptro++); + return ptrd; + } + + template + unsigned int _size_object3dtoCImg3d(const CImgList& primitives, + const CImgList& colors, + const CImgList& opacities) const { + unsigned int siz = 8U + 3*_width; + cimglist_for(primitives,p) siz+=primitives[p].size() + 1; + for (int c = std::min(primitives.width(),colors.width()) - 1; c>=0; --c) { + if (colors[c].is_shared()) siz+=4; + else { const unsigned int csiz = colors[c].size(); siz+=(csiz!=3)?4 + csiz:3; } + } + if (colors._width + unsigned int _size_object3dtoCImg3d(const CImgList& primitives, + const CImgList& colors, + const CImg& opacities) const { + unsigned int siz = 8U + 3*_width; + cimglist_for(primitives,p) siz+=primitives[p].size() + 1; + for (int c = std::min(primitives.width(),colors.width()) - 1; c>=0; --c) { + const unsigned int csiz = colors[c].size(); siz+=(csiz!=3)?4 + csiz:3; + } + if (colors._width + CImg get_object3dtoCImg3d(const CImgList& primitives, + const CImgList& colors, + const bool full_check=true) const { + CImgList opacities; + return get_object3dtoCImg3d(primitives,colors,opacities,full_check); + } + + //! Convert 3d object into a CImg3d representation \overloading. + template + CImg get_object3dtoCImg3d(const CImgList& primitives, + const bool full_check=true) const { + CImgList colors, opacities; + return get_object3dtoCImg3d(primitives,colors,opacities,full_check); + } + + //! Convert 3d object into a CImg3d representation \overloading. + CImg get_object3dtoCImg3d(const bool full_check=true) const { + CImgList opacities, colors; + CImgList primitives(width(),1,1,1,1); + cimglist_for(primitives,p) primitives(p,0) = p; + return get_object3dtoCImg3d(primitives,colors,opacities,full_check); + } + + //! Convert CImg3d representation into a 3d object. + /** + \param[out] primitives Primitives data of the 3d object. + \param[out] colors Colors data of the 3d object. + \param[out] opacities Opacities data of the 3d object. + \param full_check Tells if full checking of the 3d object must be performed. + **/ + template + CImg& CImg3dtoobject3d(CImgList& primitives, + CImgList& colors, + CImgList& opacities, + const bool full_check=true) { + return get_CImg3dtoobject3d(primitives,colors,opacities,full_check).move_to(*this); + } + + //! Convert CImg3d representation into a 3d object \newinstance. + template + CImg get_CImg3dtoobject3d(CImgList& primitives, + CImgList& colors, + CImgList& opacities, + const bool full_check=true) const { + CImg error_message(1024); + if (!is_CImg3d(full_check,error_message)) + throw CImgInstanceException(_cimg_instance + "CImg3dtoobject3d(): image instance is not a CImg3d (%s).", + cimg_instance,error_message.data()); + const T *ptrs = _data + 6; + const unsigned int + nb_points = cimg::float2uint((float)*(ptrs++)), + nb_primitives = cimg::float2uint((float)*(ptrs++)); + const CImg points = CImg(ptrs,3,nb_points,1,1,true).get_transpose(); + ptrs+=3*nb_points; + primitives.assign(nb_primitives); + cimglist_for(primitives,p) { + const unsigned int nb_inds = (unsigned int)*(ptrs++); + primitives[p].assign(1,nb_inds); + tp *ptrp = primitives[p]._data; + for (unsigned int i = 0; i + CImg& _draw_scanline(const int x0, const int x1, const int y, + const tc *const color, const float opacity, + const float brightness, + const float nopacity, const float copacity, const ulongT whd) { + static const T maxval = (T)std::min(cimg::type::max(),(T)cimg::type::max()); + const int nx0 = x0>0?x0:0, nx1 = x1=0) { + const tc *col = color; + const ulongT off = whd - dx - 1; + T *ptrd = data(nx0,y); + if (opacity>=1) { // ** Opaque drawing ** + if (brightness==1) { // Brightness==1 + if (sizeof(T)!=1) cimg_forC(*this,c) { + const T val = (T)*(col++); + for (int x = dx; x>=0; --x) *(ptrd++) = val; + ptrd+=off; + } else cimg_forC(*this,c) { + const T val = (T)*(col++); + std::memset(ptrd,(int)val,dx + 1); + ptrd+=whd; + } + } else if (brightness<1) { // Brightness<1 + if (sizeof(T)!=1) cimg_forC(*this,c) { + const T val = (T)(*(col++)*brightness); + for (int x = dx; x>=0; --x) *(ptrd++) = val; + ptrd+=off; + } else cimg_forC(*this,c) { + const T val = (T)(*(col++)*brightness); + std::memset(ptrd,(int)val,dx + 1); + ptrd+=whd; + } + } else { // Brightness>1 + if (sizeof(T)!=1) cimg_forC(*this,c) { + const T val = (T)((2-brightness)**(col++) + (brightness - 1)*maxval); + for (int x = dx; x>=0; --x) *(ptrd++) = val; + ptrd+=off; + } else cimg_forC(*this,c) { + const T val = (T)((2-brightness)**(col++) + (brightness - 1)*maxval); + std::memset(ptrd,(int)val,dx + 1); + ptrd+=whd; + } + } + } else { // ** Transparent drawing ** + if (brightness==1) { // Brightness==1 + cimg_forC(*this,c) { + const Tfloat val = *(col++)*nopacity; + for (int x = dx; x>=0; --x) { *ptrd = (T)(val + *ptrd*copacity); ++ptrd; } + ptrd+=off; + } + } else if (brightness<=1) { // Brightness<1 + cimg_forC(*this,c) { + const Tfloat val = *(col++)*brightness*nopacity; + for (int x = dx; x>=0; --x) { *ptrd = (T)(val + *ptrd*copacity); ++ptrd; } + ptrd+=off; + } + } else { // Brightness>1 + cimg_forC(*this,c) { + const Tfloat val = ((2-brightness)**(col++) + (brightness - 1)*maxval)*nopacity; + for (int x = dx; x>=0; --x) { *ptrd = (T)(val + *ptrd*copacity); ++ptrd; } + ptrd+=off; + } + } + } + } + return *this; + } + + //! Draw a 3d point. + /** + \param x0 X-coordinate of the point. + \param y0 Y-coordinate of the point. + \param z0 Z-coordinate of the point. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + \note + - To set pixel values without clipping needs, you should use the faster CImg::operator()() function. + \par Example: + \code + CImg img(100,100,1,3,0); + const unsigned char color[] = { 255,128,64 }; + img.draw_point(50,50,color); + \endcode + **/ + template + CImg& draw_point(const int x0, const int y0, const int z0, + const tc *const color, const float opacity=1) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_point(): Specified color is (null).", + cimg_instance); + if (x0>=0 && y0>=0 && z0>=0 && x0=1) cimg_forC(*this,c) { *ptrd = (T)*(col++); ptrd+=whd; } + else cimg_forC(*this,c) { *ptrd = (T)(*(col++)*nopacity + *ptrd*copacity); ptrd+=whd; } + } + return *this; + } + + //! Draw a 2d point \simplification. + template + CImg& draw_point(const int x0, const int y0, + const tc *const color, const float opacity=1) { + return draw_point(x0,y0,0,color,opacity); + } + + // Draw a points cloud. + /** + \param points Image of vertices coordinates. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + **/ + template + CImg& draw_point(const CImg& points, + const tc *const color, const float opacity=1) { + if (is_empty() || !points) return *this; + switch (points._height) { + case 0 : case 1 : + throw CImgArgumentException(_cimg_instance + "draw_point(): Invalid specified point set (%u,%u,%u,%u,%p).", + cimg_instance, + points._width,points._height,points._depth,points._spectrum,points._data); + case 2 : { + cimg_forX(points,i) draw_point((int)points(i,0),(int)points(i,1),color,opacity); + } break; + default : { + cimg_forX(points,i) draw_point((int)points(i,0),(int)points(i,1),(int)points(i,2),color,opacity); + } + } + return *this; + } + + //! Draw a 2d line. + /** + \param x0 X-coordinate of the starting line point. + \param y0 Y-coordinate of the starting line point. + \param x1 X-coordinate of the ending line point. + \param y1 Y-coordinate of the ending line point. + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch Tells if a reinitialization of the hash state must be done. + \note + - Line routine uses Bresenham's algorithm. + - Set \p init_hatch = false to draw consecutive hatched segments without breaking the line pattern. + \par Example: + \code + CImg img(100,100,1,3,0); + const unsigned char color[] = { 255,128,64 }; + img.draw_line(40,40,80,70,color); + \endcode + **/ + template + CImg& draw_line(const int x0, const int y0, + const int x1, const int y1, + const tc *const color, const float opacity=1, + const unsigned int pattern=~0U, const bool init_hatch=true) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_line(): Specified color is (null).", + cimg_instance); + static unsigned int hatch = ~0U - (~0U>>1); + if (init_hatch) hatch = ~0U - (~0U>>1); + const bool xdir = x0=width()) return *this; + if (xleft<0) { yleft-=(int)((float)xleft*((float)yright - yleft)/((float)xright - xleft)); xleft = 0; } + if (xright>=width()) { + yright-=(int)(((float)xright - width())*((float)yright - yleft)/((float)xright - xleft)); + xright = width() - 1; + } + if (ydown<0 || yup>=height()) return *this; + if (yup<0) { xup-=(int)((float)yup*((float)xdown - xup)/((float)ydown - yup)); yup = 0; } + if (ydown>=height()) { + xdown-=(int)(((float)ydown - height())*((float)xdown - xup)/((float)ydown - yup)); + ydown = height() - 1; + } + T *ptrd0 = data(nx0,ny0); + int dx = xright - xleft, dy = ydown - yup; + const bool steep = dy>dx; + if (steep) cimg::swap(nx0,ny0,nx1,ny1,dx,dy); + const longT + offx = (longT)(nx0=1) { + if (~pattern) for (int error = dx>>1, x = 0; x<=dx; ++x) { + if (pattern&hatch) { + T *ptrd = ptrd0; const tc* col = color; + cimg_forC(*this,c) { *ptrd = (T)*(col++); ptrd+=wh; } + } + hatch>>=1; if (!hatch) hatch = ~0U - (~0U>>1); + ptrd0+=offx; + if ((error-=dy)<0) { ptrd0+=offy; error+=dx; } + } else for (int error = dx>>1, x = 0; x<=dx; ++x) { + T *ptrd = ptrd0; const tc* col = color; cimg_forC(*this,c) { *ptrd = (T)*(col++); ptrd+=wh; } + ptrd0+=offx; + if ((error-=dy)<0) { ptrd0+=offy; error+=dx; } + } + } else { + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + if (~pattern) for (int error = dx>>1, x = 0; x<=dx; ++x) { + if (pattern&hatch) { + T *ptrd = ptrd0; const tc* col = color; + cimg_forC(*this,c) { *ptrd = (T)(nopacity**(col++) + *ptrd*copacity); ptrd+=wh; } + } + hatch>>=1; if (!hatch) hatch = ~0U - (~0U>>1); + ptrd0+=offx; + if ((error-=dy)<0) { ptrd0+=offy; error+=dx; } + } else for (int error = dx>>1, x = 0; x<=dx; ++x) { + T *ptrd = ptrd0; const tc* col = color; + cimg_forC(*this,c) { *ptrd = (T)(nopacity**(col++) + *ptrd*copacity); ptrd+=wh; } + ptrd0+=offx; + if ((error-=dy)<0) { ptrd0+=offy; error+=dx; } + } + } + return *this; + } + + //! Draw a 2d line, with z-buffering. + /** + \param zbuffer Zbuffer image. + \param x0 X-coordinate of the starting point. + \param y0 Y-coordinate of the starting point. + \param z0 Z-coordinate of the starting point + \param x1 X-coordinate of the ending point. + \param y1 Y-coordinate of the ending point. + \param z1 Z-coordinate of the ending point. + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch Tells if a reinitialization of the hash state must be done. + **/ + template + CImg& draw_line(CImg& zbuffer, + const int x0, const int y0, const float z0, + const int x1, const int y1, const float z1, + const tc *const color, const float opacity=1, + const unsigned int pattern=~0U, const bool init_hatch=true) { + typedef typename cimg::superset::type tzfloat; + if (is_empty() || z0<=0 || z1<=0) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_line(): Specified color is (null).", + cimg_instance); + if (!is_sameXY(zbuffer)) + throw CImgArgumentException(_cimg_instance + "draw_line(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data); + static unsigned int hatch = ~0U - (~0U>>1); + if (init_hatch) hatch = ~0U - (~0U>>1); + const bool xdir = x0=width()) return *this; + if (xleft<0) { + const float D = (float)xright - xleft; + yleft-=(int)((float)xleft*((float)yright - yleft)/D); + zleft-=(tzfloat)xleft*(zright - zleft)/D; + xleft = 0; + } + if (xright>=width()) { + const float d = (float)xright - width(), D = (float)xright - xleft; + yright-=(int)(d*((float)yright - yleft)/D); + zright-=(tzfloat)d*(zright - zleft)/D; + xright = width() - 1; + } + if (ydown<0 || yup>=height()) return *this; + if (yup<0) { + const float D = (float)ydown - yup; + xup-=(int)((float)yup*((float)xdown - xup)/D); + zup-=(tzfloat)yup*(zdown - zup)/D; + yup = 0; + } + if (ydown>=height()) { + const float d = (float)ydown - height(), D = (float)ydown - yup; + xdown-=(int)(d*((float)xdown - xup)/D); + zdown-=(tzfloat)d*(zdown - zup)/D; + ydown = height() - 1; + } + T *ptrd0 = data(nx0,ny0); + tz *ptrz = zbuffer.data(nx0,ny0); + int dx = xright - xleft, dy = ydown - yup; + const bool steep = dy>dx; + if (steep) cimg::swap(nx0,ny0,nx1,ny1,dx,dy); + const longT + offx = (longT)(nx00?dx:1); + if (opacity>=1) { + if (~pattern) for (int error = dx>>1, x = 0; x<=dx; ++x) { + const tzfloat z = Z0 + x*dz/ndx; + if (z>=(tzfloat)*ptrz && pattern&hatch) { + *ptrz = (tz)z; + T *ptrd = ptrd0; const tc *col = color; + cimg_forC(*this,c) { *ptrd = (T)*(col++); ptrd+=wh; } + } + hatch>>=1; if (!hatch) hatch = ~0U - (~0U>>1); + ptrd0+=offx; ptrz+=offx; + if ((error-=dy)<0) { ptrd0+=offy; ptrz+=offy; error+=dx; } + } else for (int error = dx>>1, x = 0; x<=dx; ++x) { + const tzfloat z = Z0 + x*dz/ndx; + if (z>=(tzfloat)*ptrz) { + *ptrz = (tz)z; + T *ptrd = ptrd0; const tc *col = color; + cimg_forC(*this,c) { *ptrd = (T)*(col++); ptrd+=wh; } + } + ptrd0+=offx; ptrz+=offx; + if ((error-=dy)<0) { ptrd0+=offy; ptrz+=offy; error+=dx; } + } + } else { + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + if (~pattern) for (int error = dx>>1, x = 0; x<=dx; ++x) { + const tzfloat z = Z0 + x*dz/ndx; + if (z>=(tzfloat)*ptrz && pattern&hatch) { + *ptrz = (tz)z; + T *ptrd = ptrd0; const tc *col = color; + cimg_forC(*this,c) { *ptrd = (T)(nopacity**(col++) + *ptrd*copacity); ptrd+=wh; } + } + hatch>>=1; if (!hatch) hatch = ~0U - (~0U>>1); + ptrd0+=offx; ptrz+=offx; + if ((error-=dy)<0) { ptrd0+=offy; ptrz+=offy; error+=dx; } + } else for (int error = dx>>1, x = 0; x<=dx; ++x) { + const tzfloat z = Z0 + x*dz/ndx; + if (z>=(tzfloat)*ptrz) { + *ptrz = (tz)z; + T *ptrd = ptrd0; const tc *col = color; + cimg_forC(*this,c) { *ptrd = (T)(nopacity**(col++) + *ptrd*copacity); ptrd+=wh; } + } + ptrd0+=offx; ptrz+=offx; + if ((error-=dy)<0) { ptrd0+=offy; ptrz+=offy; error+=dx; } + } + } + return *this; + } + + //! Draw a 3d line. + /** + \param x0 X-coordinate of the starting point. + \param y0 Y-coordinate of the starting point. + \param z0 Z-coordinate of the starting point + \param x1 X-coordinate of the ending point. + \param y1 Y-coordinate of the ending point. + \param z1 Z-coordinate of the ending point. + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch Tells if a reinitialization of the hash state must be done. + **/ + template + CImg& draw_line(const int x0, const int y0, const int z0, + const int x1, const int y1, const int z1, + const tc *const color, const float opacity=1, + const unsigned int pattern=~0U, const bool init_hatch=true) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_line(): Specified color is (null).", + cimg_instance); + static unsigned int hatch = ~0U - (~0U>>1); + if (init_hatch) hatch = ~0U - (~0U>>1); + int nx0 = x0, ny0 = y0, nz0 = z0, nx1 = x1, ny1 = y1, nz1 = z1; + if (nx0>nx1) cimg::swap(nx0,nx1,ny0,ny1,nz0,nz1); + if (nx1<0 || nx0>=width()) return *this; + if (nx0<0) { + const float D = 1.0f + nx1 - nx0; + ny0-=(int)((float)nx0*(1.0f + ny1 - ny0)/D); + nz0-=(int)((float)nx0*(1.0f + nz1 - nz0)/D); + nx0 = 0; + } + if (nx1>=width()) { + const float d = (float)nx1 - width(), D = 1.0f + nx1 - nx0; + ny1+=(int)(d*(1.0f + ny0 - ny1)/D); + nz1+=(int)(d*(1.0f + nz0 - nz1)/D); + nx1 = width() - 1; + } + if (ny0>ny1) cimg::swap(nx0,nx1,ny0,ny1,nz0,nz1); + if (ny1<0 || ny0>=height()) return *this; + if (ny0<0) { + const float D = 1.0f + ny1 - ny0; + nx0-=(int)((float)ny0*(1.0f + nx1 - nx0)/D); + nz0-=(int)((float)ny0*(1.0f + nz1 - nz0)/D); + ny0 = 0; + } + if (ny1>=height()) { + const float d = (float)ny1 - height(), D = 1.0f + ny1 - ny0; + nx1+=(int)(d*(1.0f + nx0 - nx1)/D); + nz1+=(int)(d*(1.0f + nz0 - nz1)/D); + ny1 = height() - 1; + } + if (nz0>nz1) cimg::swap(nx0,nx1,ny0,ny1,nz0,nz1); + if (nz1<0 || nz0>=depth()) return *this; + if (nz0<0) { + const float D = 1.0f + nz1 - nz0; + nx0-=(int)((float)nz0*(1.0f + nx1 - nx0)/D); + ny0-=(int)((float)nz0*(1.0f + ny1 - ny0)/D); + nz0 = 0; + } + if (nz1>=depth()) { + const float d = (float)nz1 - depth(), D = 1.0f + nz1 - nz0; + nx1+=(int)(d*(1.0f + nx0 - nx1)/D); + ny1+=(int)(d*(1.0f + ny0 - ny1)/D); + nz1 = depth() - 1; + } + const unsigned int dmax = (unsigned int)cimg::max(cimg::abs(nx1 - nx0),cimg::abs(ny1 - ny0),nz1 - nz0); + const ulongT whd = (ulongT)_width*_height*_depth; + const float px = (nx1 - nx0)/(float)dmax, py = (ny1 - ny0)/(float)dmax, pz = (nz1 - nz0)/(float)dmax; + float x = (float)nx0, y = (float)ny0, z = (float)nz0; + if (opacity>=1) for (unsigned int t = 0; t<=dmax; ++t) { + if (!(~pattern) || (~pattern && pattern&hatch)) { + T* ptrd = data((unsigned int)x,(unsigned int)y,(unsigned int)z); + const tc *col = color; cimg_forC(*this,c) { *ptrd = (T)*(col++); ptrd+=whd; } + } + x+=px; y+=py; z+=pz; if (pattern) { hatch>>=1; if (!hatch) hatch = ~0U - (~0U>>1); } + } else { + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + for (unsigned int t = 0; t<=dmax; ++t) { + if (!(~pattern) || (~pattern && pattern&hatch)) { + T* ptrd = data((unsigned int)x,(unsigned int)y,(unsigned int)z); + const tc *col = color; cimg_forC(*this,c) { *ptrd = (T)(*(col++)*nopacity + *ptrd*copacity); ptrd+=whd; } + } + x+=px; y+=py; z+=pz; if (pattern) { hatch>>=1; if (!hatch) hatch = ~0U - (~0U>>1); } + } + } + return *this; + } + + //! Draw a textured 2d line. + /** + \param x0 X-coordinate of the starting line point. + \param y0 Y-coordinate of the starting line point. + \param x1 X-coordinate of the ending line point. + \param y1 Y-coordinate of the ending line point. + \param texture Texture image defining the pixel colors. + \param tx0 X-coordinate of the starting texture point. + \param ty0 Y-coordinate of the starting texture point. + \param tx1 X-coordinate of the ending texture point. + \param ty1 Y-coordinate of the ending texture point. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch Tells if the hash variable must be reinitialized. + \note + - Line routine uses the well known Bresenham's algorithm. + \par Example: + \code + CImg img(100,100,1,3,0), texture("texture256x256.ppm"); + const unsigned char color[] = { 255,128,64 }; + img.draw_line(40,40,80,70,texture,0,0,255,255); + \endcode + **/ + template + CImg& draw_line(const int x0, const int y0, + const int x1, const int y1, + const CImg& texture, + const int tx0, const int ty0, + const int tx1, const int ty1, + const float opacity=1, + const unsigned int pattern=~0U, const bool init_hatch=true) { + if (is_empty()) return *this; + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_line(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) return draw_line(x0,y0,x1,y1,+texture,tx0,ty0,tx1,ty1,opacity,pattern,init_hatch); + static unsigned int hatch = ~0U - (~0U>>1); + if (init_hatch) hatch = ~0U - (~0U>>1); + const bool xdir = x0=width()) return *this; + if (xleft<0) { + const float D = (float)xright - xleft; + yleft-=(int)((float)xleft*((float)yright - yleft)/D); + txleft-=(int)((float)xleft*((float)txright - txleft)/D); + tyleft-=(int)((float)xleft*((float)tyright - tyleft)/D); + xleft = 0; + } + if (xright>=width()) { + const float d = (float)xright - width(), D = (float)xright - xleft; + yright-=(int)(d*((float)yright - yleft)/D); + txright-=(int)(d*((float)txright - txleft)/D); + tyright-=(int)(d*((float)tyright - tyleft)/D); + xright = width() - 1; + } + if (ydown<0 || yup>=height()) return *this; + if (yup<0) { + const float D = (float)ydown - yup; + xup-=(int)((float)yup*((float)xdown - xup)/D); + txup-=(int)((float)yup*((float)txdown - txup)/D); + tyup-=(int)((float)yup*((float)tydown - tyup)/D); + yup = 0; + } + if (ydown>=height()) { + const float d = (float)ydown - height(), D = (float)ydown - yup; + xdown-=(int)(d*((float)xdown - xup)/D); + txdown-=(int)(d*((float)txdown - txup)/D); + tydown-=(int)(d*((float)tydown - tyup)/D); + ydown = height() - 1; + } + T *ptrd0 = data(nx0,ny0); + int dx = xright - xleft, dy = ydown - yup; + const bool steep = dy>dx; + if (steep) cimg::swap(nx0,ny0,nx1,ny1,dx,dy); + const longT + offx = (longT)(nx00?dx:1); + const ulongT + whd = (ulongT)_width*_height*_depth, + twh = (ulongT)texture._width*texture._height; + + if (opacity>=1) { + if (~pattern) for (int error = dx>>1, x = 0; x<=dx; ++x) { + if (pattern&hatch) { + T *ptrd = ptrd0; + const int tx = tx0 + x*dtx/ndx, ty = ty0 + x*dty/ndx; + const tc *col = &texture._atXY(tx,ty); + cimg_forC(*this,c) { *ptrd = (T)*col; ptrd+=whd; col+=twh; } + } + hatch>>=1; if (!hatch) hatch = ~0U - (~0U>>1); + ptrd0+=offx; + if ((error-=dy)<0) { ptrd0+=offy; error+=dx; } + } else for (int error = dx>>1, x = 0; x<=dx; ++x) { + T *ptrd = ptrd0; + const int tx = tx0 + x*dtx/ndx, ty = ty0 + x*dty/ndx; + const tc *col = &texture._atXY(tx,ty); + cimg_forC(*this,c) { *ptrd = (T)*col; ptrd+=whd; col+=twh; } + ptrd0+=offx; + if ((error-=dy)<0) { ptrd0+=offy; error+=dx; } + } + } else { + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + if (~pattern) for (int error = dx>>1, x = 0; x<=dx; ++x) { + T *ptrd = ptrd0; + if (pattern&hatch) { + const int tx = tx0 + x*dtx/ndx, ty = ty0 + x*dty/ndx; + const tc *col = &texture._atXY(tx,ty); + cimg_forC(*this,c) { *ptrd = (T)(nopacity**col + *ptrd*copacity); ptrd+=whd; col+=twh; } + } + hatch>>=1; if (!hatch) hatch = ~0U - (~0U>>1); + ptrd0+=offx; + if ((error-=dy)<0) { ptrd0+=offy; error+=dx; } + } else for (int error = dx>>1, x = 0; x<=dx; ++x) { + T *ptrd = ptrd0; + const int tx = tx0 + x*dtx/ndx, ty = ty0 + x*dty/ndx; + const tc *col = &texture._atXY(tx,ty); + cimg_forC(*this,c) { *ptrd = (T)(nopacity**col + *ptrd*copacity); ptrd+=whd; col+=twh; } + ptrd0+=offx; + if ((error-=dy)<0) { ptrd0+=offy; error+=dx; } + } + } + return *this; + } + + //! Draw a textured 2d line, with perspective correction. + /** + \param x0 X-coordinate of the starting point. + \param y0 Y-coordinate of the starting point. + \param z0 Z-coordinate of the starting point + \param x1 X-coordinate of the ending point. + \param y1 Y-coordinate of the ending point. + \param z1 Z-coordinate of the ending point. + \param texture Texture image defining the pixel colors. + \param tx0 X-coordinate of the starting texture point. + \param ty0 Y-coordinate of the starting texture point. + \param tx1 X-coordinate of the ending texture point. + \param ty1 Y-coordinate of the ending texture point. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch Tells if the hash variable must be reinitialized. + **/ + template + CImg& draw_line(const int x0, const int y0, const float z0, + const int x1, const int y1, const float z1, + const CImg& texture, + const int tx0, const int ty0, + const int tx1, const int ty1, + const float opacity=1, + const unsigned int pattern=~0U, const bool init_hatch=true) { + if (is_empty() && z0<=0 && z1<=0) return *this; + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_line(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) + return draw_line(x0,y0,z0,x1,y1,z1,+texture,tx0,ty0,tx1,ty1,opacity,pattern,init_hatch); + static unsigned int hatch = ~0U - (~0U>>1); + if (init_hatch) hatch = ~0U - (~0U>>1); + const bool xdir = x0=width()) return *this; + if (xleft<0) { + const float D = (float)xright - xleft; + yleft-=(int)((float)xleft*((float)yright - yleft)/D); + zleft-=(float)xleft*(zright - zleft)/D; + txleft-=(float)xleft*(txright - txleft)/D; + tyleft-=(float)xleft*(tyright - tyleft)/D; + xleft = 0; + } + if (xright>=width()) { + const float d = (float)xright - width(), D = (float)xright - xleft; + yright-=(int)(d*((float)yright - yleft)/D); + zright-=d*(zright - zleft)/D; + txright-=d*(txright - txleft)/D; + tyright-=d*(tyright - tyleft)/D; + xright = width() - 1; + } + if (ydown<0 || yup>=height()) return *this; + if (yup<0) { + const float D = (float)ydown - yup; + xup-=(int)((float)yup*((float)xdown - xup)/D); + zup-=(float)yup*(zdown - zup)/D; + txup-=(float)yup*(txdown - txup)/D; + tyup-=(float)yup*(tydown - tyup)/D; + yup = 0; + } + if (ydown>=height()) { + const float d = (float)ydown - height(), D = (float)ydown - yup; + xdown-=(int)(d*((float)xdown - xup)/D); + zdown-=d*(zdown - zup)/D; + txdown-=d*(txdown - txup)/D; + tydown-=d*(tydown - tyup)/D; + ydown = height() - 1; + } + T *ptrd0 = data(nx0,ny0); + int dx = xright - xleft, dy = ydown - yup; + const bool steep = dy>dx; + if (steep) cimg::swap(nx0,ny0,nx1,ny1,dx,dy); + const longT + offx = (longT)(nx00?dx:1); + const ulongT + whd = (ulongT)_width*_height*_depth, + twh = (ulongT)texture._width*texture._height; + + if (opacity>=1) { + if (~pattern) for (int error = dx>>1, x = 0; x<=dx; ++x) { + if (pattern&hatch) { + const float z = Z0 + x*dz/ndx, tx = Tx0 + x*dtx/ndx, ty = Ty0 + x*dty/ndx; + const tc *col = &texture._atXY((int)(tx/z),(int)(ty/z)); + T *ptrd = ptrd0; + cimg_forC(*this,c) { *ptrd = (T)*col; ptrd+=whd; col+=twh; } + } + hatch>>=1; if (!hatch) hatch = ~0U - (~0U>>1); + ptrd0+=offx; + if ((error-=dy)<0) { ptrd0+=offy; error+=dx; } + } else for (int error = dx>>1, x = 0; x<=dx; ++x) { + const float z = Z0 + x*dz/ndx, tx = Tx0 + x*dtx/ndx, ty = Ty0 + x*dty/ndx; + const tc *col = &texture._atXY((int)(tx/z),(int)(ty/z)); + T *ptrd = ptrd0; + cimg_forC(*this,c) { *ptrd = (T)*col; ptrd+=whd; col+=twh; } + ptrd0+=offx; + if ((error-=dy)<0) { ptrd0+=offy; error+=dx; } + } + } else { + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + if (~pattern) for (int error = dx>>1, x = 0; x<=dx; ++x) { + if (pattern&hatch) { + const float z = Z0 + x*dz/ndx, tx = Tx0 + x*dtx/ndx, ty = Ty0 + x*dty/ndx; + const tc *col = &texture._atXY((int)(tx/z),(int)(ty/z)); + T *ptrd = ptrd0; + cimg_forC(*this,c) { *ptrd = (T)(nopacity**col + *ptrd*copacity); ptrd+=whd; col+=twh; } + } + hatch>>=1; if (!hatch) hatch = ~0U - (~0U>>1); + ptrd0+=offx; + if ((error-=dy)<0) { ptrd0+=offy; error+=dx; } + } else for (int error = dx>>1, x = 0; x<=dx; ++x) { + const float z = Z0 + x*dz/ndx, tx = Tx0 + x*dtx/ndx, ty = Ty0 + x*dty/ndx; + const tc *col = &texture._atXY((int)(tx/z),(int)(ty/z)); + T *ptrd = ptrd0; + cimg_forC(*this,c) { *ptrd = (T)(nopacity**col + *ptrd*copacity); ptrd+=whd; col+=twh; } + ptrd0+=offx; + if ((error-=dy)<0) { ptrd0+=offy; error+=dx; } + } + } + return *this; + } + + //! Draw a textured 2d line, with perspective correction and z-buffering. + /** + \param zbuffer Z-buffer image. + \param x0 X-coordinate of the starting point. + \param y0 Y-coordinate of the starting point. + \param z0 Z-coordinate of the starting point + \param x1 X-coordinate of the ending point. + \param y1 Y-coordinate of the ending point. + \param z1 Z-coordinate of the ending point. + \param texture Texture image defining the pixel colors. + \param tx0 X-coordinate of the starting texture point. + \param ty0 Y-coordinate of the starting texture point. + \param tx1 X-coordinate of the ending texture point. + \param ty1 Y-coordinate of the ending texture point. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch Tells if the hash variable must be reinitialized. + **/ + template + CImg& draw_line(CImg& zbuffer, + const int x0, const int y0, const float z0, + const int x1, const int y1, const float z1, + const CImg& texture, + const int tx0, const int ty0, + const int tx1, const int ty1, + const float opacity=1, + const unsigned int pattern=~0U, const bool init_hatch=true) { + typedef typename cimg::superset::type tzfloat; + if (is_empty() || z0<=0 || z1<=0) return *this; + if (!is_sameXY(zbuffer)) + throw CImgArgumentException(_cimg_instance + "draw_line(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data); + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_line(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) + return draw_line(zbuffer,x0,y0,z0,x1,y1,z1,+texture,tx0,ty0,tx1,ty1,opacity,pattern,init_hatch); + static unsigned int hatch = ~0U - (~0U>>1); + if (init_hatch) hatch = ~0U - (~0U>>1); + const bool xdir = x0=width()) return *this; + if (xleft<0) { + const float D = (float)xright - xleft; + yleft-=(int)((float)xleft*((float)yright - yleft)/D); + zleft-=(float)xleft*(zright - zleft)/D; + txleft-=(float)xleft*(txright - txleft)/D; + tyleft-=(float)xleft*(tyright - tyleft)/D; + xleft = 0; + } + if (xright>=width()) { + const float d = (float)xright - width(), D = (float)xright - xleft; + yright-=(int)(d*((float)yright - yleft)/D); + zright-=d*(zright - zleft)/D; + txright-=d*(txright - txleft)/D; + tyright-=d*(tyright - tyleft)/D; + xright = width() - 1; + } + if (ydown<0 || yup>=height()) return *this; + if (yup<0) { + const float D = (float)ydown - yup; + xup-=(int)((float)yup*((float)xdown - xup)/D); + zup-=yup*(zdown - zup)/D; + txup-=yup*(txdown - txup)/D; + tyup-=yup*(tydown - tyup)/D; + yup = 0; + } + if (ydown>=height()) { + const float d = (float)ydown - height(), D = (float)ydown - yup; + xdown-=(int)(d*((float)xdown - xup)/D); + zdown-=d*(zdown - zup)/D; + txdown-=d*(txdown - txup)/D; + tydown-=d*(tydown - tyup)/D; + ydown = height() - 1; + } + T *ptrd0 = data(nx0,ny0); + tz *ptrz = zbuffer.data(nx0,ny0); + int dx = xright - xleft, dy = ydown - yup; + const bool steep = dy>dx; + if (steep) cimg::swap(nx0,ny0,nx1,ny1,dx,dy); + const longT + offx = (longT)(nx00?dx:1); + const ulongT + whd = (ulongT)_width*_height*_depth, + twh = (ulongT)texture._width*texture._height; + + if (opacity>=1) { + if (~pattern) for (int error = dx>>1, x = 0; x<=dx; ++x) { + if (pattern&hatch) { + const tzfloat z = Z0 + x*dz/ndx; + if (z>=(tzfloat)*ptrz) { + *ptrz = (tz)z; + const float tx = Tx0 + x*dtx/ndx, ty = Ty0 + x*dty/ndx; + const tc *col = &texture._atXY((int)(tx/z),(int)(ty/z)); + T *ptrd = ptrd0; + cimg_forC(*this,c) { *ptrd = (T)*col; ptrd+=whd; col+=twh; } + } + } + hatch>>=1; if (!hatch) hatch = ~0U - (~0U>>1); + ptrd0+=offx; ptrz+=offx; + if ((error-=dy)<0) { ptrd0+=offy; ptrz+=offy; error+=dx; } + } else for (int error = dx>>1, x = 0; x<=dx; ++x) { + const tzfloat z = Z0 + x*dz/ndx; + if (z>=(tzfloat)*ptrz) { + *ptrz = (tz)z; + const float tx = Tx0 + x*dtx/ndx, ty = Ty0 + x*dty/ndx; + const tc *col = &texture._atXY((int)(tx/z),(int)(ty/z)); + T *ptrd = ptrd0; + cimg_forC(*this,c) { *ptrd = (T)*col; ptrd+=whd; col+=twh; } + } + ptrd0+=offx; ptrz+=offx; + if ((error-=dy)<0) { ptrd0+=offy; ptrz+=offy; error+=dx; } + } + } else { + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + if (~pattern) for (int error = dx>>1, x = 0; x<=dx; ++x) { + if (pattern&hatch) { + const tzfloat z = Z0 + x*dz/ndx; + if (z>=(tzfloat)*ptrz) { + *ptrz = (tz)z; + const float tx = Tx0 + x*dtx/ndx, ty = Ty0 + x*dty/ndx; + const tc *col = &texture._atXY((int)(tx/z),(int)(ty/z)); + T *ptrd = ptrd0; + cimg_forC(*this,c) { *ptrd = (T)(nopacity**col + *ptrd*copacity); ptrd+=whd; col+=twh; } + } + } + hatch>>=1; if (!hatch) hatch = ~0U - (~0U>>1); + ptrd0+=offx; ptrz+=offx; + if ((error-=dy)<0) { ptrd0+=offy; ptrz+=offy; error+=dx; } + } else for (int error = dx>>1, x = 0; x<=dx; ++x) { + const tzfloat z = Z0 + x*dz/ndx; + if (z>=(tzfloat)*ptrz) { + *ptrz = (tz)z; + const float tx = Tx0 + x*dtx/ndx, ty = Ty0 + x*dty/ndx; + const tc *col = &texture._atXY((int)(tx/z),(int)(ty/z)); + T *ptrd = ptrd0; + cimg_forC(*this,c) { *ptrd = (T)(nopacity**col + *ptrd*copacity); ptrd+=whd; col+=twh; } + } + ptrd0+=offx; ptrz+=offx; + if ((error-=dy)<0) { ptrd0+=offy; ptrz+=offy; error+=dx; } + } + } + return *this; + } + + //! Draw a set of consecutive lines. + /** + \param points Coordinates of vertices, stored as a list of vectors. + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch If set to true, init hatch motif. + \note + - This function uses several call to the single CImg::draw_line() procedure, + depending on the vectors size in \p points. + **/ + template + CImg& draw_line(const CImg& points, + const tc *const color, const float opacity=1, + const unsigned int pattern=~0U, const bool init_hatch=true) { + if (is_empty() || !points || points._width<2) return *this; + bool ninit_hatch = init_hatch; + switch (points._height) { + case 0 : case 1 : + throw CImgArgumentException(_cimg_instance + "draw_line(): Invalid specified point set (%u,%u,%u,%u,%p).", + cimg_instance, + points._width,points._height,points._depth,points._spectrum,points._data); + + case 2 : { + const int x0 = (int)points(0,0), y0 = (int)points(0,1); + int ox = x0, oy = y0; + for (unsigned int i = 1; i + CImg& draw_arrow(const int x0, const int y0, + const int x1, const int y1, + const tc *const color, const float opacity=1, + const float angle=30, const float length=-10, + const unsigned int pattern=~0U) { + if (is_empty()) return *this; + const float u = (float)(x0 - x1), v = (float)(y0 - y1), sq = u*u + v*v, + deg = (float)(angle*cimg::PI/180), ang = (sq>0)?(float)std::atan2(v,u):0.0f, + l = (length>=0)?length:-length*(float)std::sqrt(sq)/100; + if (sq>0) { + const float + cl = (float)std::cos(ang - deg), sl = (float)std::sin(ang - deg), + cr = (float)std::cos(ang + deg), sr = (float)std::sin(ang + deg); + const int + xl = x1 + (int)(l*cl), yl = y1 + (int)(l*sl), + xr = x1 + (int)(l*cr), yr = y1 + (int)(l*sr), + xc = x1 + (int)((l + 1)*(cl + cr))/2, yc = y1 + (int)((l + 1)*(sl + sr))/2; + draw_line(x0,y0,xc,yc,color,opacity,pattern).draw_triangle(x1,y1,xl,yl,xr,yr,color,opacity); + } else draw_point(x0,y0,color,opacity); + return *this; + } + + //! Draw a 2d spline. + /** + \param x0 X-coordinate of the starting curve point + \param y0 Y-coordinate of the starting curve point + \param u0 X-coordinate of the starting velocity + \param v0 Y-coordinate of the starting velocity + \param x1 X-coordinate of the ending curve point + \param y1 Y-coordinate of the ending curve point + \param u1 X-coordinate of the ending velocity + \param v1 Y-coordinate of the ending velocity + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param precision Curve drawing precision. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch If \c true, init hatch motif. + \note + - The curve is a 2d cubic Bezier spline, from the set of specified starting/ending points + and corresponding velocity vectors. + - The spline is drawn as a serie of connected segments. The \p precision parameter sets the + average number of pixels in each drawn segment. + - A cubic Bezier curve is sometimes defined by a set of 4 points { (\p x0,\p y0), (\p xa,\p ya), + (\p xb,\p yb), (\p x1,\p y1) } where (\p x0,\p y0) is the starting point, (\p x1,\p y1) is the ending point + and (\p xa,\p ya), (\p xb,\p yb) are two + \e control points. + The starting and ending velocities (\p u0,\p v0) and (\p u1,\p v1) can be deduced easily from + the control points as + \p u0 = (\p xa - \p x0), \p v0 = (\p ya - \p y0), \p u1 = (\p x1 - \p xb) and \p v1 = (\p y1 - \p yb). + \par Example: + \code + CImg img(100,100,1,3,0); + const unsigned char color[] = { 255,255,255 }; + img.draw_spline(30,30,0,100,90,40,0,-100,color); + \endcode + **/ + template + CImg& draw_spline(const int x0, const int y0, const float u0, const float v0, + const int x1, const int y1, const float u1, const float v1, + const tc *const color, const float opacity=1, + const float precision=0.25, const unsigned int pattern=~0U, + const bool init_hatch=true) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_spline(): Specified color is (null).", + cimg_instance); + if (x0==x1 && y0==y1) return draw_point(x0,y0,color,opacity); + bool ninit_hatch = init_hatch; + const float + ax = u0 + u1 + 2*(x0 - x1), + bx = 3*(x1 - x0) - 2*u0 - u1, + ay = v0 + v1 + 2*(y0 - y1), + by = 3*(y1 - y0) - 2*v0 - v1, + _precision = 1/(cimg::hypot((float)x0 - x1,(float)y0 - y1)*(precision>0?precision:1)); + int ox = x0, oy = y0; + for (float t = 0; t<1; t+=_precision) { + const float t2 = t*t, t3 = t2*t; + const int + nx = (int)(ax*t3 + bx*t2 + u0*t + x0), + ny = (int)(ay*t3 + by*t2 + v0*t + y0); + draw_line(ox,oy,nx,ny,color,opacity,pattern,ninit_hatch); + ninit_hatch = false; + ox = nx; oy = ny; + } + return draw_line(ox,oy,x1,y1,color,opacity,pattern,false); + } + + //! Draw a 3d spline \overloading. + /** + \note + - Similar to CImg::draw_spline() for a 3d spline in a volumetric image. + **/ + template + CImg& draw_spline(const int x0, const int y0, const int z0, const float u0, const float v0, const float w0, + const int x1, const int y1, const int z1, const float u1, const float v1, const float w1, + const tc *const color, const float opacity=1, + const float precision=4, const unsigned int pattern=~0U, + const bool init_hatch=true) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_spline(): Specified color is (null).", + cimg_instance); + if (x0==x1 && y0==y1 && z0==z1) return draw_point(x0,y0,z0,color,opacity); + bool ninit_hatch = init_hatch; + const float + ax = u0 + u1 + 2*(x0 - x1), + bx = 3*(x1 - x0) - 2*u0 - u1, + ay = v0 + v1 + 2*(y0 - y1), + by = 3*(y1 - y0) - 2*v0 - v1, + az = w0 + w1 + 2*(z0 - z1), + bz = 3*(z1 - z0) - 2*w0 - w1, + _precision = 1/(cimg::hypot((float)x0 - x1,(float)y0 - y1)*(precision>0?precision:1)); + int ox = x0, oy = y0, oz = z0; + for (float t = 0; t<1; t+=_precision) { + const float t2 = t*t, t3 = t2*t; + const int + nx = (int)(ax*t3 + bx*t2 + u0*t + x0), + ny = (int)(ay*t3 + by*t2 + v0*t + y0), + nz = (int)(az*t3 + bz*t2 + w0*t + z0); + draw_line(ox,oy,oz,nx,ny,nz,color,opacity,pattern,ninit_hatch); + ninit_hatch = false; + ox = nx; oy = ny; oz = nz; + } + return draw_line(ox,oy,oz,x1,y1,z1,color,opacity,pattern,false); + } + + //! Draw a textured 2d spline. + /** + \param x0 X-coordinate of the starting curve point + \param y0 Y-coordinate of the starting curve point + \param u0 X-coordinate of the starting velocity + \param v0 Y-coordinate of the starting velocity + \param x1 X-coordinate of the ending curve point + \param y1 Y-coordinate of the ending curve point + \param u1 X-coordinate of the ending velocity + \param v1 Y-coordinate of the ending velocity + \param texture Texture image defining line pixel colors. + \param tx0 X-coordinate of the starting texture point. + \param ty0 Y-coordinate of the starting texture point. + \param tx1 X-coordinate of the ending texture point. + \param ty1 Y-coordinate of the ending texture point. + \param precision Curve drawing precision. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch if \c true, reinit hatch motif. + **/ + template + CImg& draw_spline(const int x0, const int y0, const float u0, const float v0, + const int x1, const int y1, const float u1, const float v1, + const CImg& texture, + const int tx0, const int ty0, const int tx1, const int ty1, + const float opacity=1, + const float precision=4, const unsigned int pattern=~0U, + const bool init_hatch=true) { + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_spline(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_empty()) return *this; + if (is_overlapped(texture)) + return draw_spline(x0,y0,u0,v0,x1,y1,u1,v1,+texture,tx0,ty0,tx1,ty1,precision,opacity,pattern,init_hatch); + if (x0==x1 && y0==y1) + return draw_point(x0,y0,texture.get_vector_at(x0<=0?0:x0>=texture.width()?texture.width() - 1:x0, + y0<=0?0:y0>=texture.height()?texture.height() - 1:y0),opacity); + bool ninit_hatch = init_hatch; + const float + ax = u0 + u1 + 2*(x0 - x1), + bx = 3*(x1 - x0) - 2*u0 - u1, + ay = v0 + v1 + 2*(y0 - y1), + by = 3*(y1 - y0) - 2*v0 - v1, + _precision = 1/(cimg::hypot((float)x0 - x1,(float)y0 - y1)*(precision>0?precision:1)); + int ox = x0, oy = y0, otx = tx0, oty = ty0; + for (float t1 = 0; t1<1; t1+=_precision) { + const float t2 = t1*t1, t3 = t2*t1; + const int + nx = (int)(ax*t3 + bx*t2 + u0*t1 + x0), + ny = (int)(ay*t3 + by*t2 + v0*t1 + y0), + ntx = tx0 + (int)((tx1 - tx0)*t1), + nty = ty0 + (int)((ty1 - ty0)*t1); + draw_line(ox,oy,nx,ny,texture,otx,oty,ntx,nty,opacity,pattern,ninit_hatch); + ninit_hatch = false; + ox = nx; oy = ny; otx = ntx; oty = nty; + } + return draw_line(ox,oy,x1,y1,texture,otx,oty,tx1,ty1,opacity,pattern,false); + } + + //! Draw a set of consecutive splines. + /** + \param points Vertices data. + \param tangents Tangents data. + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param opacity Drawing opacity. + \param is_closed_set Tells if the drawn spline set is closed. + \param precision Precision of the drawing. + \param pattern An integer whose bits describe the line pattern. + \param init_hatch If \c true, init hatch motif. + **/ + template + CImg& draw_spline(const CImg& points, const CImg& tangents, + const tc *const color, const float opacity=1, + const bool is_closed_set=false, const float precision=4, + const unsigned int pattern=~0U, const bool init_hatch=true) { + if (is_empty() || !points || !tangents || points._width<2 || tangents._width<2) return *this; + bool ninit_hatch = init_hatch; + switch (points._height) { + case 0 : case 1 : + throw CImgArgumentException(_cimg_instance + "draw_spline(): Invalid specified point set (%u,%u,%u,%u,%p).", + cimg_instance, + points._width,points._height,points._depth,points._spectrum,points._data); + + case 2 : { + const int x0 = (int)points(0,0), y0 = (int)points(0,1); + const float u0 = (float)tangents(0,0), v0 = (float)tangents(0,1); + int ox = x0, oy = y0; + float ou = u0, ov = v0; + for (unsigned int i = 1; i + CImg& draw_spline(const CImg& points, + const tc *const color, const float opacity=1, + const bool is_closed_set=false, const float precision=4, + const unsigned int pattern=~0U, const bool init_hatch=true) { + if (is_empty() || !points || points._width<2) return *this; + CImg tangents; + switch (points._height) { + case 0 : case 1 : + throw CImgArgumentException(_cimg_instance + "draw_spline(): Invalid specified point set (%u,%u,%u,%u,%p).", + cimg_instance, + points._width,points._height,points._depth,points._spectrum,points._data); + case 2 : { + tangents.assign(points._width,points._height); + cimg_forX(points,p) { + const unsigned int + p0 = is_closed_set?(p + points._width - 1)%points._width:(p?p - 1:0), + p1 = is_closed_set?(p + 1)%points._width:(p + 1=0?x0:(x0 - y0*(x2 - x0)/(y2 - y0)), \ + xl = y1>=0?(y0>=0?(y0==y1?x1:x0):(x0 - y0*(x1 - x0)/(y1 - y0))):(x1 - y1*(x2 - x1)/(y2 - y1)), \ + _sxn=1, \ + _sxr=1, \ + _sxl=1, \ + _dxn = x2>x1?x2-x1:(_sxn=-1,x1 - x2), \ + _dxr = x2>x0?x2-x0:(_sxr=-1,x0 - x2), \ + _dxl = x1>x0?x1-x0:(_sxl=-1,x0 - x1), \ + _dyn = y2-y1, \ + _dyr = y2-y0, \ + _dyl = y1-y0, \ + _counter = (_dxn-=_dyn?_dyn*(_dxn/_dyn):0, \ + _dxr-=_dyr?_dyr*(_dxr/_dyr):0, \ + _dxl-=_dyl?_dyl*(_dxl/_dyl):0, \ + std::min((int)(img)._height - y - 1,y2 - y)), \ + _errn = _dyn/2, \ + _errr = _dyr/2, \ + _errl = _dyl/2, \ + _rxn = _dyn?(x2-x1)/_dyn:0, \ + _rxr = _dyr?(x2-x0)/_dyr:0, \ + _rxl = (y0!=y1 && y1>0)?(_dyl?(x1-x0)/_dyl:0): \ + (_errl=_errn, _dxl=_dxn, _dyl=_dyn, _sxl=_sxn, _rxn); \ + _counter>=0; --_counter, ++y, \ + xr+=_rxr+((_errr-=_dxr)<0?_errr+=_dyr,_sxr:0), \ + xl+=(y!=y1)?_rxl+((_errl-=_dxl)<0?(_errl+=_dyl,_sxl):0): \ + (_errl=_errn, _dxl=_dxn, _dyl=_dyn, _sxl=_sxn, _rxl=_rxn, x1-xl)) + +#define _cimg_for_triangle2(img,xl,cl,xr,cr,y,x0,y0,c0,x1,y1,c1,x2,y2,c2) \ + for (int y = y0<0?0:y0, \ + xr = y0>=0?x0:(x0 - y0*(x2 - x0)/(y2 - y0)), \ + cr = y0>=0?c0:(c0 - y0*(c2 - c0)/(y2 - y0)), \ + xl = y1>=0?(y0>=0?(y0==y1?x1:x0):(x0 - y0*(x1 - x0)/(y1 - y0))):(x1 - y1*(x2 - x1)/(y2 - y1)), \ + cl = y1>=0?(y0>=0?(y0==y1?c1:c0):(c0 - y0*(c1 - c0)/(y1 - y0))):(c1 - y1*(c2 - c1)/(y2 - y1)), \ + _sxn=1, _scn=1, \ + _sxr=1, _scr=1, \ + _sxl=1, _scl=1, \ + _dxn = x2>x1?x2-x1:(_sxn=-1,x1 - x2), \ + _dxr = x2>x0?x2-x0:(_sxr=-1,x0 - x2), \ + _dxl = x1>x0?x1-x0:(_sxl=-1,x0 - x1), \ + _dcn = c2>c1?c2-c1:(_scn=-1,c1 - c2), \ + _dcr = c2>c0?c2-c0:(_scr=-1,c0 - c2), \ + _dcl = c1>c0?c1-c0:(_scl=-1,c0 - c1), \ + _dyn = y2-y1, \ + _dyr = y2-y0, \ + _dyl = y1-y0, \ + _counter =(_dxn-=_dyn?_dyn*(_dxn/_dyn):0, \ + _dxr-=_dyr?_dyr*(_dxr/_dyr):0, \ + _dxl-=_dyl?_dyl*(_dxl/_dyl):0, \ + _dcn-=_dyn?_dyn*(_dcn/_dyn):0, \ + _dcr-=_dyr?_dyr*(_dcr/_dyr):0, \ + _dcl-=_dyl?_dyl*(_dcl/_dyl):0, \ + std::min((int)(img)._height - y - 1,y2 - y)), \ + _errn = _dyn/2, _errcn = _errn, \ + _errr = _dyr/2, _errcr = _errr, \ + _errl = _dyl/2, _errcl = _errl, \ + _rxn = _dyn?(x2 - x1)/_dyn:0, \ + _rcn = _dyn?(c2 - c1)/_dyn:0, \ + _rxr = _dyr?(x2 - x0)/_dyr:0, \ + _rcr = _dyr?(c2 - c0)/_dyr:0, \ + _rxl = (y0!=y1 && y1>0)?(_dyl?(x1-x0)/_dyl:0): \ + (_errl=_errn, _dxl=_dxn, _dyl=_dyn, _sxl=_sxn, _rxn), \ + _rcl = (y0!=y1 && y1>0)?(_dyl?(c1-c0)/_dyl:0): \ + (_errcl=_errcn, _dcl=_dcn, _dyl=_dyn, _scl=_scn, _rcn ); \ + _counter>=0; --_counter, ++y, \ + xr+=_rxr+((_errr-=_dxr)<0?_errr+=_dyr,_sxr:0), \ + cr+=_rcr+((_errcr-=_dcr)<0?_errcr+=_dyr,_scr:0), \ + xl+=(y!=y1)?(cl+=_rcl+((_errcl-=_dcl)<0?(_errcl+=_dyl,_scl):0), \ + _rxl+((_errl-=_dxl)<0?(_errl+=_dyl,_sxl):0)): \ + (_errcl=_errcn, _dcl=_dcn, _dyl=_dyn, _scl=_scn, _rcl=_rcn, cl=c1, \ + _errl=_errn, _dxl=_dxn, _dyl=_dyn, _sxl=_sxn, _rxl=_rxn, x1-xl)) + +#define _cimg_for_triangle3(img,xl,txl,tyl,xr,txr,tyr,y,x0,y0,tx0,ty0,x1,y1,tx1,ty1,x2,y2,tx2,ty2) \ + for (int y = y0<0?0:y0, \ + xr = y0>=0?x0:(x0 - y0*(x2 - x0)/(y2 - y0)), \ + txr = y0>=0?tx0:(tx0 - y0*(tx2 - tx0)/(y2 - y0)), \ + tyr = y0>=0?ty0:(ty0 - y0*(ty2 - ty0)/(y2 - y0)), \ + xl = y1>=0?(y0>=0?(y0==y1?x1:x0):(x0 - y0*(x1 - x0)/(y1 - y0))):(x1 - y1*(x2 - x1)/(y2 - y1)), \ + txl = y1>=0?(y0>=0?(y0==y1?tx1:tx0):(tx0 - y0*(tx1 - tx0)/(y1 - y0))):(tx1 - y1*(tx2 - tx1)/(y2 - y1)), \ + tyl = y1>=0?(y0>=0?(y0==y1?ty1:ty0):(ty0 - y0*(ty1 - ty0)/(y1 - y0))):(ty1 - y1*(ty2 - ty1)/(y2 - y1)), \ + _sxn=1, _stxn=1, _styn=1, \ + _sxr=1, _stxr=1, _styr=1, \ + _sxl=1, _stxl=1, _styl=1, \ + _dxn = x2>x1?x2 - x1:(_sxn=-1,x1 - x2), \ + _dxr = x2>x0?x2 - x0:(_sxr=-1,x0 - x2), \ + _dxl = x1>x0?x1 - x0:(_sxl=-1,x0 - x1), \ + _dtxn = tx2>tx1?tx2 - tx1:(_stxn=-1,tx1 - tx2), \ + _dtxr = tx2>tx0?tx2 - tx0:(_stxr=-1,tx0 - tx2), \ + _dtxl = tx1>tx0?tx1 - tx0:(_stxl=-1,tx0 - tx1), \ + _dtyn = ty2>ty1?ty2 - ty1:(_styn=-1,ty1 - ty2), \ + _dtyr = ty2>ty0?ty2 - ty0:(_styr=-1,ty0 - ty2), \ + _dtyl = ty1>ty0?ty1 - ty0:(_styl=-1,ty0 - ty1), \ + _dyn = y2-y1, \ + _dyr = y2-y0, \ + _dyl = y1-y0, \ + _counter =(_dxn-=_dyn?_dyn*(_dxn/_dyn):0, \ + _dxr-=_dyr?_dyr*(_dxr/_dyr):0, \ + _dxl-=_dyl?_dyl*(_dxl/_dyl):0, \ + _dtxn-=_dyn?_dyn*(_dtxn/_dyn):0, \ + _dtxr-=_dyr?_dyr*(_dtxr/_dyr):0, \ + _dtxl-=_dyl?_dyl*(_dtxl/_dyl):0, \ + _dtyn-=_dyn?_dyn*(_dtyn/_dyn):0, \ + _dtyr-=_dyr?_dyr*(_dtyr/_dyr):0, \ + _dtyl-=_dyl?_dyl*(_dtyl/_dyl):0, \ + std::min((int)(img)._height - y - 1,y2 - y)), \ + _errn = _dyn/2, _errtxn = _errn, _errtyn = _errn, \ + _errr = _dyr/2, _errtxr = _errr, _errtyr = _errr, \ + _errl = _dyl/2, _errtxl = _errl, _errtyl = _errl, \ + _rxn = _dyn?(x2 - x1)/_dyn:0, \ + _rtxn = _dyn?(tx2 - tx1)/_dyn:0, \ + _rtyn = _dyn?(ty2 - ty1)/_dyn:0, \ + _rxr = _dyr?(x2 - x0)/_dyr:0, \ + _rtxr = _dyr?(tx2 - tx0)/_dyr:0, \ + _rtyr = _dyr?(ty2 - ty0)/_dyr:0, \ + _rxl = (y0!=y1 && y1>0)?(_dyl?(x1 - x0)/_dyl:0): \ + (_errl=_errn, _dxl=_dxn, _dyl=_dyn, _sxl=_sxn, _rxn), \ + _rtxl = (y0!=y1 && y1>0)?(_dyl?(tx1 - tx0)/_dyl:0): \ + (_errtxl=_errtxn, _dtxl=_dtxn, _dyl=_dyn, _stxl=_stxn, _rtxn ), \ + _rtyl = (y0!=y1 && y1>0)?(_dyl?(ty1 - ty0)/_dyl:0): \ + (_errtyl=_errtyn, _dtyl=_dtyn, _dyl=_dyn, _styl=_styn, _rtyn ); \ + _counter>=0; --_counter, ++y, \ + xr+=_rxr+((_errr-=_dxr)<0?_errr+=_dyr,_sxr:0), \ + txr+=_rtxr+((_errtxr-=_dtxr)<0?_errtxr+=_dyr,_stxr:0), \ + tyr+=_rtyr+((_errtyr-=_dtyr)<0?_errtyr+=_dyr,_styr:0), \ + xl+=(y!=y1)?(txl+=_rtxl+((_errtxl-=_dtxl)<0?(_errtxl+=_dyl,_stxl):0), \ + tyl+=_rtyl+((_errtyl-=_dtyl)<0?(_errtyl+=_dyl,_styl):0), \ + _rxl+((_errl-=_dxl)<0?(_errl+=_dyl,_sxl):0)): \ + (_errtxl=_errtxn, _dtxl=_dtxn, _dyl=_dyn, _stxl=_stxn, _rtxl=_rtxn, txl=tx1, \ + _errtyl=_errtyn, _dtyl=_dtyn, _dyl=_dyn, _styl=_styn, _rtyl=_rtyn, tyl=ty1,\ + _errl=_errn, _dxl=_dxn, _dyl=_dyn, _sxl=_sxn, _rxl=_rxn, x1 - xl)) + +#define _cimg_for_triangle4(img,xl,cl,txl,tyl,xr,cr,txr,tyr,y,x0,y0,c0,tx0,ty0,x1,y1,c1,tx1,ty1,x2,y2,c2,tx2,ty2) \ + for (int y = y0<0?0:y0, \ + xr = y0>=0?x0:(x0 - y0*(x2 - x0)/(y2 - y0)), \ + cr = y0>=0?c0:(c0 - y0*(c2 - c0)/(y2 - y0)), \ + txr = y0>=0?tx0:(tx0 - y0*(tx2 - tx0)/(y2 - y0)), \ + tyr = y0>=0?ty0:(ty0 - y0*(ty2 - ty0)/(y2 - y0)), \ + xl = y1>=0?(y0>=0?(y0==y1?x1:x0):(x0 - y0*(x1 - x0)/(y1 - y0))):(x1 - y1*(x2 - x1)/(y2 - y1)), \ + cl = y1>=0?(y0>=0?(y0==y1?c1:c0):(c0 - y0*(c1 - c0)/(y1 - y0))):(c1 - y1*(c2 - c1)/(y2 - y1)), \ + txl = y1>=0?(y0>=0?(y0==y1?tx1:tx0):(tx0 - y0*(tx1 - tx0)/(y1 - y0))):(tx1 - y1*(tx2 - tx1)/(y2 - y1)), \ + tyl = y1>=0?(y0>=0?(y0==y1?ty1:ty0):(ty0 - y0*(ty1 - ty0)/(y1 - y0))):(ty1 - y1*(ty2 - ty1)/(y2 - y1)), \ + _sxn=1, _scn=1, _stxn=1, _styn=1, \ + _sxr=1, _scr=1, _stxr=1, _styr=1, \ + _sxl=1, _scl=1, _stxl=1, _styl=1, \ + _dxn = x2>x1?x2 - x1:(_sxn=-1,x1 - x2), \ + _dxr = x2>x0?x2 - x0:(_sxr=-1,x0 - x2), \ + _dxl = x1>x0?x1 - x0:(_sxl=-1,x0 - x1), \ + _dcn = c2>c1?c2 - c1:(_scn=-1,c1 - c2), \ + _dcr = c2>c0?c2 - c0:(_scr=-1,c0 - c2), \ + _dcl = c1>c0?c1 - c0:(_scl=-1,c0 - c1), \ + _dtxn = tx2>tx1?tx2 - tx1:(_stxn=-1,tx1 - tx2), \ + _dtxr = tx2>tx0?tx2 - tx0:(_stxr=-1,tx0 - tx2), \ + _dtxl = tx1>tx0?tx1 - tx0:(_stxl=-1,tx0 - tx1), \ + _dtyn = ty2>ty1?ty2 - ty1:(_styn=-1,ty1 - ty2), \ + _dtyr = ty2>ty0?ty2 - ty0:(_styr=-1,ty0 - ty2), \ + _dtyl = ty1>ty0?ty1 - ty0:(_styl=-1,ty0 - ty1), \ + _dyn = y2 - y1, \ + _dyr = y2 - y0, \ + _dyl = y1 - y0, \ + _counter =(_dxn-=_dyn?_dyn*(_dxn/_dyn):0, \ + _dxr-=_dyr?_dyr*(_dxr/_dyr):0, \ + _dxl-=_dyl?_dyl*(_dxl/_dyl):0, \ + _dcn-=_dyn?_dyn*(_dcn/_dyn):0, \ + _dcr-=_dyr?_dyr*(_dcr/_dyr):0, \ + _dcl-=_dyl?_dyl*(_dcl/_dyl):0, \ + _dtxn-=_dyn?_dyn*(_dtxn/_dyn):0, \ + _dtxr-=_dyr?_dyr*(_dtxr/_dyr):0, \ + _dtxl-=_dyl?_dyl*(_dtxl/_dyl):0, \ + _dtyn-=_dyn?_dyn*(_dtyn/_dyn):0, \ + _dtyr-=_dyr?_dyr*(_dtyr/_dyr):0, \ + _dtyl-=_dyl?_dyl*(_dtyl/_dyl):0, \ + std::min((int)(img)._height - y - 1,y2 - y)), \ + _errn = _dyn/2, _errcn = _errn, _errtxn = _errn, _errtyn = _errn, \ + _errr = _dyr/2, _errcr = _errr, _errtxr = _errr, _errtyr = _errr, \ + _errl = _dyl/2, _errcl = _errl, _errtxl = _errl, _errtyl = _errl, \ + _rxn = _dyn?(x2 - x1)/_dyn:0, \ + _rcn = _dyn?(c2 - c1)/_dyn:0, \ + _rtxn = _dyn?(tx2 - tx1)/_dyn:0, \ + _rtyn = _dyn?(ty2 - ty1)/_dyn:0, \ + _rxr = _dyr?(x2 - x0)/_dyr:0, \ + _rcr = _dyr?(c2 - c0)/_dyr:0, \ + _rtxr = _dyr?(tx2 - tx0)/_dyr:0, \ + _rtyr = _dyr?(ty2 - ty0)/_dyr:0, \ + _rxl = (y0!=y1 && y1>0)?(_dyl?(x1 - x0)/_dyl:0): \ + (_errl=_errn, _dxl=_dxn, _dyl=_dyn, _sxl=_sxn, _rxn), \ + _rcl = (y0!=y1 && y1>0)?(_dyl?(c1 - c0)/_dyl:0): \ + (_errcl=_errcn, _dcl=_dcn, _dyl=_dyn, _scl=_scn, _rcn ), \ + _rtxl = (y0!=y1 && y1>0)?(_dyl?(tx1 - tx0)/_dyl:0): \ + (_errtxl=_errtxn, _dtxl=_dtxn, _dyl=_dyn, _stxl=_stxn, _rtxn ), \ + _rtyl = (y0!=y1 && y1>0)?(_dyl?(ty1 - ty0)/_dyl:0): \ + (_errtyl=_errtyn, _dtyl=_dtyn, _dyl=_dyn, _styl=_styn, _rtyn ); \ + _counter>=0; --_counter, ++y, \ + xr+=_rxr+((_errr-=_dxr)<0?_errr+=_dyr,_sxr:0), \ + cr+=_rcr+((_errcr-=_dcr)<0?_errcr+=_dyr,_scr:0), \ + txr+=_rtxr+((_errtxr-=_dtxr)<0?_errtxr+=_dyr,_stxr:0), \ + tyr+=_rtyr+((_errtyr-=_dtyr)<0?_errtyr+=_dyr,_styr:0), \ + xl+=(y!=y1)?(cl+=_rcl+((_errcl-=_dcl)<0?(_errcl+=_dyl,_scl):0), \ + txl+=_rtxl+((_errtxl-=_dtxl)<0?(_errtxl+=_dyl,_stxl):0), \ + tyl+=_rtyl+((_errtyl-=_dtyl)<0?(_errtyl+=_dyl,_styl):0), \ + _rxl+((_errl-=_dxl)<0?(_errl+=_dyl,_sxl):0)): \ + (_errcl=_errcn, _dcl=_dcn, _dyl=_dyn, _scl=_scn, _rcl=_rcn, cl=c1, \ + _errtxl=_errtxn, _dtxl=_dtxn, _dyl=_dyn, _stxl=_stxn, _rtxl=_rtxn, txl=tx1, \ + _errtyl=_errtyn, _dtyl=_dtyn, _dyl=_dyn, _styl=_styn, _rtyl=_rtyn, tyl=ty1, \ + _errl=_errn, _dxl=_dxn, _dyl=_dyn, _sxl=_sxn, _rxl=_rxn, x1 - xl)) + +#define _cimg_for_triangle5(img,xl,txl,tyl,lxl,lyl,xr,txr,tyr,lxr,lyr,y,x0,y0,\ + tx0,ty0,lx0,ly0,x1,y1,tx1,ty1,lx1,ly1,x2,y2,tx2,ty2,lx2,ly2) \ + for (int y = y0<0?0:y0, \ + xr = y0>=0?x0:(x0 - y0*(x2 - x0)/(y2 - y0)), \ + txr = y0>=0?tx0:(tx0 - y0*(tx2 - tx0)/(y2 - y0)), \ + tyr = y0>=0?ty0:(ty0 - y0*(ty2 - ty0)/(y2 - y0)), \ + lxr = y0>=0?lx0:(lx0 - y0*(lx2 - lx0)/(y2 - y0)), \ + lyr = y0>=0?ly0:(ly0 - y0*(ly2 - ly0)/(y2 - y0)), \ + xl = y1>=0?(y0>=0?(y0==y1?x1:x0):(x0 - y0*(x1 - x0)/(y1 - y0))):(x1 - y1*(x2 - x1)/(y2 - y1)), \ + txl = y1>=0?(y0>=0?(y0==y1?tx1:tx0):(tx0 - y0*(tx1 - tx0)/(y1 - y0))):(tx1 - y1*(tx2 - tx1)/(y2 - y1)), \ + tyl = y1>=0?(y0>=0?(y0==y1?ty1:ty0):(ty0 - y0*(ty1 - ty0)/(y1 - y0))):(ty1 - y1*(ty2 - ty1)/(y2 - y1)), \ + lxl = y1>=0?(y0>=0?(y0==y1?lx1:lx0):(lx0 - y0*(lx1 - lx0)/(y1 - y0))):(lx1 - y1*(lx2 - lx1)/(y2 - y1)), \ + lyl = y1>=0?(y0>=0?(y0==y1?ly1:ly0):(ly0 - y0*(ly1 - ly0)/(y1 - y0))):(ly1 - y1*(ly2 - ly1)/(y2 - y1)), \ + _sxn=1, _stxn=1, _styn=1, _slxn=1, _slyn=1, \ + _sxr=1, _stxr=1, _styr=1, _slxr=1, _slyr=1, \ + _sxl=1, _stxl=1, _styl=1, _slxl=1, _slyl=1, \ + _dxn = x2>x1?x2 - x1:(_sxn=-1,x1 - x2), _dyn = y2 - y1, \ + _dxr = x2>x0?x2 - x0:(_sxr=-1,x0 - x2), _dyr = y2 - y0, \ + _dxl = x1>x0?x1 - x0:(_sxl=-1,x0 - x1), _dyl = y1 - y0, \ + _dtxn = tx2>tx1?tx2 - tx1:(_stxn=-1,tx1 - tx2), \ + _dtxr = tx2>tx0?tx2 - tx0:(_stxr=-1,tx0 - tx2), \ + _dtxl = tx1>tx0?tx1 - tx0:(_stxl=-1,tx0 - tx1), \ + _dtyn = ty2>ty1?ty2 - ty1:(_styn=-1,ty1 - ty2), \ + _dtyr = ty2>ty0?ty2 - ty0:(_styr=-1,ty0 - ty2), \ + _dtyl = ty1>ty0?ty1 - ty0:(_styl=-1,ty0 - ty1), \ + _dlxn = lx2>lx1?lx2 - lx1:(_slxn=-1,lx1 - lx2), \ + _dlxr = lx2>lx0?lx2 - lx0:(_slxr=-1,lx0 - lx2), \ + _dlxl = lx1>lx0?lx1 - lx0:(_slxl=-1,lx0 - lx1), \ + _dlyn = ly2>ly1?ly2 - ly1:(_slyn=-1,ly1 - ly2), \ + _dlyr = ly2>ly0?ly2 - ly0:(_slyr=-1,ly0 - ly2), \ + _dlyl = ly1>ly0?ly1 - ly0:(_slyl=-1,ly0 - ly1), \ + _counter =(_dxn-=_dyn?_dyn*(_dxn/_dyn):0, \ + _dxr-=_dyr?_dyr*(_dxr/_dyr):0, \ + _dxl-=_dyl?_dyl*(_dxl/_dyl):0, \ + _dtxn-=_dyn?_dyn*(_dtxn/_dyn):0, \ + _dtxr-=_dyr?_dyr*(_dtxr/_dyr):0, \ + _dtxl-=_dyl?_dyl*(_dtxl/_dyl):0, \ + _dtyn-=_dyn?_dyn*(_dtyn/_dyn):0, \ + _dtyr-=_dyr?_dyr*(_dtyr/_dyr):0, \ + _dtyl-=_dyl?_dyl*(_dtyl/_dyl):0, \ + _dlxn-=_dyn?_dyn*(_dlxn/_dyn):0, \ + _dlxr-=_dyr?_dyr*(_dlxr/_dyr):0, \ + _dlxl-=_dyl?_dyl*(_dlxl/_dyl):0, \ + _dlyn-=_dyn?_dyn*(_dlyn/_dyn):0, \ + _dlyr-=_dyr?_dyr*(_dlyr/_dyr):0, \ + _dlyl-=_dyl?_dyl*(_dlyl/_dyl):0, \ + std::min((int)(img)._height - y - 1,y2 - y)), \ + _errn = _dyn/2, _errtxn = _errn, _errtyn = _errn, _errlxn = _errn, _errlyn = _errn, \ + _errr = _dyr/2, _errtxr = _errr, _errtyr = _errr, _errlxr = _errr, _errlyr = _errr, \ + _errl = _dyl/2, _errtxl = _errl, _errtyl = _errl, _errlxl = _errl, _errlyl = _errl, \ + _rxn = _dyn?(x2 - x1)/_dyn:0, \ + _rtxn = _dyn?(tx2 - tx1)/_dyn:0, \ + _rtyn = _dyn?(ty2 - ty1)/_dyn:0, \ + _rlxn = _dyn?(lx2 - lx1)/_dyn:0, \ + _rlyn = _dyn?(ly2 - ly1)/_dyn:0, \ + _rxr = _dyr?(x2 - x0)/_dyr:0, \ + _rtxr = _dyr?(tx2 - tx0)/_dyr:0, \ + _rtyr = _dyr?(ty2 - ty0)/_dyr:0, \ + _rlxr = _dyr?(lx2 - lx0)/_dyr:0, \ + _rlyr = _dyr?(ly2 - ly0)/_dyr:0, \ + _rxl = (y0!=y1 && y1>0)?(_dyl?(x1 - x0)/_dyl:0): \ + (_errl=_errn, _dxl=_dxn, _dyl=_dyn, _sxl=_sxn, _rxn), \ + _rtxl = (y0!=y1 && y1>0)?(_dyl?(tx1 - tx0)/_dyl:0): \ + (_errtxl=_errtxn, _dtxl=_dtxn, _dyl=_dyn, _stxl=_stxn, _rtxn ), \ + _rtyl = (y0!=y1 && y1>0)?(_dyl?(ty1 - ty0)/_dyl:0): \ + (_errtyl=_errtyn, _dtyl=_dtyn, _dyl=_dyn, _styl=_styn, _rtyn ), \ + _rlxl = (y0!=y1 && y1>0)?(_dyl?(lx1 - lx0)/_dyl:0): \ + (_errlxl=_errlxn, _dlxl=_dlxn, _dyl=_dyn, _slxl=_slxn, _rlxn ), \ + _rlyl = (y0!=y1 && y1>0)?(_dyl?(ly1 - ly0)/_dyl:0): \ + (_errlyl=_errlyn, _dlyl=_dlyn, _dyl=_dyn, _slyl=_slyn, _rlyn ); \ + _counter>=0; --_counter, ++y, \ + xr+=_rxr+((_errr-=_dxr)<0?_errr+=_dyr,_sxr:0), \ + txr+=_rtxr+((_errtxr-=_dtxr)<0?_errtxr+=_dyr,_stxr:0), \ + tyr+=_rtyr+((_errtyr-=_dtyr)<0?_errtyr+=_dyr,_styr:0), \ + lxr+=_rlxr+((_errlxr-=_dlxr)<0?_errlxr+=_dyr,_slxr:0), \ + lyr+=_rlyr+((_errlyr-=_dlyr)<0?_errlyr+=_dyr,_slyr:0), \ + xl+=(y!=y1)?(txl+=_rtxl+((_errtxl-=_dtxl)<0?(_errtxl+=_dyl,_stxl):0), \ + tyl+=_rtyl+((_errtyl-=_dtyl)<0?(_errtyl+=_dyl,_styl):0), \ + lxl+=_rlxl+((_errlxl-=_dlxl)<0?(_errlxl+=_dyl,_slxl):0), \ + lyl+=_rlyl+((_errlyl-=_dlyl)<0?(_errlyl+=_dyl,_slyl):0), \ + _rxl+((_errl-=_dxl)<0?(_errl+=_dyl,_sxl):0)): \ + (_errtxl=_errtxn, _dtxl=_dtxn, _dyl=_dyn, _stxl=_stxn, _rtxl=_rtxn, txl=tx1, \ + _errtyl=_errtyn, _dtyl=_dtyn, _dyl=_dyn, _styl=_styn, _rtyl=_rtyn, tyl=ty1, \ + _errlxl=_errlxn, _dlxl=_dlxn, _dyl=_dyn, _slxl=_slxn, _rlxl=_rlxn, lxl=lx1, \ + _errlyl=_errlyn, _dlyl=_dlyn, _dyl=_dyn, _slyl=_slyn, _rlyl=_rlyn, lyl=ly1, \ + _errl=_errn, _dxl=_dxn, _dyl=_dyn, _sxl=_sxn, _rxl=_rxn, x1 - xl)) + + // [internal] Draw a filled triangle. + template + CImg& _draw_triangle(const int x0, const int y0, + const int x1, const int y1, + const int x2, const int y2, + const tc *const color, const float opacity, + const float brightness) { + cimg_init_scanline(color,opacity); + const float nbrightness = cimg::cut(brightness,0,2); + int nx0 = x0, ny0 = y0, nx1 = x1, ny1 = y1, nx2 = x2, ny2 = y2; + if (ny0>ny1) cimg::swap(nx0,nx1,ny0,ny1); + if (ny0>ny2) cimg::swap(nx0,nx2,ny0,ny2); + if (ny1>ny2) cimg::swap(nx1,nx2,ny1,ny2); + if (ny0=0) { + if ((nx1 - nx0)*(ny2 - ny0) - (nx2 - nx0)*(ny1 - ny0)<0) + _cimg_for_triangle1(*this,xl,xr,y,nx0,ny0,nx1,ny1,nx2,ny2) + cimg_draw_scanline(xl,xr,y,color,opacity,nbrightness); + else + _cimg_for_triangle1(*this,xl,xr,y,nx0,ny0,nx1,ny1,nx2,ny2) + cimg_draw_scanline(xr,xl,y,color,opacity,nbrightness); + } + return *this; + } + + //! Draw a filled 2d triangle. + /** + \param x0 X-coordinate of the first vertex. + \param y0 Y-coordinate of the first vertex. + \param x1 X-coordinate of the second vertex. + \param y1 Y-coordinate of the second vertex. + \param x2 X-coordinate of the third vertex. + \param y2 Y-coordinate of the third vertex. + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param opacity Drawing opacity. + **/ + template + CImg& draw_triangle(const int x0, const int y0, + const int x1, const int y1, + const int x2, const int y2, + const tc *const color, const float opacity=1) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Specified color is (null).", + cimg_instance); + _draw_triangle(x0,y0,x1,y1,x2,y2,color,opacity,1); + return *this; + } + + //! Draw a outlined 2d triangle. + /** + \param x0 X-coordinate of the first vertex. + \param y0 Y-coordinate of the first vertex. + \param x1 X-coordinate of the second vertex. + \param y1 Y-coordinate of the second vertex. + \param x2 X-coordinate of the third vertex. + \param y2 Y-coordinate of the third vertex. + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the outline pattern. + **/ + template + CImg& draw_triangle(const int x0, const int y0, + const int x1, const int y1, + const int x2, const int y2, + const tc *const color, const float opacity, + const unsigned int pattern) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Specified color is (null).", + cimg_instance); + draw_line(x0,y0,x1,y1,color,opacity,pattern,true). + draw_line(x1,y1,x2,y2,color,opacity,pattern,false). + draw_line(x2,y2,x0,y0,color,opacity,pattern,false); + return *this; + } + + //! Draw a filled 2d triangle, with z-buffering. + /** + \param zbuffer Z-buffer image. + \param x0 X-coordinate of the first vertex. + \param y0 Y-coordinate of the first vertex. + \param z0 Z-coordinate of the first vertex. + \param x1 X-coordinate of the second vertex. + \param y1 Y-coordinate of the second vertex. + \param z1 Z-coordinate of the second vertex. + \param x2 X-coordinate of the third vertex. + \param y2 Y-coordinate of the third vertex. + \param z2 Z-coordinate of the third vertex. + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param opacity Drawing opacity. + \param brightness Brightness factor. + **/ + template + CImg& draw_triangle(CImg& zbuffer, + const int x0, const int y0, const float z0, + const int x1, const int y1, const float z1, + const int x2, const int y2, const float z2, + const tc *const color, const float opacity=1, + const float brightness=1) { + typedef typename cimg::superset::type tzfloat; + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Specified color is (null).", + cimg_instance); + if (!is_sameXY(zbuffer)) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data); + static const T maxval = (T)std::min(cimg::type::max(),(T)cimg::type::max()); + const float + nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f), + nbrightness = cimg::cut(brightness,0,2); + const longT whd = (longT)width()*height()*depth(), offx = spectrum()*whd; + int nx0 = x0, ny0 = y0, nx1 = x1, ny1 = y1, nx2 = x2, ny2 = y2; + tzfloat nz0 = 1/(tzfloat)z0, nz1 = 1/(tzfloat)z1, nz2 = 1/(tzfloat)z2; + if (ny0>ny1) cimg::swap(nx0,nx1,ny0,ny1,nz0,nz1); + if (ny0>ny2) cimg::swap(nx0,nx2,ny0,ny2,nz0,nz2); + if (ny1>ny2) cimg::swap(nx1,nx2,ny1,ny2,nz1,nz2); + if (ny0>=height() || ny2<0) return *this; + tzfloat + pzl = (nz1 - nz0)/(ny1 - ny0), + pzr = (nz2 - nz0)/(ny2 - ny0), + pzn = (nz2 - nz1)/(ny2 - ny1), + zr = ny0>=0?nz0:(nz0 - ny0*(nz2 - nz0)/(ny2 - ny0)), + zl = ny1>=0?(ny0>=0?nz0:(nz0 - ny0*(nz1 - nz0)/(ny1 - ny0))):(pzl=pzn,(nz1 - ny1*(nz2 - nz1)/(ny2 - ny1))); + _cimg_for_triangle1(*this,xleft0,xright0,y,nx0,ny0,nx1,ny1,nx2,ny2) { + if (y==ny1) { zl = nz1; pzl = pzn; } + int xleft = xleft0, xright = xright0; + tzfloat zleft = zl, zright = zr; + if (xright=width() - 1) xright = width() - 1; + T* ptrd = data(xleft,y,0,0); + tz *ptrz = xleft<=xright?zbuffer.data(xleft,y):0; + if (opacity>=1) { + if (nbrightness==1) for (int x = xleft; x<=xright; ++x, ++ptrz, ++ptrd) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tc *col = color; cimg_forC(*this,c) { *ptrd = (T)*(col++); ptrd+=whd; } + ptrd-=offx; + } + zleft+=pentez; + } else if (nbrightness<1) for (int x = xleft; x<=xright; ++x, ++ptrz, ++ptrd) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tc *col = color; cimg_forC(*this,c) { *ptrd = (T)(nbrightness*(*col++)); ptrd+=whd; } + ptrd-=offx; + } + zleft+=pentez; + } else for (int x = xleft; x<=xright; ++x, ++ptrz, ++ptrd) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tc *col = color; + cimg_forC(*this,c) { *ptrd = (T)((2 - nbrightness)**(col++) + (nbrightness - 1)*maxval); ptrd+=whd; } + ptrd-=offx; + } + zleft+=pentez; + } + } else { + if (nbrightness==1) for (int x = xleft; x<=xright; ++x, ++ptrz, ++ptrd) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tc *col = color; cimg_forC(*this,c) { *ptrd = (T)(nopacity**(col++) + *ptrd*copacity); ptrd+=whd; } + ptrd-=offx; + } + zleft+=pentez; + } else if (nbrightness<1) for (int x = xleft; x<=xright; ++x, ++ptrz, ++ptrd) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tc *col = color; + cimg_forC(*this,c) { *ptrd = (T)(nopacity*nbrightness**(col++) + *ptrd*copacity); ptrd+=whd; } + ptrd-=offx; + } + zleft+=pentez; + } else for (int x = xleft; x<=xright; ++x, ++ptrz, ++ptrd) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tc *col = color; + cimg_forC(*this,c) { + const T val = (T)((2 - nbrightness)**(col++) + (nbrightness - 1)*maxval); + *ptrd = (T)(nopacity*val + *ptrd*copacity); + ptrd+=whd; + } + ptrd-=offx; + } + zleft+=pentez; + } + } + zr+=pzr; zl+=pzl; + } + return *this; + } + + //! Draw a Gouraud-shaded 2d triangle. + /** + \param x0 X-coordinate of the first vertex in the image instance. + \param y0 Y-coordinate of the first vertex in the image instance. + \param x1 X-coordinate of the second vertex in the image instance. + \param y1 Y-coordinate of the second vertex in the image instance. + \param x2 X-coordinate of the third vertex in the image instance. + \param y2 Y-coordinate of the third vertex in the image instance. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param brightness0 Brightness factor of the first vertex (in [0,2]). + \param brightness1 brightness factor of the second vertex (in [0,2]). + \param brightness2 brightness factor of the third vertex (in [0,2]). + \param opacity Drawing opacity. + **/ + template + CImg& draw_triangle(const int x0, const int y0, + const int x1, const int y1, + const int x2, const int y2, + const tc *const color, + const float brightness0, + const float brightness1, + const float brightness2, + const float opacity=1) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Specified color is (null).", + cimg_instance); + static const T maxval = (T)std::min(cimg::type::max(),(T)cimg::type::max()); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + const longT whd = (longT)width()*height()*depth(), offx = spectrum()*whd - 1; + int nx0 = x0, ny0 = y0, nx1 = x1, ny1 = y1, nx2 = x2, ny2 = y2, + nc0 = (int)((brightness0<0.0f?0.0f:(brightness0>2.0f?2.0f:brightness0))*256.0f), + nc1 = (int)((brightness1<0.0f?0.0f:(brightness1>2.0f?2.0f:brightness1))*256.0f), + nc2 = (int)((brightness2<0.0f?0.0f:(brightness2>2.0f?2.0f:brightness2))*256.0f); + if (ny0>ny1) cimg::swap(nx0,nx1,ny0,ny1,nc0,nc1); + if (ny0>ny2) cimg::swap(nx0,nx2,ny0,ny2,nc0,nc2); + if (ny1>ny2) cimg::swap(nx1,nx2,ny1,ny2,nc1,nc2); + if (ny0>=height() || ny2<0) return *this; + _cimg_for_triangle2(*this,xleft0,cleft0,xright0,cright0,y,nx0,ny0,nc0,nx1,ny1,nc1,nx2,ny2,nc2) { + int xleft = xleft0, xright = xright0, cleft = cleft0, cright = cright0; + if (xrightcleft?cright - cleft:cleft - cright, + rc = dx?(cright - cleft)/dx:0, + sc = cright>cleft?1:-1, + ndc = dc - (dx?dx*(dc/dx):0); + int errc = dx>>1; + if (xleft<0 && dx) cleft-=xleft*(cright - cleft)/dx; + if (xleft<0) xleft = 0; + if (xright>=width() - 1) xright = width() - 1; + T* ptrd = data(xleft,y); + if (opacity>=1) for (int x = xleft; x<=xright; ++x) { + const tc *col = color; + cimg_forC(*this,c) { + *ptrd = (T)(cleft<256?cleft**(col++)/256:((512 - cleft)**(col++)+(cleft - 256)*maxval)/256); + ptrd+=whd; + } + ptrd-=offx; + cleft+=rc+((errc-=ndc)<0?errc+=dx,sc:0); + } else for (int x = xleft; x<=xright; ++x) { + const tc *col = color; + cimg_forC(*this,c) { + const T val = (T)(cleft<256?cleft**(col++)/256:((512 - cleft)**(col++)+(cleft - 256)*maxval)/256); + *ptrd = (T)(nopacity*val + *ptrd*copacity); + ptrd+=whd; + } + ptrd-=offx; + cleft+=rc+((errc-=ndc)<0?errc+=dx,sc:0); + } + } + return *this; + } + + //! Draw a Gouraud-shaded 2d triangle, with z-buffering \overloading. + template + CImg& draw_triangle(CImg& zbuffer, + const int x0, const int y0, const float z0, + const int x1, const int y1, const float z1, + const int x2, const int y2, const float z2, + const tc *const color, + const float brightness0, + const float brightness1, + const float brightness2, + const float opacity=1) { + typedef typename cimg::superset::type tzfloat; + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Specified color is (null).", + cimg_instance); + if (!is_sameXY(zbuffer)) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data); + static const T maxval = (T)std::min(cimg::type::max(),(T)cimg::type::max()); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + const longT whd = (longT)width()*height()*depth(), offx = spectrum()*whd; + int nx0 = x0, ny0 = y0, nx1 = x1, ny1 = y1, nx2 = x2, ny2 = y2, + nc0 = (int)((brightness0<0.0f?0.0f:(brightness0>2.0f?2.0f:brightness0))*256.0f), + nc1 = (int)((brightness1<0.0f?0.0f:(brightness1>2.0f?2.0f:brightness1))*256.0f), + nc2 = (int)((brightness2<0.0f?0.0f:(brightness2>2.0f?2.0f:brightness2))*256.0f); + tzfloat nz0 = 1/(tzfloat)z0, nz1 = 1/(tzfloat)z1, nz2 = 1/(tzfloat)z2; + if (ny0>ny1) cimg::swap(nx0,nx1,ny0,ny1,nz0,nz1,nc0,nc1); + if (ny0>ny2) cimg::swap(nx0,nx2,ny0,ny2,nz0,nz2,nc0,nc2); + if (ny1>ny2) cimg::swap(nx1,nx2,ny1,ny2,nz1,nz2,nc1,nc2); + if (ny0>=height() || ny2<0) return *this; + tzfloat + pzl = (nz1 - nz0)/(ny1 - ny0), + pzr = (nz2 - nz0)/(ny2 - ny0), + pzn = (nz2 - nz1)/(ny2 - ny1), + zr = ny0>=0?nz0:(nz0 - ny0*(nz2 - nz0)/(ny2 - ny0)), + zl = ny1>=0?(ny0>=0?nz0:(nz0 - ny0*(nz1 - nz0)/(ny1 - ny0))):(pzl=pzn,(nz1 - ny1*(nz2 - nz1)/(ny2 - ny1))); + _cimg_for_triangle2(*this,xleft0,cleft0,xright0,cright0,y,nx0,ny0,nc0,nx1,ny1,nc1,nx2,ny2,nc2) { + if (y==ny1) { zl = nz1; pzl = pzn; } + int xleft = xleft0, xright = xright0, cleft = cleft0, cright = cright0; + tzfloat zleft = zl, zright = zr; + if (xrightcleft?cright - cleft:cleft - cright, + rc = dx?(cright - cleft)/dx:0, + sc = cright>cleft?1:-1, + ndc = dc - (dx?dx*(dc/dx):0); + const tzfloat pentez = (zright - zleft)/dx; + int errc = dx>>1; + if (xleft<0 && dx) { + cleft-=xleft*(cright - cleft)/dx; + zleft-=xleft*(zright - zleft)/dx; + } + if (xleft<0) xleft = 0; + if (xright>=width() - 1) xright = width() - 1; + T *ptrd = data(xleft,y); + tz *ptrz = xleft<=xright?zbuffer.data(xleft,y):0; + if (opacity>=1) for (int x = xleft; x<=xright; ++x, ++ptrd, ++ptrz) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tc *col = color; + cimg_forC(*this,c) { + *ptrd = (T)(cleft<256?cleft**(col++)/256:((512 - cleft)**(col++)+(cleft - 256)*maxval)/256); + ptrd+=whd; + } + ptrd-=offx; + } + zleft+=pentez; + cleft+=rc+((errc-=ndc)<0?errc+=dx,sc:0); + } else for (int x = xleft; x<=xright; ++x, ++ptrd, ++ptrz) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tc *col = color; + cimg_forC(*this,c) { + const T val = (T)(cleft<256?cleft**(col++)/256:((512 - cleft)**(col++)+(cleft - 256)*maxval)/256); + *ptrd = (T)(nopacity*val + *ptrd*copacity); + ptrd+=whd; + } + ptrd-=offx; + } + zleft+=pentez; + cleft+=rc+((errc-=ndc)<0?errc+=dx,sc:0); + } + zr+=pzr; zl+=pzl; + } + return *this; + } + + //! Draw a color-interpolated 2d triangle. + /** + \param x0 X-coordinate of the first vertex in the image instance. + \param y0 Y-coordinate of the first vertex in the image instance. + \param x1 X-coordinate of the second vertex in the image instance. + \param y1 Y-coordinate of the second vertex in the image instance. + \param x2 X-coordinate of the third vertex in the image instance. + \param y2 Y-coordinate of the third vertex in the image instance. + \param color1 Pointer to \c spectrum() consecutive values of type \c T, defining the color of the first vertex. + \param color2 Pointer to \c spectrum() consecutive values of type \c T, defining the color of the seconf vertex. + \param color3 Pointer to \c spectrum() consecutive values of type \c T, defining the color of the third vertex. + \param opacity Drawing opacity. + **/ + template + CImg& draw_triangle(const int x0, const int y0, + const int x1, const int y1, + const int x2, const int y2, + const tc1 *const color1, + const tc2 *const color2, + const tc3 *const color3, + const float opacity=1) { + const unsigned char one = 1; + cimg_forC(*this,c) + get_shared_channel(c).draw_triangle(x0,y0,x1,y1,x2,y2,&one,color1[c],color2[c],color3[c],opacity); + return *this; + } + + //! Draw a textured 2d triangle. + /** + \param x0 X-coordinate of the first vertex in the image instance. + \param y0 Y-coordinate of the first vertex in the image instance. + \param x1 X-coordinate of the second vertex in the image instance. + \param y1 Y-coordinate of the second vertex in the image instance. + \param x2 X-coordinate of the third vertex in the image instance. + \param y2 Y-coordinate of the third vertex in the image instance. + \param texture Texture image used to fill the triangle. + \param tx0 X-coordinate of the first vertex in the texture image. + \param ty0 Y-coordinate of the first vertex in the texture image. + \param tx1 X-coordinate of the second vertex in the texture image. + \param ty1 Y-coordinate of the second vertex in the texture image. + \param tx2 X-coordinate of the third vertex in the texture image. + \param ty2 Y-coordinate of the third vertex in the texture image. + \param opacity Drawing opacity. + \param brightness Brightness factor of the drawing (in [0,2]). + **/ + template + CImg& draw_triangle(const int x0, const int y0, + const int x1, const int y1, + const int x2, const int y2, + const CImg& texture, + const int tx0, const int ty0, + const int tx1, const int ty1, + const int tx2, const int ty2, + const float opacity=1, + const float brightness=1) { + if (is_empty()) return *this; + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) + return draw_triangle(x0,y0,x1,y1,x2,y2,+texture,tx0,ty0,tx1,ty1,tx2,ty2,opacity,brightness); + static const T maxval = (T)std::min(cimg::type::max(),cimg::type::max()); + const float + nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f), + nbrightness = cimg::cut(brightness,0,2); + const ulongT + whd = (ulongT)_width*_height*_depth, + twh = (ulongT)texture._width*texture._height, + offx = _spectrum*whd - 1; + int nx0 = x0, ny0 = y0, nx1 = x1, ny1 = y1, nx2 = x2, ny2 = y2, + ntx0 = tx0, nty0 = ty0, ntx1 = tx1, nty1 = ty1, ntx2 = tx2, nty2 = ty2; + if (ny0>ny1) cimg::swap(nx0,nx1,ny0,ny1,ntx0,ntx1,nty0,nty1); + if (ny0>ny2) cimg::swap(nx0,nx2,ny0,ny2,ntx0,ntx2,nty0,nty2); + if (ny1>ny2) cimg::swap(nx1,nx2,ny1,ny2,ntx1,ntx2,nty1,nty2); + if (ny0>=height() || ny2<0) return *this; + _cimg_for_triangle3(*this,xleft0,txleft0,tyleft0,xright0,txright0,tyright0,y, + nx0,ny0,ntx0,nty0,nx1,ny1,ntx1,nty1,nx2,ny2,ntx2,nty2) { + int + xleft = xleft0, xright = xright0, + txleft = txleft0, txright = txright0, + tyleft = tyleft0, tyright = tyright0; + if (xrighttxleft?txright - txleft:txleft - txright, + dty = tyright>tyleft?tyright - tyleft:tyleft - tyright, + rtx = dx?(txright - txleft)/dx:0, + rty = dx?(tyright - tyleft)/dx:0, + stx = txright>txleft?1:-1, + sty = tyright>tyleft?1:-1, + ndtx = dtx - (dx?dx*(dtx/dx):0), + ndty = dty - (dx?dx*(dty/dx):0); + int errtx = dx>>1, errty = errtx; + if (xleft<0 && dx) { + txleft-=xleft*(txright - txleft)/dx; + tyleft-=xleft*(tyright - tyleft)/dx; + } + if (xleft<0) xleft = 0; + if (xright>=width() - 1) xright = width() - 1; + T* ptrd = data(xleft,y,0,0); + if (opacity>=1) { + if (nbrightness==1) for (int x = xleft; x<=xright; ++x) { + const tc *col = &texture._atXY(txleft,tyleft); + cimg_forC(*this,c) { + *ptrd = (T)*col; + ptrd+=whd; col+=twh; + } + ptrd-=offx; + txleft+=rtx+((errtx-=ndtx)<0?errtx+=dx,stx:0); + tyleft+=rty+((errty-=ndty)<0?errty+=dx,sty:0); + } else if (nbrightness<1) for (int x = xleft; x<=xright; ++x) { + const tc *col = &texture._atXY(txleft,tyleft); + cimg_forC(*this,c) { + *ptrd = (T)(nbrightness**col); + ptrd+=whd; col+=twh; + } + ptrd-=offx; + txleft+=rtx+((errtx-=ndtx)<0?errtx+=dx,stx:0); + tyleft+=rty+((errty-=ndty)<0?errty+=dx,sty:0); + } else for (int x = xleft; x<=xright; ++x) { + const tc *col = &texture._atXY(txleft,tyleft); + cimg_forC(*this,c) { + *ptrd = (T)((2 - nbrightness)**(col++) + (nbrightness - 1)*maxval); + ptrd+=whd; col+=twh; + } + ptrd-=offx; + txleft+=rtx+((errtx-=ndtx)<0?errtx+=dx,stx:0); + tyleft+=rty+((errty-=ndty)<0?errty+=dx,sty:0); + } + } else { + if (nbrightness==1) for (int x = xleft; x<=xright; ++x) { + const tc *col = &texture._atXY(txleft,tyleft); + cimg_forC(*this,c) { + *ptrd = (T)(nopacity**col + *ptrd*copacity); + ptrd+=whd; col+=twh; + } + ptrd-=offx; + txleft+=rtx+((errtx-=ndtx)<0?errtx+=dx,stx:0); + tyleft+=rty+((errty-=ndty)<0?errty+=dx,sty:0); + } else if (nbrightness<1) for (int x = xleft; x<=xright; ++x) { + const tc *col = &texture._atXY(txleft,tyleft); + cimg_forC(*this,c) { + *ptrd = (T)(nopacity*nbrightness**col + *ptrd*copacity); + ptrd+=whd; col+=twh; + } + ptrd-=offx; + txleft+=rtx+((errtx-=ndtx)<0?errtx+=dx,stx:0); + tyleft+=rty+((errty-=ndty)<0?errty+=dx,sty:0); + } else for (int x = xleft; x<=xright; ++x) { + const tc *col = &texture._atXY(txleft,tyleft); + cimg_forC(*this,c) { + const T val = (T)((2 - nbrightness)**(col++) + (nbrightness - 1)*maxval); + *ptrd = (T)(nopacity*val + *ptrd*copacity); + ptrd+=whd; col+=twh; + } + ptrd-=offx; + txleft+=rtx+((errtx-=ndtx)<0?errtx+=dx,stx:0); + tyleft+=rty+((errty-=ndty)<0?errty+=dx,sty:0); + } + } + } + return *this; + } + + //! Draw a 2d textured triangle, with perspective correction. + template + CImg& draw_triangle(const int x0, const int y0, const float z0, + const int x1, const int y1, const float z1, + const int x2, const int y2, const float z2, + const CImg& texture, + const int tx0, const int ty0, + const int tx1, const int ty1, + const int tx2, const int ty2, + const float opacity=1, + const float brightness=1) { + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) + return draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,+texture,tx0,ty0,tx1,ty1,tx2,ty2,opacity,brightness); + static const T maxval = (T)std::min(cimg::type::max(),(T)cimg::type::max()); + const float + nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f), + nbrightness = cimg::cut(brightness,0,2); + const ulongT + whd = (ulongT)_width*_height*_depth, + twh = (ulongT)texture._width*texture._height, + offx = _spectrum*whd - 1; + int nx0 = x0, ny0 = y0, nx1 = x1, ny1 = y1, nx2 = x2, ny2 = y2; + float + ntx0 = tx0/z0, nty0 = ty0/z0, + ntx1 = tx1/z1, nty1 = ty1/z1, + ntx2 = tx2/z2, nty2 = ty2/z2, + nz0 = 1/z0, nz1 = 1/z1, nz2 = 1/z2; + if (ny0>ny1) cimg::swap(nx0,nx1,ny0,ny1,ntx0,ntx1,nty0,nty1,nz0,nz1); + if (ny0>ny2) cimg::swap(nx0,nx2,ny0,ny2,ntx0,ntx2,nty0,nty2,nz0,nz2); + if (ny1>ny2) cimg::swap(nx1,nx2,ny1,ny2,ntx1,ntx2,nty1,nty2,nz1,nz2); + if (ny0>=height() || ny2<0) return *this; + float + ptxl = (ntx1 - ntx0)/(ny1 - ny0), + ptxr = (ntx2 - ntx0)/(ny2 - ny0), + ptxn = (ntx2 - ntx1)/(ny2 - ny1), + ptyl = (nty1 - nty0)/(ny1 - ny0), + ptyr = (nty2 - nty0)/(ny2 - ny0), + ptyn = (nty2 - nty1)/(ny2 - ny1), + pzl = (nz1 - nz0)/(ny1 - ny0), + pzr = (nz2 - nz0)/(ny2 - ny0), + pzn = (nz2 - nz1)/(ny2 - ny1), + zr = ny0>=0?nz0:(nz0 - ny0*(nz2 - nz0)/(ny2 - ny0)), + txr = ny0>=0?ntx0:(ntx0 - ny0*(ntx2 - ntx0)/(ny2 - ny0)), + tyr = ny0>=0?nty0:(nty0 - ny0*(nty2 - nty0)/(ny2 - ny0)), + zl = ny1>=0?(ny0>=0?nz0:(nz0 - ny0*(nz1 - nz0)/(ny1 - ny0))):(pzl=pzn,(nz1 - ny1*(nz2 - nz1)/(ny2 - ny1))), + txl = ny1>=0?(ny0>=0?ntx0:(ntx0 - ny0*(ntx1 - ntx0)/(ny1 - ny0))): + (ptxl=ptxn,(ntx1 - ny1*(ntx2 - ntx1)/(ny2 - ny1))), + tyl = ny1>=0?(ny0>=0?nty0:(nty0 - ny0*(nty1 - nty0)/(ny1 - ny0))): + (ptyl=ptyn,(nty1 - ny1*(nty2 - nty1)/(ny2 - ny1))); + _cimg_for_triangle1(*this,xleft0,xright0,y,nx0,ny0,nx1,ny1,nx2,ny2) { + if (y==ny1) { zl = nz1; txl = ntx1; tyl = nty1; pzl = pzn; ptxl = ptxn; ptyl = ptyn; } + int xleft = xleft0, xright = xright0; + float + zleft = zl, zright = zr, + txleft = txl, txright = txr, + tyleft = tyl, tyright = tyr; + if (xright=width() - 1) xright = width() - 1; + T* ptrd = data(xleft,y,0,0); + if (opacity>=1) { + if (nbrightness==1) for (int x = xleft; x<=xright; ++x) { + const float invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + cimg_forC(*this,c) { + *ptrd = (T)*col; + ptrd+=whd; col+=twh; + } + ptrd-=offx; zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + } else if (nbrightness<1) for (int x=xleft; x<=xright; ++x) { + const float invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + cimg_forC(*this,c) { + *ptrd = (T)(nbrightness**col); + ptrd+=whd; col+=twh; + } + ptrd-=offx; zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + } else for (int x = xleft; x<=xright; ++x) { + const float invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + cimg_forC(*this,c) { + *ptrd = (T)((2 - nbrightness)**col + (nbrightness - 1)*maxval); + ptrd+=whd; col+=twh; + } + ptrd-=offx; zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + } + } else { + if (nbrightness==1) for (int x = xleft; x<=xright; ++x) { + const float invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + cimg_forC(*this,c) { + *ptrd = (T)(nopacity**col + *ptrd*copacity); + ptrd+=whd; col+=twh; + } + ptrd-=offx; zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + } else if (nbrightness<1) for (int x = xleft; x<=xright; ++x) { + const float invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + cimg_forC(*this,c) { + *ptrd = (T)(nopacity*nbrightness**col + *ptrd*copacity); + ptrd+=whd; col+=twh; + } + ptrd-=offx; zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + } else for (int x = xleft; x<=xright; ++x) { + const float invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + cimg_forC(*this,c) { + const T val = (T)((2 - nbrightness)**col + (nbrightness - 1)*maxval); + *ptrd = (T)(nopacity*val + *ptrd*copacity); + ptrd+=whd; col+=twh; + } + ptrd-=offx; zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + } + } + zr+=pzr; txr+=ptxr; tyr+=ptyr; zl+=pzl; txl+=ptxl; tyl+=ptyl; + } + return *this; + } + + //! Draw a textured 2d triangle, with perspective correction and z-buffering. + template + CImg& draw_triangle(CImg& zbuffer, + const int x0, const int y0, const float z0, + const int x1, const int y1, const float z1, + const int x2, const int y2, const float z2, + const CImg& texture, + const int tx0, const int ty0, + const int tx1, const int ty1, + const int tx2, const int ty2, + const float opacity=1, + const float brightness=1) { + typedef typename cimg::superset::type tzfloat; + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (!is_sameXY(zbuffer)) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data); + + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) + return draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,+texture,tx0,ty0,tx1,ty1,tx2,ty2,opacity,brightness); + static const T maxval = (T)std::min(cimg::type::max(),(T)cimg::type::max()); + const float + nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f), + nbrightness = cimg::cut(brightness,0,2); + const ulongT + whd = (ulongT)_width*_height*_depth, + twh = (ulongT)texture._width*texture._height, + offx = _spectrum*whd; + int nx0 = x0, ny0 = y0, nx1 = x1, ny1 = y1, nx2 = x2, ny2 = y2; + float + ntx0 = tx0/z0, nty0 = ty0/z0, + ntx1 = tx1/z1, nty1 = ty1/z1, + ntx2 = tx2/z2, nty2 = ty2/z2; + tzfloat nz0 = 1/(tzfloat)z0, nz1 = 1/(tzfloat)z1, nz2 = 1/(tzfloat)z2; + if (ny0>ny1) cimg::swap(nx0,nx1,ny0,ny1,ntx0,ntx1,nty0,nty1,nz0,nz1); + if (ny0>ny2) cimg::swap(nx0,nx2,ny0,ny2,ntx0,ntx2,nty0,nty2,nz0,nz2); + if (ny1>ny2) cimg::swap(nx1,nx2,ny1,ny2,ntx1,ntx2,nty1,nty2,nz1,nz2); + if (ny0>=height() || ny2<0) return *this; + float + ptxl = (ntx1 - ntx0)/(ny1 - ny0), + ptxr = (ntx2 - ntx0)/(ny2 - ny0), + ptxn = (ntx2 - ntx1)/(ny2 - ny1), + ptyl = (nty1 - nty0)/(ny1 - ny0), + ptyr = (nty2 - nty0)/(ny2 - ny0), + ptyn = (nty2 - nty1)/(ny2 - ny1), + txr = ny0>=0?ntx0:(ntx0 - ny0*(ntx2 - ntx0)/(ny2 - ny0)), + tyr = ny0>=0?nty0:(nty0 - ny0*(nty2 - nty0)/(ny2 - ny0)), + txl = ny1>=0?(ny0>=0?ntx0:(ntx0 - ny0*(ntx1 - ntx0)/(ny1 - ny0))): + (ptxl=ptxn,(ntx1 - ny1*(ntx2 - ntx1)/(ny2 - ny1))), + tyl = ny1>=0?(ny0>=0?nty0:(nty0 - ny0*(nty1 - nty0)/(ny1 - ny0))): + (ptyl=ptyn,(nty1 - ny1*(nty2 - nty1)/(ny2 - ny1))); + tzfloat + pzl = (nz1 - nz0)/(ny1 - ny0), + pzr = (nz2 - nz0)/(ny2 - ny0), + pzn = (nz2 - nz1)/(ny2 - ny1), + zr = ny0>=0?nz0:(nz0 - ny0*(nz2 - nz0)/(ny2 - ny0)), + zl = ny1>=0?(ny0>=0?nz0:(nz0 - ny0*(nz1 - nz0)/(ny1 - ny0))):(pzl=pzn,(nz1 - ny1*(nz2 - nz1)/(ny2 - ny1))); + _cimg_for_triangle1(*this,xleft0,xright0,y,nx0,ny0,nx1,ny1,nx2,ny2) { + if (y==ny1) { zl = nz1; txl = ntx1; tyl = nty1; pzl = pzn; ptxl = ptxn; ptyl = ptyn; } + int xleft = xleft0, xright = xright0; + float txleft = txl, txright = txr, tyleft = tyl, tyright = tyr; + tzfloat zleft = zl, zright = zr; + if (xright=width() - 1) xright = width() - 1; + T *ptrd = data(xleft,y,0,0); + tz *ptrz = zbuffer.data(xleft,y); + if (opacity>=1) { + if (nbrightness==1) for (int x = xleft; x<=xright; ++x, ++ptrz, ++ptrd) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tzfloat invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + cimg_forC(*this,c) { + *ptrd = (T)*col; + ptrd+=whd; col+=twh; + } + ptrd-=offx; + } + zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + } else if (nbrightness<1) for (int x = xleft; x<=xright; ++x, ++ptrz, ++ptrd) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tzfloat invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + cimg_forC(*this,c) { + *ptrd = (T)(nbrightness**col); + ptrd+=whd; col+=twh; + } + ptrd-=offx; + } + zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + } else for (int x = xleft; x<=xright; ++x, ++ptrz, ++ptrd) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tzfloat invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + cimg_forC(*this,c) { + *ptrd = (T)((2 - nbrightness)**col + (nbrightness - 1)*maxval); + ptrd+=whd; col+=twh; + } + ptrd-=offx; + } + zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + } + } else { + if (nbrightness==1) for (int x = xleft; x<=xright; ++x, ++ptrz, ++ptrd) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tzfloat invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + cimg_forC(*this,c) { + *ptrd = (T)(nopacity**col + *ptrd*copacity); + ptrd+=whd; col+=twh; + } + ptrd-=offx; + } + zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + } else if (nbrightness<1) for (int x = xleft; x<=xright; ++x, ++ptrz, ++ptrd) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tzfloat invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + cimg_forC(*this,c) { + *ptrd = (T)(nopacity*nbrightness**col + *ptrd*copacity); + ptrd+=whd; col+=twh; + } + ptrd-=offx; + } + zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + } else for (int x = xleft; x<=xright; ++x, ++ptrz, ++ptrd) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tzfloat invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + cimg_forC(*this,c) { + const T val = (T)((2 - nbrightness)**col + (nbrightness - 1)*maxval); + *ptrd = (T)(nopacity*val + *ptrd*copacity); + ptrd+=whd; col+=twh; + } + ptrd-=offx; + } + zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + } + } + zr+=pzr; txr+=ptxr; tyr+=ptyr; zl+=pzl; txl+=ptxl; tyl+=ptyl; + } + return *this; + } + + //! Draw a Phong-shaded 2d triangle. + /** + \param x0 X-coordinate of the first vertex in the image instance. + \param y0 Y-coordinate of the first vertex in the image instance. + \param x1 X-coordinate of the second vertex in the image instance. + \param y1 Y-coordinate of the second vertex in the image instance. + \param x2 X-coordinate of the third vertex in the image instance. + \param y2 Y-coordinate of the third vertex in the image instance. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param light Light image. + \param lx0 X-coordinate of the first vertex in the light image. + \param ly0 Y-coordinate of the first vertex in the light image. + \param lx1 X-coordinate of the second vertex in the light image. + \param ly1 Y-coordinate of the second vertex in the light image. + \param lx2 X-coordinate of the third vertex in the light image. + \param ly2 Y-coordinate of the third vertex in the light image. + \param opacity Drawing opacity. + **/ + template + CImg& draw_triangle(const int x0, const int y0, + const int x1, const int y1, + const int x2, const int y2, + const tc *const color, + const CImg& light, + const int lx0, const int ly0, + const int lx1, const int ly1, + const int lx2, const int ly2, + const float opacity=1) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Specified color is (null).", + cimg_instance); + if (light._depth>1 || light._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified light texture (%u,%u,%u,%u,%p).", + cimg_instance,light._width,light._height,light._depth,light._spectrum,light._data); + if (is_overlapped(light)) return draw_triangle(x0,y0,x1,y1,x2,y2,color,+light,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + static const T maxval = (T)std::min(cimg::type::max(),(T)cimg::type::max()); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + int nx0 = x0, ny0 = y0, nx1 = x1, ny1 = y1, nx2 = x2, ny2 = y2, + nlx0 = lx0, nly0 = ly0, nlx1 = lx1, nly1 = ly1, nlx2 = lx2, nly2 = ly2; + const ulongT + whd = (ulongT)_width*_height*_depth, + lwh = (ulongT)light._width*light._height, + offx = _spectrum*whd - 1; + if (ny0>ny1) cimg::swap(nx0,nx1,ny0,ny1,nlx0,nlx1,nly0,nly1); + if (ny0>ny2) cimg::swap(nx0,nx2,ny0,ny2,nlx0,nlx2,nly0,nly2); + if (ny1>ny2) cimg::swap(nx1,nx2,ny1,ny2,nlx1,nlx2,nly1,nly2); + if (ny0>=height() || ny2<0) return *this; + _cimg_for_triangle3(*this,xleft0,lxleft0,lyleft0,xright0,lxright0,lyright0,y, + nx0,ny0,nlx0,nly0,nx1,ny1,nlx1,nly1,nx2,ny2,nlx2,nly2) { + int + xleft = xleft0, xright = xright0, + lxleft = lxleft0, lxright = lxright0, + lyleft = lyleft0, lyright = lyright0; + if (xrightlxleft?lxright - lxleft:lxleft - lxright, + dly = lyright>lyleft?lyright - lyleft:lyleft - lyright, + rlx = dx?(lxright - lxleft)/dx:0, + rly = dx?(lyright - lyleft)/dx:0, + slx = lxright>lxleft?1:-1, + sly = lyright>lyleft?1:-1, + ndlx = dlx - (dx?dx*(dlx/dx):0), + ndly = dly - (dx?dx*(dly/dx):0); + int errlx = dx>>1, errly = errlx; + if (xleft<0 && dx) { + lxleft-=xleft*(lxright - lxleft)/dx; + lyleft-=xleft*(lyright - lyleft)/dx; + } + if (xleft<0) xleft = 0; + if (xright>=width() - 1) xright = width() - 1; + T* ptrd = data(xleft,y,0,0); + if (opacity>=1) for (int x = xleft; x<=xright; ++x) { + const tc *col = color; + const tl *lig = &light._atXY(lxleft,lyleft); + cimg_forC(*this,c) { + const tl l = *lig; + *ptrd = (T)(l<1?l**(col++):((2 - l)**(col++) + (l - 1)*maxval)); + ptrd+=whd; lig+=lwh; + } + ptrd-=offx; + lxleft+=rlx+((errlx-=ndlx)<0?errlx+=dx,slx:0); + lyleft+=rly+((errly-=ndly)<0?errly+=dx,sly:0); + } else for (int x = xleft; x<=xright; ++x) { + const tc *col = color; + const tl *lig = &light._atXY(lxleft,lyleft); + cimg_forC(*this,c) { + const tl l = *lig; + const T val = (T)(l<1?l**(col++):((2 - l)**(col++) + (l - 1)*maxval)); + *ptrd = (T)(nopacity*val + *ptrd*copacity); + ptrd+=whd; lig+=lwh; + } + ptrd-=offx; + lxleft+=rlx+((errlx-=ndlx)<0?errlx+=dx,slx:0); + lyleft+=rly+((errly-=ndly)<0?errly+=dx,sly:0); + } + } + return *this; + } + + //! Draw a Phong-shaded 2d triangle, with z-buffering. + template + CImg& draw_triangle(CImg& zbuffer, + const int x0, const int y0, const float z0, + const int x1, const int y1, const float z1, + const int x2, const int y2, const float z2, + const tc *const color, + const CImg& light, + const int lx0, const int ly0, + const int lx1, const int ly1, + const int lx2, const int ly2, + const float opacity=1) { + typedef typename cimg::superset::type tzfloat; + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Specified color is (null).", + cimg_instance); + if (light._depth>1 || light._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified light texture (%u,%u,%u,%u,%p).", + cimg_instance,light._width,light._height,light._depth,light._spectrum,light._data); + if (!is_sameXY(zbuffer)) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data); + if (is_overlapped(light)) return draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color, + +light,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + static const T maxval = (T)std::min(cimg::type::max(),(T)cimg::type::max()); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + const ulongT + whd = (ulongT)_width*_height*_depth, + lwh = (ulongT)light._width*light._height, + offx = _spectrum*whd; + int nx0 = x0, ny0 = y0, nx1 = x1, ny1 = y1, nx2 = x2, ny2 = y2, + nlx0 = lx0, nly0 = ly0, nlx1 = lx1, nly1 = ly1, nlx2 = lx2, nly2 = ly2; + tzfloat nz0 = 1/(tzfloat)z0, nz1 = 1/(tzfloat)z1, nz2 = 1/(tzfloat)z2; + if (ny0>ny1) cimg::swap(nx0,nx1,ny0,ny1,nlx0,nlx1,nly0,nly1,nz0,nz1); + if (ny0>ny2) cimg::swap(nx0,nx2,ny0,ny2,nlx0,nlx2,nly0,nly2,nz0,nz2); + if (ny1>ny2) cimg::swap(nx1,nx2,ny1,ny2,nlx1,nlx2,nly1,nly2,nz1,nz2); + if (ny0>=height() || ny2<0) return *this; + tzfloat + pzl = (nz1 - nz0)/(ny1 - ny0), + pzr = (nz2 - nz0)/(ny2 - ny0), + pzn = (nz2 - nz1)/(ny2 - ny1), + zr = ny0>=0?nz0:(nz0 - ny0*(nz2 - nz0)/(ny2 - ny0)), + zl = ny1>=0?(ny0>=0?nz0:(nz0 - ny0*(nz1 - nz0)/(ny1 - ny0))):(pzl=pzn,(nz1 - ny1*(nz2 - nz1)/(ny2 - ny1))); + _cimg_for_triangle3(*this,xleft0,lxleft0,lyleft0,xright0,lxright0,lyright0,y, + nx0,ny0,nlx0,nly0,nx1,ny1,nlx1,nly1,nx2,ny2,nlx2,nly2) { + if (y==ny1) { zl = nz1; pzl = pzn; } + int + xleft = xleft0, xright = xright0, + lxleft = lxleft0, lxright = lxright0, + lyleft = lyleft0, lyright = lyright0; + tzfloat zleft = zl, zright = zr; + if (xrightlxleft?lxright - lxleft:lxleft - lxright, + dly = lyright>lyleft?lyright - lyleft:lyleft - lyright, + rlx = dx?(lxright - lxleft)/dx:0, + rly = dx?(lyright - lyleft)/dx:0, + slx = lxright>lxleft?1:-1, + sly = lyright>lyleft?1:-1, + ndlx = dlx - (dx?dx*(dlx/dx):0), + ndly = dly - (dx?dx*(dly/dx):0); + const tzfloat pentez = (zright - zleft)/dx; + int errlx = dx>>1, errly = errlx; + if (xleft<0 && dx) { + zleft-=xleft*(zright - zleft)/dx; + lxleft-=xleft*(lxright - lxleft)/dx; + lyleft-=xleft*(lyright - lyleft)/dx; + } + if (xleft<0) xleft = 0; + if (xright>=width() - 1) xright = width() - 1; + T *ptrd = data(xleft,y,0,0); + tz *ptrz = xleft<=xright?zbuffer.data(xleft,y):0; + if (opacity>=1) for (int x = xleft; x<=xright; ++x, ++ptrz, ++ptrd) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tc *col = color; + const tl *lig = &light._atXY(lxleft,lyleft); + cimg_forC(*this,c) { + const tl l = *lig; + const tc cval = *(col++); + *ptrd = (T)(l<1?l*cval:(2 - l)*cval + (l - 1)*maxval); + ptrd+=whd; lig+=lwh; + } + ptrd-=offx; + } + zleft+=pentez; + lxleft+=rlx+((errlx-=ndlx)<0?errlx+=dx,slx:0); + lyleft+=rly+((errly-=ndly)<0?errly+=dx,sly:0); + } else for (int x = xleft; x<=xright; ++x, ++ptrz, ++ptrd) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tc *col = color; + const tl *lig = &light._atXY(lxleft,lyleft); + cimg_forC(*this,c) { + const tl l = *lig; + const tc cval = *(col++); + const T val = (T)(l<1?l*cval:(2 - l)*cval + (l - 1)*maxval); + *ptrd = (T)(nopacity*val + *ptrd*copacity); + ptrd+=whd; lig+=lwh; + } + ptrd-=offx; + } + zleft+=pentez; + lxleft+=rlx+((errlx-=ndlx)<0?errlx+=dx,slx:0); + lyleft+=rly+((errly-=ndly)<0?errly+=dx,sly:0); + } + zr+=pzr; zl+=pzl; + } + return *this; + } + + //! Draw a textured Gouraud-shaded 2d triangle. + /** + \param x0 X-coordinate of the first vertex in the image instance. + \param y0 Y-coordinate of the first vertex in the image instance. + \param x1 X-coordinate of the second vertex in the image instance. + \param y1 Y-coordinate of the second vertex in the image instance. + \param x2 X-coordinate of the third vertex in the image instance. + \param y2 Y-coordinate of the third vertex in the image instance. + \param texture Texture image used to fill the triangle. + \param tx0 X-coordinate of the first vertex in the texture image. + \param ty0 Y-coordinate of the first vertex in the texture image. + \param tx1 X-coordinate of the second vertex in the texture image. + \param ty1 Y-coordinate of the second vertex in the texture image. + \param tx2 X-coordinate of the third vertex in the texture image. + \param ty2 Y-coordinate of the third vertex in the texture image. + \param brightness0 Brightness factor of the first vertex. + \param brightness1 Brightness factor of the second vertex. + \param brightness2 Brightness factor of the third vertex. + \param opacity Drawing opacity. + **/ + template + CImg& draw_triangle(const int x0, const int y0, + const int x1, const int y1, + const int x2, const int y2, + const CImg& texture, + const int tx0, const int ty0, + const int tx1, const int ty1, + const int tx2, const int ty2, + const float brightness0, + const float brightness1, + const float brightness2, + const float opacity=1) { + if (is_empty()) return *this; + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) + return draw_triangle(x0,y0,x1,y1,x2,y2,+texture,tx0,ty0,tx1,ty1,tx2,ty2, + brightness0,brightness1,brightness2,opacity); + static const T maxval = (T)std::min(cimg::type::max(),cimg::type::max()); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + const ulongT + whd = (ulongT)_width*_height*_depth, + twh = (ulongT)texture._width*texture._height, + offx = _spectrum*whd - 1; + int nx0 = x0, ny0 = y0, nx1 = x1, ny1 = y1, nx2 = x2, ny2 = y2, + ntx0 = tx0, nty0 = ty0, ntx1 = tx1, nty1 = ty1, ntx2 = tx2, nty2 = ty2, + nc0 = (int)((brightness0<0.0f?0.0f:(brightness0>2.0f?2.0f:brightness0))*256.0f), + nc1 = (int)((brightness1<0.0f?0.0f:(brightness1>2.0f?2.0f:brightness1))*256.0f), + nc2 = (int)((brightness2<0.0f?0.0f:(brightness2>2.0f?2.0f:brightness2))*256.0f); + if (ny0>ny1) cimg::swap(nx0,nx1,ny0,ny1,ntx0,ntx1,nty0,nty1,nc0,nc1); + if (ny0>ny2) cimg::swap(nx0,nx2,ny0,ny2,ntx0,ntx2,nty0,nty2,nc0,nc2); + if (ny1>ny2) cimg::swap(nx1,nx2,ny1,ny2,ntx1,ntx2,nty1,nty2,nc1,nc2); + if (ny0>=height() || ny2<0) return *this; + _cimg_for_triangle4(*this,xleft0,cleft0,txleft0,tyleft0,xright0,cright0,txright0,tyright0,y, + nx0,ny0,nc0,ntx0,nty0,nx1,ny1,nc1,ntx1,nty1,nx2,ny2,nc2,ntx2,nty2) { + int + xleft = xleft0, xright = xright0, + cleft = cleft0, cright = cright0, + txleft = txleft0, txright = txright0, + tyleft = tyleft0, tyright = tyright0; + if (xrightcleft?cright - cleft:cleft - cright, + dtx = txright>txleft?txright - txleft:txleft - txright, + dty = tyright>tyleft?tyright - tyleft:tyleft - tyright, + rc = dx?(cright - cleft)/dx:0, + rtx = dx?(txright - txleft)/dx:0, + rty = dx?(tyright - tyleft)/dx:0, + sc = cright>cleft?1:-1, + stx = txright>txleft?1:-1, + sty = tyright>tyleft?1:-1, + ndc = dc - (dx?dx*(dc/dx):0), + ndtx = dtx - (dx?dx*(dtx/dx):0), + ndty = dty - (dx?dx*(dty/dx):0); + int errc = dx>>1, errtx = errc, errty = errc; + if (xleft<0 && dx) { + cleft-=xleft*(cright - cleft)/dx; + txleft-=xleft*(txright - txleft)/dx; + tyleft-=xleft*(tyright - tyleft)/dx; + } + if (xleft<0) xleft = 0; + if (xright>=width() - 1) xright = width() - 1; + T* ptrd = data(xleft,y,0,0); + if (opacity>=1) for (int x = xleft; x<=xright; ++x) { + const tc *col = &texture._atXY(txleft,tyleft); + cimg_forC(*this,c) { + *ptrd = (T)(cleft<256?cleft**col/256:((512 - cleft)**col + (cleft - 256)*maxval)/256); + ptrd+=whd; col+=twh; + } + ptrd-=offx; + cleft+=rc+((errc-=ndc)<0?errc+=dx,sc:0); + txleft+=rtx+((errtx-=ndtx)<0?errtx+=dx,stx:0); + tyleft+=rty+((errty-=ndty)<0?errty+=dx,sty:0); + } else for (int x = xleft; x<=xright; ++x) { + const tc *col = &texture._atXY(txleft,tyleft); + cimg_forC(*this,c) { + const T val = (T)(cleft<256?cleft**col/256:((512 - cleft)**col + (cleft - 256)*maxval)/256); + *ptrd = (T)(nopacity*val + *ptrd*copacity); + ptrd+=whd; col+=twh; + } + ptrd-=offx; + cleft+=rc+((errc-=ndc)<0?errc+=dx,sc:0); + txleft+=rtx+((errtx-=ndtx)<0?errtx+=dx,stx:0); + tyleft+=rty+((errty-=ndty)<0?errty+=dx,sty:0); + } + } + return *this; + } + + //! Draw a textured Gouraud-shaded 2d triangle, with perspective correction \overloading. + template + CImg& draw_triangle(const int x0, const int y0, const float z0, + const int x1, const int y1, const float z1, + const int x2, const int y2, const float z2, + const CImg& texture, + const int tx0, const int ty0, + const int tx1, const int ty1, + const int tx2, const int ty2, + const float brightness0, + const float brightness1, + const float brightness2, + const float opacity=1) { + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) return draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,+texture,tx0,ty0,tx1,ty1,tx2,ty2, + brightness0,brightness1,brightness2,opacity); + static const T maxval = (T)std::min(cimg::type::max(),(T)cimg::type::max()); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + const ulongT + whd = (ulongT)_width*_height*_depth, + twh = (ulongT)texture._width*texture._height, + offx = _spectrum*whd - 1; + int nx0 = x0, ny0 = y0, nx1 = x1, ny1 = y1, nx2 = x2, ny2 = y2, + nc0 = (int)((brightness0<0.0f?0.0f:(brightness0>2.0f?2.0f:brightness0))*256.0f), + nc1 = (int)((brightness1<0.0f?0.0f:(brightness1>2.0f?2.0f:brightness1))*256.0f), + nc2 = (int)((brightness2<0.0f?0.0f:(brightness2>2.0f?2.0f:brightness2))*256.0f); + float + ntx0 = tx0/z0, nty0 = ty0/z0, + ntx1 = tx1/z1, nty1 = ty1/z1, + ntx2 = tx2/z2, nty2 = ty2/z2, + nz0 = 1/z0, nz1 = 1/z1, nz2 = 1/z2; + if (ny0>ny1) cimg::swap(nx0,nx1,ny0,ny1,ntx0,ntx1,nty0,nty1,nz0,nz1,nc0,nc1); + if (ny0>ny2) cimg::swap(nx0,nx2,ny0,ny2,ntx0,ntx2,nty0,nty2,nz0,nz2,nc0,nc2); + if (ny1>ny2) cimg::swap(nx1,nx2,ny1,ny2,ntx1,ntx2,nty1,nty2,nz1,nz2,nc1,nc2); + if (ny0>=height() || ny2<0) return *this; + float + ptxl = (ntx1 - ntx0)/(ny1 - ny0), + ptxr = (ntx2 - ntx0)/(ny2 - ny0), + ptxn = (ntx2 - ntx1)/(ny2 - ny1), + ptyl = (nty1 - nty0)/(ny1 - ny0), + ptyr = (nty2 - nty0)/(ny2 - ny0), + ptyn = (nty2 - nty1)/(ny2 - ny1), + pzl = (nz1 - nz0)/(ny1 - ny0), + pzr = (nz2 - nz0)/(ny2 - ny0), + pzn = (nz2 - nz1)/(ny2 - ny1), + zr = ny0>=0?nz0:(nz0 - ny0*(nz2 - nz0)/(ny2 - ny0)), + txr = ny0>=0?ntx0:(ntx0 - ny0*(ntx2 - ntx0)/(ny2 - ny0)), + tyr = ny0>=0?nty0:(nty0 - ny0*(nty2 - nty0)/(ny2 - ny0)), + zl = ny1>=0?(ny0>=0?nz0:(nz0 - ny0*(nz1 - nz0)/(ny1 - ny0))):(pzl=pzn,(nz1 - ny1*(nz2 - nz1)/(ny2 - ny1))), + txl = ny1>=0?(ny0>=0?ntx0:(ntx0 - ny0*(ntx1 - ntx0)/(ny1 - ny0))): + (ptxl=ptxn,(ntx1 - ny1*(ntx2 - ntx1)/(ny2 - ny1))), + tyl = ny1>=0?(ny0>=0?nty0:(nty0 - ny0*(nty1 - nty0)/(ny1 - ny0))): + (ptyl=ptyn,(nty1 - ny1*(nty2 - nty1)/(ny2 - ny1))); + _cimg_for_triangle2(*this,xleft0,cleft0,xright0,cright0,y,nx0,ny0,nc0,nx1,ny1,nc1,nx2,ny2,nc2) { + if (y==ny1) { zl = nz1; txl = ntx1; tyl = nty1; pzl = pzn; ptxl = ptxn; ptyl = ptyn; } + int + xleft = xleft0, xright = xright0, + cleft = cleft0, cright = cright0; + float + zleft = zl, zright = zr, + txleft = txl, txright = txr, + tyleft = tyl, tyright = tyr; + if (xrightcleft?cright - cleft:cleft - cright, + rc = dx?(cright - cleft)/dx:0, + sc = cright>cleft?1:-1, + ndc = dc - (dx?dx*(dc/dx):0); + const float + pentez = (zright - zleft)/dx, + pentetx = (txright - txleft)/dx, + pentety = (tyright - tyleft)/dx; + int errc = dx>>1; + if (xleft<0 && dx) { + cleft-=xleft*(cright - cleft)/dx; + zleft-=xleft*(zright - zleft)/dx; + txleft-=xleft*(txright - txleft)/dx; + tyleft-=xleft*(tyright - tyleft)/dx; + } + if (xleft<0) xleft = 0; + if (xright>=width() - 1) xright = width() - 1; + T* ptrd = data(xleft,y,0,0); + if (opacity>=1) for (int x = xleft; x<=xright; ++x) { + const float invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + cimg_forC(*this,c) { + *ptrd = (T)(cleft<256?cleft**col/256:((512 - cleft)**col + (cleft - 256)*maxval)/256); + ptrd+=whd; col+=twh; + } + ptrd-=offx; zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + cleft+=rc+((errc-=ndc)<0?errc+=dx,sc:0); + } else for (int x = xleft; x<=xright; ++x) { + const float invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + cimg_forC(*this,c) { + const T val = (T)(cleft<256?cleft**col/256:((512 - cleft)**col + (cleft - 256)*maxval)/256); + *ptrd = (T)(nopacity*val + *ptrd*copacity); + ptrd+=whd; col+=twh; + } + ptrd-=offx; zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + cleft+=rc+((errc-=ndc)<0?errc+=dx,sc:0); + } + zr+=pzr; txr+=ptxr; tyr+=ptyr; zl+=pzl; txl+=ptxl; tyl+=ptyl; + } + return *this; + } + + //! Draw a textured Gouraud-shaded 2d triangle, with perspective correction and z-buffering \overloading. + template + CImg& draw_triangle(CImg& zbuffer, + const int x0, const int y0, const float z0, + const int x1, const int y1, const float z1, + const int x2, const int y2, const float z2, + const CImg& texture, + const int tx0, const int ty0, + const int tx1, const int ty1, + const int tx2, const int ty2, + const float brightness0, + const float brightness1, + const float brightness2, + const float opacity=1) { + typedef typename cimg::superset::type tzfloat; + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (!is_sameXY(zbuffer)) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data); + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (is_overlapped(texture)) + return draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,+texture,tx0,ty0,tx1,ty1,tx2,ty2, + brightness0,brightness1,brightness2,opacity); + static const T maxval = (T)std::min(cimg::type::max(),(T)cimg::type::max()); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + const ulongT + whd = (ulongT)_width*_height*_depth, + twh = (ulongT)texture._width*texture._height, + offx = _spectrum*whd; + int nx0 = x0, ny0 = y0, nx1 = x1, ny1 = y1, nx2 = x2, ny2 = y2, + nc0 = (int)((brightness0<0.0f?0.0f:(brightness0>2.0f?2.0f:brightness0))*256.0f), + nc1 = (int)((brightness1<0.0f?0.0f:(brightness1>2.0f?2.0f:brightness1))*256.0f), + nc2 = (int)((brightness2<0.0f?0.0f:(brightness2>2.0f?2.0f:brightness2))*256.0f); + float + ntx0 = tx0/z0, nty0 = ty0/z0, + ntx1 = tx1/z1, nty1 = ty1/z1, + ntx2 = tx2/z2, nty2 = ty2/z2; + tzfloat nz0 = 1/(tzfloat)z0, nz1 = 1/(tzfloat)z1, nz2 = 1/(tzfloat)z2; + if (ny0>ny1) cimg::swap(nx0,nx1,ny0,ny1,ntx0,ntx1,nty0,nty1,nz0,nz1,nc0,nc1); + if (ny0>ny2) cimg::swap(nx0,nx2,ny0,ny2,ntx0,ntx2,nty0,nty2,nz0,nz2,nc0,nc2); + if (ny1>ny2) cimg::swap(nx1,nx2,ny1,ny2,ntx1,ntx2,nty1,nty2,nz1,nz2,nc1,nc2); + if (ny0>=height() || ny2<0) return *this; + float + ptxl = (ntx1 - ntx0)/(ny1 - ny0), + ptxr = (ntx2 - ntx0)/(ny2 - ny0), + ptxn = (ntx2 - ntx1)/(ny2 - ny1), + ptyl = (nty1 - nty0)/(ny1 - ny0), + ptyr = (nty2 - nty0)/(ny2 - ny0), + ptyn = (nty2 - nty1)/(ny2 - ny1), + txr = ny0>=0?ntx0:(ntx0 - ny0*(ntx2 - ntx0)/(ny2 - ny0)), + tyr = ny0>=0?nty0:(nty0 - ny0*(nty2 - nty0)/(ny2 - ny0)), + txl = ny1>=0?(ny0>=0?ntx0:(ntx0 - ny0*(ntx1 - ntx0)/(ny1 - ny0))): + (ptxl=ptxn,(ntx1 - ny1*(ntx2 - ntx1)/(ny2 - ny1))), + tyl = ny1>=0?(ny0>=0?nty0:(nty0 - ny0*(nty1 - nty0)/(ny1 - ny0))): + (ptyl=ptyn,(nty1 - ny1*(nty2 - nty1)/(ny2 - ny1))); + tzfloat + pzl = (nz1 - nz0)/(ny1 - ny0), + pzr = (nz2 - nz0)/(ny2 - ny0), + pzn = (nz2 - nz1)/(ny2 - ny1), + zr = ny0>=0?nz0:(nz0 - ny0*(nz2 - nz0)/(ny2 - ny0)), + zl = ny1>=0?(ny0>=0?nz0:(nz0 - ny0*(nz1 - nz0)/(ny1 - ny0))):(pzl=pzn,(nz1 - ny1*(nz2 - nz1)/(ny2 - ny1))); + _cimg_for_triangle2(*this,xleft0,cleft0,xright0,cright0,y,nx0,ny0,nc0,nx1,ny1,nc1,nx2,ny2,nc2) { + if (y==ny1) { zl = nz1; txl = ntx1; tyl = nty1; pzl = pzn; ptxl = ptxn; ptyl = ptyn; } + int xleft = xleft0, xright = xright0, cleft = cleft0, cright = cright0; + float txleft = txl, txright = txr, tyleft = tyl, tyright = tyr; + tzfloat zleft = zl, zright = zr; + if (xrightcleft?cright - cleft:cleft - cright, + rc = dx?(cright - cleft)/dx:0, + sc = cright>cleft?1:-1, + ndc = dc - (dx?dx*(dc/dx):0); + float pentetx = (txright - txleft)/dx, pentety = (tyright - tyleft)/dx; + const tzfloat pentez = (zright - zleft)/dx; + int errc = dx>>1; + if (xleft<0 && dx) { + cleft-=xleft*(cright - cleft)/dx; + zleft-=xleft*(zright - zleft)/dx; + txleft-=xleft*(txright - txleft)/dx; + tyleft-=xleft*(tyright - tyleft)/dx; + } + if (xleft<0) xleft = 0; + if (xright>=width() - 1) xright = width() - 1; + T* ptrd = data(xleft,y); + tz *ptrz = zbuffer.data(xleft,y); + if (opacity>=1) for (int x = xleft; x<=xright; ++x, ++ptrd, ++ptrz) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tzfloat invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + cimg_forC(*this,c) { + *ptrd = (T)(cleft<256?cleft**col/256:((512 - cleft)**col + (cleft - 256)*maxval)/256); + ptrd+=whd; col+=twh; + } + ptrd-=offx; + } + zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + cleft+=rc+((errc-=ndc)<0?errc+=dx,sc:0); + } else for (int x = xleft; x<=xright; ++x, ++ptrd, ++ptrz) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tzfloat invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + cimg_forC(*this,c) { + const T val = (T)(cleft<256?cleft**col/256:((512 - cleft)**col + (cleft - 256)*maxval)/256); + *ptrd = (T)(nopacity*val + *ptrd*copacity); + ptrd+=whd; col+=twh; + } + ptrd-=offx; + } + zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + cleft+=rc+((errc-=ndc)<0?errc+=dx,sc:0); + } + zr+=pzr; txr+=ptxr; tyr+=ptyr; zl+=pzl; txl+=ptxl; tyl+=ptyl; + } + return *this; + } + + //! Draw a textured Phong-shaded 2d triangle. + /** + \param x0 X-coordinate of the first vertex in the image instance. + \param y0 Y-coordinate of the first vertex in the image instance. + \param x1 X-coordinate of the second vertex in the image instance. + \param y1 Y-coordinate of the second vertex in the image instance. + \param x2 X-coordinate of the third vertex in the image instance. + \param y2 Y-coordinate of the third vertex in the image instance. + \param texture Texture image used to fill the triangle. + \param tx0 X-coordinate of the first vertex in the texture image. + \param ty0 Y-coordinate of the first vertex in the texture image. + \param tx1 X-coordinate of the second vertex in the texture image. + \param ty1 Y-coordinate of the second vertex in the texture image. + \param tx2 X-coordinate of the third vertex in the texture image. + \param ty2 Y-coordinate of the third vertex in the texture image. + \param light Light image. + \param lx0 X-coordinate of the first vertex in the light image. + \param ly0 Y-coordinate of the first vertex in the light image. + \param lx1 X-coordinate of the second vertex in the light image. + \param ly1 Y-coordinate of the second vertex in the light image. + \param lx2 X-coordinate of the third vertex in the light image. + \param ly2 Y-coordinate of the third vertex in the light image. + \param opacity Drawing opacity. + **/ + template + CImg& draw_triangle(const int x0, const int y0, + const int x1, const int y1, + const int x2, const int y2, + const CImg& texture, + const int tx0, const int ty0, + const int tx1, const int ty1, + const int tx2, const int ty2, + const CImg& light, + const int lx0, const int ly0, + const int lx1, const int ly1, + const int lx2, const int ly2, + const float opacity=1) { + if (is_empty()) return *this; + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (light._depth>1 || light._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified light texture (%u,%u,%u,%u,%p).", + cimg_instance,light._width,light._height,light._depth,light._spectrum,light._data); + if (is_overlapped(texture)) + return draw_triangle(x0,y0,x1,y1,x2,y2,+texture,tx0,ty0,tx1,ty1,tx2,ty2,light,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + if (is_overlapped(light)) + return draw_triangle(x0,y0,x1,y1,x2,y2,texture,tx0,ty0,tx1,ty1,tx2,ty2,+light,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + static const T maxval = (T)std::min(cimg::type::max(),(T)cimg::type::max()); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + const ulongT + whd = (ulongT)_width*_height*_depth, + twh = (ulongT)texture._width*texture._height, + lwh = (ulongT)light._width*light._height, + offx = _spectrum*whd - 1; + int nx0 = x0, ny0 = y0, nx1 = x1, ny1 = y1, nx2 = x2, ny2 = y2, + ntx0 = tx0, nty0 = ty0, ntx1 = tx1, nty1 = ty1, ntx2 = tx2, nty2 = ty2, + nlx0 = lx0, nly0 = ly0, nlx1 = lx1, nly1 = ly1, nlx2 = lx2, nly2 = ly2; + if (ny0>ny1) cimg::swap(nx0,nx1,ny0,ny1,ntx0,ntx1,nty0,nty1,nlx0,nlx1,nly0,nly1); + if (ny0>ny2) cimg::swap(nx0,nx2,ny0,ny2,ntx0,ntx2,nty0,nty2,nlx0,nlx2,nly0,nly2); + if (ny1>ny2) cimg::swap(nx1,nx2,ny1,ny2,ntx1,ntx2,nty1,nty2,nlx1,nlx2,nly1,nly2); + if (ny0>=height() || ny2<0) return *this; + const bool is_bump = texture._spectrum>=_spectrum + 2; + const ulongT obx = twh*_spectrum, oby = twh*(_spectrum + 1); + + _cimg_for_triangle5(*this,xleft0,lxleft0,lyleft0,txleft0,tyleft0,xright0,lxright0,lyright0,txright0,tyright0,y, + nx0,ny0,nlx0,nly0,ntx0,nty0,nx1,ny1,nlx1,nly1,ntx1,nty1,nx2,ny2,nlx2,nly2,ntx2,nty2) { + int + xleft = xleft0, xright = xright0, + lxleft = lxleft0, lxright = lxright0, + lyleft = lyleft0, lyright = lyright0, + txleft = txleft0, txright = txright0, + tyleft = tyleft0, tyright = tyright0; + if (xrightlxleft?lxright - lxleft:lxleft - lxright, + dly = lyright>lyleft?lyright - lyleft:lyleft - lyright, + dtx = txright>txleft?txright - txleft:txleft - txright, + dty = tyright>tyleft?tyright - tyleft:tyleft - tyright, + rlx = dx?(lxright - lxleft)/dx:0, + rly = dx?(lyright - lyleft)/dx:0, + rtx = dx?(txright - txleft)/dx:0, + rty = dx?(tyright - tyleft)/dx:0, + slx = lxright>lxleft?1:-1, + sly = lyright>lyleft?1:-1, + stx = txright>txleft?1:-1, + sty = tyright>tyleft?1:-1, + ndlx = dlx - (dx?dx*(dlx/dx):0), + ndly = dly - (dx?dx*(dly/dx):0), + ndtx = dtx - (dx?dx*(dtx/dx):0), + ndty = dty - (dx?dx*(dty/dx):0); + int errlx = dx>>1, errly = errlx, errtx = errlx, errty = errlx; + if (xleft<0 && dx) { + lxleft-=xleft*(lxright - lxleft)/dx; + lyleft-=xleft*(lyright - lyleft)/dx; + txleft-=xleft*(txright - txleft)/dx; + tyleft-=xleft*(tyright - tyleft)/dx; + } + if (xleft<0) xleft = 0; + if (xright>=width() - 1) xright = width() - 1; + T* ptrd = data(xleft,y,0,0); + if (opacity>=1) for (int x = xleft; x<=xright; ++x) { + const tc *col = &texture._atXY(txleft,tyleft); + const int bx = is_bump?128 - (int)col[obx]:0, by = is_bump?128 - (int)col[oby]:0; + const tl *lig = &light._atXY(lxleft + bx,lyleft + by); + cimg_forC(*this,c) { + const tl l = *lig; + *ptrd = (T)(l<1?l**col:(2 - l)**col + (l - 1)*maxval); + ptrd+=whd; col+=twh; lig+=lwh; + } + ptrd-=offx; + lxleft+=rlx+((errlx-=ndlx)<0?errlx+=dx,slx:0); + lyleft+=rly+((errly-=ndly)<0?errly+=dx,sly:0); + txleft+=rtx+((errtx-=ndtx)<0?errtx+=dx,stx:0); + tyleft+=rty+((errty-=ndty)<0?errty+=dx,sty:0); + } else for (int x = xleft; x<=xright; ++x) { + const tc *col = &texture._atXY(txleft,tyleft); + const int bx = is_bump?128 - (int)col[obx]:0, by = is_bump?128 - (int)col[oby]:0; + const tl *lig = &light._atXY(lxleft + bx,lyleft + by); + cimg_forC(*this,c) { + const tl l = *lig; + const T val = (T)(l<1?l**col:(2 - l)**col + (l - 1)*maxval); + *ptrd = (T)(nopacity*val + *ptrd*copacity); + ptrd+=whd; col+=twh; lig+=lwh; + } + ptrd-=offx; + lxleft+=rlx+((errlx-=ndlx)<0?errlx+=dx,slx:0); + lyleft+=rly+((errly-=ndly)<0?errly+=dx,sly:0); + txleft+=rtx+((errtx-=ndtx)<0?errtx+=dx,stx:0); + tyleft+=rty+((errty-=ndty)<0?errty+=dx,sty:0); + } + } + return *this; + } + + //! Draw a textured Phong-shaded 2d triangle, with perspective correction. + template + CImg& draw_triangle(const int x0, const int y0, const float z0, + const int x1, const int y1, const float z1, + const int x2, const int y2, const float z2, + const CImg& texture, + const int tx0, const int ty0, + const int tx1, const int ty1, + const int tx2, const int ty2, + const CImg& light, + const int lx0, const int ly0, + const int lx1, const int ly1, + const int lx2, const int ly2, + const float opacity=1) { + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (light._depth>1 || light._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified light texture (%u,%u,%u,%u,%p).", + cimg_instance,light._width,light._height,light._depth,light._spectrum,light._data); + if (is_overlapped(texture)) + return draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,+texture,tx0,ty0,tx1,ty1,tx2,ty2, + light,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + if (is_overlapped(light)) + return draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,texture,tx0,ty0,tx1,ty1,tx2,ty2, + +light,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + static const T maxval = (T)std::min(cimg::type::max(),(T)cimg::type::max()); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + const ulongT + whd = (ulongT)_width*_height*_depth, + twh = (ulongT)texture._width*texture._height, + lwh = (ulongT)light._width*light._height, + offx = _spectrum*whd - 1; + int nx0 = x0, ny0 = y0, nx1 = x1, ny1 = y1, nx2 = x2, ny2 = y2, + nlx0 = lx0, nly0 = ly0, nlx1 = lx1, nly1 = ly1, nlx2 = lx2, nly2 = ly2; + float + ntx0 = tx0/z0, nty0 = ty0/z0, + ntx1 = tx1/z1, nty1 = ty1/z1, + ntx2 = tx2/z2, nty2 = ty2/z2, + nz0 = 1/z0, nz1 = 1/z1, nz2 = 1/z2; + if (ny0>ny1) cimg::swap(nx0,nx1,ny0,ny1,ntx0,ntx1,nty0,nty1,nlx0,nlx1,nly0,nly1,nz0,nz1); + if (ny0>ny2) cimg::swap(nx0,nx2,ny0,ny2,ntx0,ntx2,nty0,nty2,nlx0,nlx2,nly0,nly2,nz0,nz2); + if (ny1>ny2) cimg::swap(nx1,nx2,ny1,ny2,ntx1,ntx2,nty1,nty2,nlx1,nlx2,nly1,nly2,nz1,nz2); + if (ny0>=height() || ny2<0) return *this; + float + ptxl = (ntx1 - ntx0)/(ny1 - ny0), + ptxr = (ntx2 - ntx0)/(ny2 - ny0), + ptxn = (ntx2 - ntx1)/(ny2 - ny1), + ptyl = (nty1 - nty0)/(ny1 - ny0), + ptyr = (nty2 - nty0)/(ny2 - ny0), + ptyn = (nty2 - nty1)/(ny2 - ny1), + pzl = (nz1 - nz0)/(ny1 - ny0), + pzr = (nz2 - nz0)/(ny2 - ny0), + pzn = (nz2 - nz1)/(ny2 - ny1), + zr = ny0>=0?nz0:(nz0 - ny0*(nz2 - nz0)/(ny2 - ny0)), + txr = ny0>=0?ntx0:(ntx0 - ny0*(ntx2 - ntx0)/(ny2 - ny0)), + tyr = ny0>=0?nty0:(nty0 - ny0*(nty2 - nty0)/(ny2 - ny0)), + zl = ny1>=0?(ny0>=0?nz0:(nz0 - ny0*(nz1 - nz0)/(ny1 - ny0))):(pzl=pzn,(nz1 - ny1*(nz2 - nz1)/(ny2 - ny1))), + txl = ny1>=0?(ny0>=0?ntx0:(ntx0 - ny0*(ntx1 - ntx0)/(ny1 - ny0))): + (ptxl=ptxn,(ntx1 - ny1*(ntx2 - ntx1)/(ny2 - ny1))), + tyl = ny1>=0?(ny0>=0?nty0:(nty0 - ny0*(nty1 - nty0)/(ny1 - ny0))): + (ptyl=ptyn,(nty1 - ny1*(nty2 - nty1)/(ny2 - ny1))); + const bool is_bump = texture._spectrum>=_spectrum + 2; + const ulongT obx = twh*_spectrum, oby = twh*(_spectrum + 1); + + _cimg_for_triangle3(*this,xleft0,lxleft0,lyleft0,xright0,lxright0,lyright0,y, + nx0,ny0,nlx0,nly0,nx1,ny1,nlx1,nly1,nx2,ny2,nlx2,nly2) { + if (y==ny1) { zl = nz1; txl = ntx1; tyl = nty1; pzl = pzn; ptxl = ptxn; ptyl = ptyn; } + int + xleft = xleft0, xright = xright0, + lxleft = lxleft0, lxright = lxright0, + lyleft = lyleft0, lyright = lyright0; + float + zleft = zl, zright = zr, + txleft = txl, txright = txr, + tyleft = tyl, tyright = tyr; + if (xrightlxleft?lxright - lxleft:lxleft - lxright, + dly = lyright>lyleft?lyright - lyleft:lyleft - lyright, + rlx = dx?(lxright - lxleft)/dx:0, + rly = dx?(lyright - lyleft)/dx:0, + slx = lxright>lxleft?1:-1, + sly = lyright>lyleft?1:-1, + ndlx = dlx - (dx?dx*(dlx/dx):0), + ndly = dly - (dx?dx*(dly/dx):0); + const float + pentez = (zright - zleft)/dx, + pentetx = (txright - txleft)/dx, + pentety = (tyright - tyleft)/dx; + int errlx = dx>>1, errly = errlx; + if (xleft<0 && dx) { + zleft-=xleft*(zright - zleft)/dx; + lxleft-=xleft*(lxright - lxleft)/dx; + lyleft-=xleft*(lyright - lyleft)/dx; + txleft-=xleft*(txright - txleft)/dx; + tyleft-=xleft*(tyright - tyleft)/dx; + } + if (xleft<0) xleft = 0; + if (xright>=width() - 1) xright = width() - 1; + T* ptrd = data(xleft,y,0,0); + if (opacity>=1) for (int x = xleft; x<=xright; ++x) { + const float invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + const int bx = is_bump?128 - (int)col[obx]:0, by = is_bump?128 - (int)col[oby]:0; + const tl *lig = &light._atXY(lxleft + bx,lyleft + by); + cimg_forC(*this,c) { + const tl l = *lig; + *ptrd = (T)(l<1?l**col:(2 - l)**col + (l - 1)*maxval); + ptrd+=whd; col+=twh; lig+=lwh; + } + ptrd-=offx; zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + lxleft+=rlx+((errlx-=ndlx)<0?errlx+=dx,slx:0); + lyleft+=rly+((errly-=ndly)<0?errly+=dx,sly:0); + } else for (int x = xleft; x<=xright; ++x) { + const float invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + const int bx = is_bump?128 - (int)col[obx]:0, by = is_bump?128 - (int)col[oby]:0; + const tl *lig = &light._atXY(lxleft + bx,lyleft + by); + cimg_forC(*this,c) { + const tl l = *lig; + const T val = (T)(l<1?l**col:(2 - l)**col + (l - 1)*maxval); + *ptrd = (T)(nopacity*val + *ptrd*copacity); + ptrd+=whd; col+=twh; lig+=lwh; + } + ptrd-=offx; zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + lxleft+=rlx+((errlx-=ndlx)<0?errlx+=dx,slx:0); + lyleft+=rly+((errly-=ndly)<0?errly+=dx,sly:0); + } + zr+=pzr; txr+=ptxr; tyr+=ptyr; zl+=pzl; txl+=ptxl; tyl+=ptyl; + } + return *this; + } + + //! Draw a textured Phong-shaded 2d triangle, with perspective correction and z-buffering. + template + CImg& draw_triangle(CImg& zbuffer, + const int x0, const int y0, const float z0, + const int x1, const int y1, const float z1, + const int x2, const int y2, const float z2, + const CImg& texture, + const int tx0, const int ty0, + const int tx1, const int ty1, + const int tx2, const int ty2, + const CImg& light, + const int lx0, const int ly0, + const int lx1, const int ly1, + const int lx2, const int ly2, + const float opacity=1) { + typedef typename cimg::superset::type tzfloat; + if (is_empty() || z0<=0 || z1<=0 || z2<=0) return *this; + if (!is_sameXY(zbuffer)) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Instance and specified Z-buffer (%u,%u,%u,%u,%p) have " + "different dimensions.", + cimg_instance, + zbuffer._width,zbuffer._height,zbuffer._depth,zbuffer._spectrum,zbuffer._data); + if (texture._depth>1 || texture._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified texture (%u,%u,%u,%u,%p).", + cimg_instance, + texture._width,texture._height,texture._depth,texture._spectrum,texture._data); + if (light._depth>1 || light._spectrum<_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_triangle(): Invalid specified light texture (%u,%u,%u,%u,%p).", + cimg_instance,light._width,light._height,light._depth,light._spectrum,light._data); + if (is_overlapped(texture)) + return draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2, + +texture,tx0,ty0,tx1,ty1,tx2,ty2,light,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + if (is_overlapped(light)) + return draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2, + texture,tx0,ty0,tx1,ty1,tx2,ty2,+light,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + static const T maxval = (T)std::min(cimg::type::max(),(T)cimg::type::max()); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + const ulongT + whd = (ulongT)_width*_height*_depth, + twh = (ulongT)texture._width*texture._height, + lwh = (ulongT)light._width*light._height, + offx = _spectrum*whd; + int nx0 = x0, ny0 = y0, nx1 = x1, ny1 = y1, nx2 = x2, ny2 = y2, + nlx0 = lx0, nly0 = ly0, nlx1 = lx1, nly1 = ly1, nlx2 = lx2, nly2 = ly2; + float + ntx0 = tx0/z0, nty0 = ty0/z0, + ntx1 = tx1/z1, nty1 = ty1/z1, + ntx2 = tx2/z2, nty2 = ty2/z2; + tzfloat nz0 = 1/(tzfloat)z0, nz1 = 1/(tzfloat)z1, nz2 = 1/(tzfloat)z2; + if (ny0>ny1) cimg::swap(nx0,nx1,ny0,ny1,ntx0,ntx1,nty0,nty1,nlx0,nlx1,nly0,nly1,nz0,nz1); + if (ny0>ny2) cimg::swap(nx0,nx2,ny0,ny2,ntx0,ntx2,nty0,nty2,nlx0,nlx2,nly0,nly2,nz0,nz2); + if (ny1>ny2) cimg::swap(nx1,nx2,ny1,ny2,ntx1,ntx2,nty1,nty2,nlx1,nlx2,nly1,nly2,nz1,nz2); + if (ny0>=height() || ny2<0) return *this; + float + ptxl = (ntx1 - ntx0)/(ny1 - ny0), + ptxr = (ntx2 - ntx0)/(ny2 - ny0), + ptxn = (ntx2 - ntx1)/(ny2 - ny1), + ptyl = (nty1 - nty0)/(ny1 - ny0), + ptyr = (nty2 - nty0)/(ny2 - ny0), + ptyn = (nty2 - nty1)/(ny2 - ny1), + txr = ny0>=0?ntx0:(ntx0 - ny0*(ntx2 - ntx0)/(ny2 - ny0)), + tyr = ny0>=0?nty0:(nty0 - ny0*(nty2 - nty0)/(ny2 - ny0)), + txl = ny1>=0?(ny0>=0?ntx0:(ntx0 - ny0*(ntx1 - ntx0)/(ny1 - ny0))): + (ptxl=ptxn,(ntx1 - ny1*(ntx2 - ntx1)/(ny2 - ny1))), + tyl = ny1>=0?(ny0>=0?nty0:(nty0 - ny0*(nty1 - nty0)/(ny1 - ny0))): + (ptyl=ptyn,(nty1 - ny1*(nty2 - nty1)/(ny2 - ny1))); + tzfloat + pzl = (nz1 - nz0)/(ny1 - ny0), + pzr = (nz2 - nz0)/(ny2 - ny0), + pzn = (nz2 - nz1)/(ny2 - ny1), + zr = ny0>=0?nz0:(nz0 - ny0*(nz2 - nz0)/(ny2 - ny0)), + zl = ny1>=0?(ny0>=0?nz0:(nz0 - ny0*(nz1 - nz0)/(ny1 - ny0))):(pzl=pzn,(nz1 - ny1*(nz2 - nz1)/(ny2 - ny1))); + const bool is_bump = texture._spectrum>=_spectrum + 2; + const ulongT obx = twh*_spectrum, oby = twh*(_spectrum + 1); + + _cimg_for_triangle3(*this,xleft0,lxleft0,lyleft0,xright0,lxright0,lyright0,y, + nx0,ny0,nlx0,nly0,nx1,ny1,nlx1,nly1,nx2,ny2,nlx2,nly2) { + if (y==ny1) { zl = nz1; txl = ntx1; tyl = nty1; pzl = pzn; ptxl = ptxn; ptyl = ptyn; } + int + xleft = xleft0, xright = xright0, + lxleft = lxleft0, lxright = lxright0, + lyleft = lyleft0, lyright = lyright0; + float txleft = txl, txright = txr, tyleft = tyl, tyright = tyr; + tzfloat zleft = zl, zright = zr; + if (xrightlxleft?lxright - lxleft:lxleft - lxright, + dly = lyright>lyleft?lyright - lyleft:lyleft - lyright, + rlx = dx?(lxright - lxleft)/dx:0, + rly = dx?(lyright - lyleft)/dx:0, + slx = lxright>lxleft?1:-1, + sly = lyright>lyleft?1:-1, + ndlx = dlx - (dx?dx*(dlx/dx):0), + ndly = dly - (dx?dx*(dly/dx):0); + float pentetx = (txright - txleft)/dx, pentety = (tyright - tyleft)/dx; + const tzfloat pentez = (zright - zleft)/dx; + int errlx = dx>>1, errly = errlx; + if (xleft<0 && dx) { + zleft-=xleft*(zright - zleft)/dx; + lxleft-=xleft*(lxright - lxleft)/dx; + lyleft-=xleft*(lyright - lyleft)/dx; + txleft-=xleft*(txright - txleft)/dx; + tyleft-=xleft*(tyright - tyleft)/dx; + } + if (xleft<0) xleft = 0; + if (xright>=width() - 1) xright = width() - 1; + T* ptrd = data(xleft,y); + tz *ptrz = zbuffer.data(xleft,y); + if (opacity>=1) for (int x = xleft; x<=xright; ++x, ++ptrz, ++ptrd) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tzfloat invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + const int bx = is_bump?128 - (int)col[obx]:0, by = is_bump?128 - (int)col[oby]:0; + const tl *lig = &light._atXY(lxleft + bx,lyleft + by); + cimg_forC(*this,c) { + const tl l = *lig; + *ptrd = (T)(l<1?l**col:(2 - l)**col + (l - 1)*maxval); + ptrd+=whd; col+=twh; lig+=lwh; + } + ptrd-=offx; + } + zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + lxleft+=rlx+((errlx-=ndlx)<0?errlx+=dx,slx:0); + lyleft+=rly+((errly-=ndly)<0?errly+=dx,sly:0); + } else for (int x = xleft; x<=xright; ++x, ++ptrz, ++ptrd) { + if (zleft>=(tzfloat)*ptrz) { + *ptrz = (tz)zleft; + const tzfloat invz = 1/zleft; + const tc *col = &texture._atXY((int)(txleft*invz),(int)(tyleft*invz)); + const int bx = is_bump?128 - (int)col[obx]:0, by = is_bump?128 - (int)col[oby]:0; + const tl *lig = &light._atXY(lxleft + bx,lyleft + by); + cimg_forC(*this,c) { + const tl l = *lig; + const T val = (T)(l<1?l**col:(2 - l)**col + (l - 1)*maxval); + *ptrd = (T)(nopacity*val + *ptrd*copacity); + ptrd+=whd; col+=twh; lig+=lwh; + } + ptrd-=offx; + } + zleft+=pentez; txleft+=pentetx; tyleft+=pentety; + lxleft+=rlx+((errlx-=ndlx)<0?errlx+=dx,slx:0); + lyleft+=rly+((errly-=ndly)<0?errly+=dx,sly:0); + } + zr+=pzr; txr+=ptxr; tyr+=ptyr; zl+=pzl; txl+=ptxl; tyl+=ptyl; + } + return *this; + } + + //! Draw a filled 4d rectangle. + /** + \param x0 X-coordinate of the upper-left rectangle corner. + \param y0 Y-coordinate of the upper-left rectangle corner. + \param z0 Z-coordinate of the upper-left rectangle corner. + \param c0 C-coordinate of the upper-left rectangle corner. + \param x1 X-coordinate of the lower-right rectangle corner. + \param y1 Y-coordinate of the lower-right rectangle corner. + \param z1 Z-coordinate of the lower-right rectangle corner. + \param c1 C-coordinate of the lower-right rectangle corner. + \param val Scalar value used to fill the rectangle area. + \param opacity Drawing opacity. + **/ + CImg& draw_rectangle(const int x0, const int y0, const int z0, const int c0, + const int x1, const int y1, const int z1, const int c1, + const T val, const float opacity=1) { + if (is_empty()) return *this; + const int + nx0 = x0=width()?width() - 1 - nx1:0) + (nx0<0?nx0:0), + lY = (1 + ny1 - ny0) + (ny1>=height()?height() - 1 - ny1:0) + (ny0<0?ny0:0), + lZ = (1 + nz1 - nz0) + (nz1>=depth()?depth() - 1 - nz1:0) + (nz0<0?nz0:0), + lC = (1 + nc1 - nc0) + (nc1>=spectrum()?spectrum() - 1 - nc1:0) + (nc0<0?nc0:0); + const ulongT + offX = (ulongT)_width - lX, + offY = (ulongT)_width*(_height - lY), + offZ = (ulongT)_width*_height*(_depth - lZ); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + T *ptrd = data(nx0<0?0:nx0,ny0<0?0:ny0,nz0<0?0:nz0,nc0<0?0:nc0); + if (lX>0 && lY>0 && lZ>0 && lC>0) + for (int v = 0; v=1) { + if (sizeof(T)!=1) { for (int x = 0; x + CImg& draw_rectangle(const int x0, const int y0, const int z0, + const int x1, const int y1, const int z1, + const tc *const color, const float opacity=1) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_rectangle(): Specified color is (null).", + cimg_instance); + cimg_forC(*this,c) draw_rectangle(x0,y0,z0,c,x1,y1,z1,c,(T)color[c],opacity); + return *this; + } + + //! Draw an outlined 3d rectangle \overloading. + template + CImg& draw_rectangle(const int x0, const int y0, const int z0, + const int x1, const int y1, const int z1, + const tc *const color, const float opacity, + const unsigned int pattern) { + return draw_line(x0,y0,z0,x1,y0,z0,color,opacity,pattern,true). + draw_line(x1,y0,z0,x1,y1,z0,color,opacity,pattern,false). + draw_line(x1,y1,z0,x0,y1,z0,color,opacity,pattern,false). + draw_line(x0,y1,z0,x0,y0,z0,color,opacity,pattern,false). + draw_line(x0,y0,z1,x1,y0,z1,color,opacity,pattern,true). + draw_line(x1,y0,z1,x1,y1,z1,color,opacity,pattern,false). + draw_line(x1,y1,z1,x0,y1,z1,color,opacity,pattern,false). + draw_line(x0,y1,z1,x0,y0,z1,color,opacity,pattern,false). + draw_line(x0,y0,z0,x0,y0,z1,color,opacity,pattern,true). + draw_line(x1,y0,z0,x1,y0,z1,color,opacity,pattern,true). + draw_line(x1,y1,z0,x1,y1,z1,color,opacity,pattern,true). + draw_line(x0,y1,z0,x0,y1,z1,color,opacity,pattern,true); + } + + //! Draw a filled 2d rectangle. + /** + \param x0 X-coordinate of the upper-left rectangle corner. + \param y0 Y-coordinate of the upper-left rectangle corner. + \param x1 X-coordinate of the lower-right rectangle corner. + \param y1 Y-coordinate of the lower-right rectangle corner. + \param color Pointer to \c spectrum() consecutive values of type \c T, defining the drawing color. + \param opacity Drawing opacity. + **/ + template + CImg& draw_rectangle(const int x0, const int y0, + const int x1, const int y1, + const tc *const color, const float opacity=1) { + return draw_rectangle(x0,y0,0,x1,y1,_depth - 1,color,opacity); + } + + //! Draw a outlined 2d rectangle \overloading. + template + CImg& draw_rectangle(const int x0, const int y0, + const int x1, const int y1, + const tc *const color, const float opacity, + const unsigned int pattern) { + if (is_empty()) return *this; + if (y0==y1) return draw_line(x0,y0,x1,y0,color,opacity,pattern,true); + if (x0==x1) return draw_line(x0,y0,x0,y1,color,opacity,pattern,true); + const int + nx0 = x0 + CImg& draw_polygon(const CImg& points, + const tc *const color, const float opacity=1) { + if (is_empty() || !points) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_polygon(): Specified color is (null).", + cimg_instance); + if (points._width==1) return draw_point((int)points(0,0),(int)points(0,1),color,opacity); + if (points._width==2) return draw_line((int)points(0,0),(int)points(0,1), + (int)points(1,0),(int)points(1,1),color,opacity); + if (points._width==3) return draw_triangle((int)points(0,0),(int)points(0,1), + (int)points(1,0),(int)points(1,1), + (int)points(2,0),(int)points(2,1),color,opacity); + cimg_init_scanline(color,opacity); + int + xmin = 0, ymin = 0, + xmax = points.get_shared_row(0).max_min(xmin), + ymax = points.get_shared_row(1).max_min(ymin); + if (xmax<0 || xmin>=width() || ymax<0 || ymin>=height()) return *this; + if (ymin==ymax) return draw_line(xmin,ymin,xmax,ymax,color,opacity); + + ymin = std::max(0,ymin); + ymax = std::min(height() - 1,ymax); + CImg Xs(points._width,ymax - ymin + 1); + CImg count(Xs._height,1,1,1,0); + unsigned int n = 0, nn = 1; + bool go_on = true; + + while (go_on) { + unsigned int an = (nn + 1)%points._width; + const int + x0 = (int)points(n,0), + y0 = (int)points(n,1); + if (points(nn,1)==y0) while (points(an,1)==y0) { nn = an; (an+=1)%=points._width; } + const int + x1 = (int)points(nn,0), + y1 = (int)points(nn,1); + unsigned int tn = an; + while (points(tn,1)==y1) (tn+=1)%=points._width; + + if (y0!=y1) { + const int + y2 = (int)points(tn,1), + x01 = x1 - x0, y01 = y1 - y0, y12 = y2 - y1, + dy = cimg::sign(y01), + tmax = std::max(1,cimg::abs(y01)), + tend = tmax - (dy==cimg::sign(y12)); + unsigned int y = (unsigned int)y0 - ymin; + for (int t = 0; t<=tend; ++t, y+=dy) + if (yn; + n = nn; + nn = an; + } + + cimg_pragma_openmp(parallel for cimg_openmp_if(Xs._height>32)) + cimg_forY(Xs,y) { + const CImg Xsy = Xs.get_shared_points(0,count[y] - 1,y).sort(); + int px = width(); + for (unsigned int n = 0; n + CImg& draw_polygon(const CImg& points, + const tc *const color, const float opacity, const unsigned int pattern) { + if (is_empty() || !points || points._width<3) return *this; + bool ninit_hatch = true; + switch (points._height) { + case 0 : case 1 : + throw CImgArgumentException(_cimg_instance + "draw_polygon(): Invalid specified point set.", + cimg_instance); + case 2 : { // 2d version. + CImg npoints(points._width,2); + int x = npoints(0,0) = (int)points(0,0), y = npoints(0,1) = (int)points(0,1); + unsigned int nb_points = 1; + for (unsigned int p = 1; p npoints(points._width,3); + int + x = npoints(0,0) = (int)points(0,0), + y = npoints(0,1) = (int)points(0,1), + z = npoints(0,2) = (int)points(0,2); + unsigned int nb_points = 1; + for (unsigned int p = 1; p + CImg& draw_ellipse(const int x0, const int y0, const float r1, const float r2, const float angle, + const tc *const color, const float opacity=1) { + return _draw_ellipse(x0,y0,r1,r2,angle,color,opacity,0U); + } + + //! Draw a filled 2d ellipse \overloading. + /** + \param x0 X-coordinate of the ellipse center. + \param y0 Y-coordinate of the ellipse center. + \param tensor Diffusion tensor describing the ellipse. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + **/ + template + CImg& draw_ellipse(const int x0, const int y0, const CImg &tensor, + const tc *const color, const float opacity=1) { + CImgList eig = tensor.get_symmetric_eigen(); + const CImg &val = eig[0], &vec = eig[1]; + return draw_ellipse(x0,y0,std::sqrt(val(0)),std::sqrt(val(1)), + std::atan2(vec(0,1),vec(0,0))*180/cimg::PI, + color,opacity); + } + + //! Draw an outlined 2d ellipse. + /** + \param x0 X-coordinate of the ellipse center. + \param y0 Y-coordinate of the ellipse center. + \param r1 First radius of the ellipse. + \param r2 Second radius of the ellipse. + \param angle Angle of the first radius. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the outline pattern. + **/ + template + CImg& draw_ellipse(const int x0, const int y0, const float r1, const float r2, const float angle, + const tc *const color, const float opacity, const unsigned int pattern) { + if (pattern) _draw_ellipse(x0,y0,r1,r2,angle,color,opacity,pattern); + return *this; + } + + //! Draw an outlined 2d ellipse \overloading. + /** + \param x0 X-coordinate of the ellipse center. + \param y0 Y-coordinate of the ellipse center. + \param tensor Diffusion tensor describing the ellipse. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + \param pattern An integer whose bits describe the outline pattern. + **/ + template + CImg& draw_ellipse(const int x0, const int y0, const CImg &tensor, + const tc *const color, const float opacity, + const unsigned int pattern) { + CImgList eig = tensor.get_symmetric_eigen(); + const CImg &val = eig[0], &vec = eig[1]; + return draw_ellipse(x0,y0,std::sqrt(val(0)),std::sqrt(val(1)), + std::atan2(vec(0,1),vec(0,0))*180/cimg::PI, + color,opacity,pattern); + } + + template + CImg& _draw_ellipse(const int x0, const int y0, const float r1, const float r2, const float angle, + const tc *const color, const float opacity, + const unsigned int pattern) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_ellipse(): Specified color is (null).", + cimg_instance); + if (r1<=0 || r2<=0) return draw_point(x0,y0,color,opacity); + if (r1==r2 && (float)(int)r1==r1) { + if (pattern) return draw_circle(x0,y0,r1,color,opacity,pattern); + else return draw_circle(x0,y0,r1,color,opacity); + } + cimg_init_scanline(color,opacity); + const float + nr1 = cimg::abs(r1) - 0.5, nr2 = cimg::abs(r2) - 0.5, + nangle = (float)(angle*cimg::PI/180), + u = (float)std::cos(nangle), + v = (float)std::sin(nangle), + rmax = std::max(nr1,nr2), + l1 = (float)std::pow(rmax/(nr1>0?nr1:1e-6),2), + l2 = (float)std::pow(rmax/(nr2>0?nr2:1e-6),2), + a = l1*u*u + l2*v*v, + b = u*v*(l1 - l2), + c = l1*v*v + l2*u*u; + const int + yb = (int)std::sqrt(a*rmax*rmax/(a*c - b*b)), + tymin = y0 - yb - 1, + tymax = y0 + yb + 1, + ymin = tymin<0?0:tymin, + ymax = tymax>=height()?height() - 1:tymax; + int oxmin = 0, oxmax = 0; + bool first_line = true; + for (int y = ymin; y<=ymax; ++y) { + const float + Y = y - y0 + (y0?(float)std::sqrt(delta)/a:0.0f, + bY = b*Y/a, + fxmin = x0 - 0.5f - bY - sdelta, + fxmax = x0 + 0.5f - bY + sdelta; + const int xmin = (int)cimg::round(fxmin), xmax = (int)cimg::round(fxmax); + if (!pattern) cimg_draw_scanline(xmin,xmax,y,color,opacity,1); + else { + if (first_line) { + if (y0 - yb>=0) cimg_draw_scanline(xmin,xmax,y,color,opacity,1); + else draw_point(xmin,y,color,opacity).draw_point(xmax,y,color,opacity); + first_line = false; + } else { + if (xmin + CImg& draw_circle(const int x0, const int y0, int radius, + const tc *const color, const float opacity=1) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_circle(): Specified color is (null).", + cimg_instance); + cimg_init_scanline(color,opacity); + if (radius<0 || x0 - radius>=width() || y0 + radius<0 || y0 - radius>=height()) return *this; + if (y0>=0 && y0=0) { + const int x1 = x0 - x, x2 = x0 + x, y1 = y0 - y, y2 = y0 + y; + if (y1>=0 && y1=0 && y2=0 && y1=0 && y2 + CImg& draw_circle(const int x0, const int y0, int radius, + const tc *const color, const float opacity, + const unsigned int pattern) { + cimg::unused(pattern); + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_circle(): Specified color is (null).", + cimg_instance); + if (radius<0 || x0 - radius>=width() || y0 + radius<0 || y0 - radius>=height()) return *this; + if (!radius) return draw_point(x0,y0,color,opacity); + draw_point(x0 - radius,y0,color,opacity).draw_point(x0 + radius,y0,color,opacity). + draw_point(x0,y0 - radius,color,opacity).draw_point(x0,y0 + radius,color,opacity); + if (radius==1) return *this; + for (int f = 1 - radius, ddFx = 0, ddFy = -(radius<<1), x = 0, y = radius; x=0) { f+=(ddFy+=2); --y; } + ++x; ++(f+=(ddFx+=2)); + if (x!=y + 1) { + const int x1 = x0 - y, x2 = x0 + y, y1 = y0 - x, y2 = y0 + x, + x3 = x0 - x, x4 = x0 + x, y3 = y0 - y, y4 = y0 + y; + draw_point(x1,y1,color,opacity).draw_point(x1,y2,color,opacity). + draw_point(x2,y1,color,opacity).draw_point(x2,y2,color,opacity); + if (x!=y) + draw_point(x3,y3,color,opacity).draw_point(x4,y4,color,opacity). + draw_point(x4,y3,color,opacity).draw_point(x3,y4,color,opacity); + } + } + return *this; + } + + //! Draw an image. + /** + \param sprite Sprite image. + \param x0 X-coordinate of the sprite position. + \param y0 Y-coordinate of the sprite position. + \param z0 Z-coordinate of the sprite position. + \param c0 C-coordinate of the sprite position. + \param opacity Drawing opacity. + **/ + template + CImg& draw_image(const int x0, const int y0, const int z0, const int c0, + const CImg& sprite, const float opacity=1) { + if (is_empty() || !sprite) return *this; + if (is_overlapped(sprite)) return draw_image(x0,y0,z0,c0,+sprite,opacity); + if (x0==0 && y0==0 && z0==0 && c0==0 && is_sameXYZC(sprite) && opacity>=1 && !is_shared()) + return assign(sprite,false); + const bool bx = (x0<0), by = (y0<0), bz = (z0<0), bc = (c0<0); + const int + lX = sprite.width() - (x0 + sprite.width()>width()?x0 + sprite.width() - width():0) + (bx?x0:0), + lY = sprite.height() - (y0 + sprite.height()>height()?y0 + sprite.height() - height():0) + (by?y0:0), + lZ = sprite.depth() - (z0 + sprite.depth()>depth()?z0 + sprite.depth() - depth():0) + (bz?z0:0), + lC = sprite.spectrum() - (c0 + sprite.spectrum()>spectrum()?c0 + sprite.spectrum() - spectrum():0) + (bc?c0:0); + const t + *ptrs = sprite._data + + (bx?-x0:0) + + (by?-y0*(ulongT)sprite.width():0) + + (bz?-z0*(ulongT)sprite.width()*sprite.height():0) + + (bc?-c0*(ulongT)sprite.width()*sprite.height()*sprite.depth():0); + const ulongT + offX = (ulongT)_width - lX, + soffX = (ulongT)sprite._width - lX, + offY = (ulongT)_width*(_height - lY), + soffY = (ulongT)sprite._width*(sprite._height - lY), + offZ = (ulongT)_width*_height*(_depth - lZ), + soffZ = (ulongT)sprite._width*sprite._height*(sprite._depth - lZ); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + if (lX>0 && lY>0 && lZ>0 && lC>0) { + T *ptrd = data(x0<0?0:x0,y0<0?0:y0,z0<0?0:z0,c0<0?0:c0); + for (int v = 0; v=1) for (int x = 0; x& draw_image(const int x0, const int y0, const int z0, const int c0, + const CImg& sprite, const float opacity=1) { + if (is_empty() || !sprite) return *this; + if (is_overlapped(sprite)) return draw_image(x0,y0,z0,c0,+sprite,opacity); + if (x0==0 && y0==0 && z0==0 && c0==0 && is_sameXYZC(sprite) && opacity>=1 && !is_shared()) + return assign(sprite,false); + const bool bx = (x0<0), by = (y0<0), bz = (z0<0), bc = (c0<0); + const int + lX = sprite.width() - (x0 + sprite.width()>width()?x0 + sprite.width() - width():0) + (bx?x0:0), + lY = sprite.height() - (y0 + sprite.height()>height()?y0 + sprite.height() - height():0) + (by?y0:0), + lZ = sprite.depth() - (z0 + sprite.depth()>depth()?z0 + sprite.depth() - depth():0) + (bz?z0:0), + lC = sprite.spectrum() - (c0 + sprite.spectrum()>spectrum()?c0 + sprite.spectrum() - spectrum():0) + (bc?c0:0); + const T + *ptrs = sprite._data + + (bx?-x0:0) + + (by?-y0*(ulongT)sprite.width():0) + + (bz?-z0*(ulongT)sprite.width()*sprite.height():0) + + (bc?-c0*(ulongT)sprite.width()*sprite.height()*sprite.depth():0); + const ulongT + offX = (ulongT)_width - lX, + soffX = (ulongT)sprite._width - lX, + offY = (ulongT)_width*(_height - lY), + soffY = (ulongT)sprite._width*(sprite._height - lY), + offZ = (ulongT)_width*_height*(_depth - lZ), + soffZ = (ulongT)sprite._width*sprite._height*(sprite._depth - lZ), + slX = lX*sizeof(T); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + if (lX>0 && lY>0 && lZ>0 && lC>0) { + T *ptrd = data(x0<0?0:x0,y0<0?0:y0,z0<0?0:z0,c0<0?0:c0); + for (int v = 0; v=1) + for (int y = 0; y + CImg& draw_image(const int x0, const int y0, const int z0, + const CImg& sprite, const float opacity=1) { + return draw_image(x0,y0,z0,0,sprite,opacity); + } + + //! Draw an image \overloading. + template + CImg& draw_image(const int x0, const int y0, + const CImg& sprite, const float opacity=1) { + return draw_image(x0,y0,0,sprite,opacity); + } + + //! Draw an image \overloading. + template + CImg& draw_image(const int x0, + const CImg& sprite, const float opacity=1) { + return draw_image(x0,0,sprite,opacity); + } + + //! Draw an image \overloading. + template + CImg& draw_image(const CImg& sprite, const float opacity=1) { + return draw_image(0,sprite,opacity); + } + + //! Draw a masked image. + /** + \param sprite Sprite image. + \param mask Mask image. + \param x0 X-coordinate of the sprite position in the image instance. + \param y0 Y-coordinate of the sprite position in the image instance. + \param z0 Z-coordinate of the sprite position in the image instance. + \param c0 C-coordinate of the sprite position in the image instance. + \param mask_max_value Maximum pixel value of the mask image \c mask. + \param opacity Drawing opacity. + \note + - Pixel values of \c mask set the opacity of the corresponding pixels in \c sprite. + - Dimensions along x,y and z of \p sprite and \p mask must be the same. + **/ + template + CImg& draw_image(const int x0, const int y0, const int z0, const int c0, + const CImg& sprite, const CImg& mask, const float opacity=1, + const float mask_max_value=1) { + if (is_empty() || !sprite || !mask) return *this; + if (is_overlapped(sprite)) return draw_image(x0,y0,z0,c0,+sprite,mask,opacity,mask_max_value); + if (is_overlapped(mask)) return draw_image(x0,y0,z0,c0,sprite,+mask,opacity,mask_max_value); + if (mask._width!=sprite._width || mask._height!=sprite._height || mask._depth!=sprite._depth) + throw CImgArgumentException(_cimg_instance + "draw_image(): Sprite (%u,%u,%u,%u,%p) and mask (%u,%u,%u,%u,%p) have " + "incompatible dimensions.", + cimg_instance, + sprite._width,sprite._height,sprite._depth,sprite._spectrum,sprite._data, + mask._width,mask._height,mask._depth,mask._spectrum,mask._data); + + const bool bx = (x0<0), by = (y0<0), bz = (z0<0), bc = (c0<0); + const int + lX = sprite.width() - (x0 + sprite.width()>width()?x0 + sprite.width() - width():0) + (bx?x0:0), + lY = sprite.height() - (y0 + sprite.height()>height()?y0 + sprite.height() - height():0) + (by?y0:0), + lZ = sprite.depth() - (z0 + sprite.depth()>depth()?z0 + sprite.depth() - depth():0) + (bz?z0:0), + lC = sprite.spectrum() - (c0 + sprite.spectrum()>spectrum()?c0 + sprite.spectrum() - spectrum():0) + (bc?c0:0); + const ulongT + coff = (bx?-x0:0) + + (by?-y0*(ulongT)mask.width():0) + + (bz?-z0*(ulongT)mask.width()*mask.height():0) + + (bc?-c0*(ulongT)mask.width()*mask.height()*mask.depth():0), + ssize = (ulongT)mask.width()*mask.height()*mask.depth()*mask.spectrum(); + const ti *ptrs = sprite._data + coff; + const tm *ptrm = mask._data + coff; + const ulongT + offX = (ulongT)_width - lX, + soffX = (ulongT)sprite._width - lX, + offY = (ulongT)_width*(_height - lY), + soffY = (ulongT)sprite._width*(sprite._height - lY), + offZ = (ulongT)_width*_height*(_depth - lZ), + soffZ = (ulongT)sprite._width*sprite._height*(sprite._depth - lZ); + if (lX>0 && lY>0 && lZ>0 && lC>0) { + T *ptrd = data(x0<0?0:x0,y0<0?0:y0,z0<0?0:z0,c0<0?0:c0); + for (int c = 0; c + CImg& draw_image(const int x0, const int y0, const int z0, + const CImg& sprite, const CImg& mask, const float opacity=1, + const float mask_max_value=1) { + return draw_image(x0,y0,z0,0,sprite,mask,opacity,mask_max_value); + } + + //! Draw a image \overloading. + template + CImg& draw_image(const int x0, const int y0, + const CImg& sprite, const CImg& mask, const float opacity=1, + const float mask_max_value=1) { + return draw_image(x0,y0,0,sprite,mask,opacity,mask_max_value); + } + + //! Draw a image \overloading. + template + CImg& draw_image(const int x0, + const CImg& sprite, const CImg& mask, const float opacity=1, + const float mask_max_value=1) { + return draw_image(x0,0,sprite,mask,opacity,mask_max_value); + } + + //! Draw an image. + template + CImg& draw_image(const CImg& sprite, const CImg& mask, const float opacity=1, + const float mask_max_value=1) { + return draw_image(0,sprite,mask,opacity,mask_max_value); + } + + //! Draw a text string. + /** + \param x0 X-coordinate of the text in the image instance. + \param y0 Y-coordinate of the text in the image instance. + \param text Format of the text ('printf'-style format string). + \param foreground_color Pointer to \c spectrum() consecutive values, defining the foreground drawing color. + \param background_color Pointer to \c spectrum() consecutive values, defining the background drawing color. + \param opacity Drawing opacity. + \param font Font used for drawing text. + **/ + template + CImg& draw_text(const int x0, const int y0, + const char *const text, + const tc1 *const foreground_color, const tc2 *const background_color, + const float opacity, const CImgList& font, ...) { + if (!font) return *this; + CImg tmp(2048); + std::va_list ap; va_start(ap,font); + cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap); + return _draw_text(x0,y0,tmp,foreground_color,background_color,opacity,font,false); + } + + //! Draw a text string \overloading. + /** + \note A transparent background is used for the text. + **/ + template + CImg& draw_text(const int x0, const int y0, + const char *const text, + const tc *const foreground_color, const int, + const float opacity, const CImgList& font, ...) { + if (!font) return *this; + CImg tmp(2048); + std::va_list ap; va_start(ap,font); + cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap); + return _draw_text(x0,y0,tmp,foreground_color,(tc*)0,opacity,font,false); + } + + //! Draw a text string \overloading. + /** + \note A transparent foreground is used for the text. + **/ + template + CImg& draw_text(const int x0, const int y0, + const char *const text, + const int, const tc *const background_color, + const float opacity, const CImgList& font, ...) { + if (!font) return *this; + CImg tmp(2048); + std::va_list ap; va_start(ap,font); + cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap); + return _draw_text(x0,y0,tmp,(tc*)0,background_color,opacity,font,false); + } + + //! Draw a text string \overloading. + /** + \param x0 X-coordinate of the text in the image instance. + \param y0 Y-coordinate of the text in the image instance. + \param text Format of the text ('printf'-style format string). + \param foreground_color Array of spectrum() values of type \c T, + defining the foreground color (0 means 'transparent'). + \param background_color Array of spectrum() values of type \c T, + defining the background color (0 means 'transparent'). + \param opacity Drawing opacity. + \param font_height Height of the text font (exact match for 13,23,53,103, interpolated otherwise). + **/ + template + CImg& draw_text(const int x0, const int y0, + const char *const text, + const tc1 *const foreground_color, const tc2 *const background_color, + const float opacity=1, const unsigned int font_height=13, ...) { + if (!font_height) return *this; + CImg tmp(2048); + std::va_list ap; va_start(ap,font_height); + cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap); + const CImgList& font = CImgList::font(font_height,true); + _draw_text(x0,y0,tmp,foreground_color,background_color,opacity,font,true); + return *this; + } + + //! Draw a text string \overloading. + template + CImg& draw_text(const int x0, const int y0, + const char *const text, + const tc *const foreground_color, const int background_color=0, + const float opacity=1, const unsigned int font_height=13, ...) { + if (!font_height) return *this; + cimg::unused(background_color); + CImg tmp(2048); + std::va_list ap; va_start(ap,font_height); + cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap); + return draw_text(x0,y0,"%s",foreground_color,(const tc*)0,opacity,font_height,tmp._data); + } + + //! Draw a text string \overloading. + template + CImg& draw_text(const int x0, const int y0, + const char *const text, + const int, const tc *const background_color, + const float opacity=1, const unsigned int font_height=13, ...) { + if (!font_height) return *this; + CImg tmp(2048); + std::va_list ap; va_start(ap,font_height); + cimg_vsnprintf(tmp,tmp._width,text,ap); va_end(ap); + return draw_text(x0,y0,"%s",(tc*)0,background_color,opacity,font_height,tmp._data); + } + + template + CImg& _draw_text(const int x0, const int y0, + const char *const text, + const tc1 *const foreground_color, const tc2 *const background_color, + const float opacity, const CImgList& font, + const bool is_native_font) { + if (!text) return *this; + if (!font) + throw CImgArgumentException(_cimg_instance + "draw_text(): Empty specified font.", + cimg_instance); + + const unsigned int text_length = (unsigned int)std::strlen(text); + const bool _is_empty = is_empty(); + if (_is_empty) { + // If needed, pre-compute necessary size of the image + int x = 0, y = 0, w = 0; + unsigned char c = 0; + for (unsigned int i = 0; iw) w = x; x = 0; break; + case '\t' : x+=4*font[' ']._width; break; + default : if (cw) w=x; + y+=font[0]._height; + } + assign(x0 + w,y0 + y,1,is_native_font?1:font[0]._spectrum,(T)0); + } + + int x = x0, y = y0; + for (unsigned int i = 0; i letter = font[c]; + if (letter) { + if (is_native_font && _spectrum>letter._spectrum) letter.resize(-100,-100,1,_spectrum,0,2); + const unsigned int cmin = std::min(_spectrum,letter._spectrum); + if (foreground_color) + for (unsigned int c = 0; c + CImg& draw_quiver(const CImg& flow, + const t2 *const color, const float opacity=1, + const unsigned int sampling=25, const float factor=-20, + const bool is_arrow=true, const unsigned int pattern=~0U) { + return draw_quiver(flow,CImg(color,_spectrum,1,1,1,true),opacity,sampling,factor,is_arrow,pattern); + } + + //! Draw a 2d vector field, using a field of colors. + /** + \param flow Image of 2d vectors used as input data. + \param color Image of spectrum()-D vectors corresponding to the color of each arrow. + \param opacity Opacity of the drawing. + \param sampling Length (in pixels) between each arrow. + \param factor Length factor of each arrow (if <0, computed as a percentage of the maximum length). + \param is_arrow Tells if arrows must be drawn, instead of oriented segments. + \param pattern Used pattern to draw lines. + \note Clipping is supported. + **/ + template + CImg& draw_quiver(const CImg& flow, + const CImg& color, const float opacity=1, + const unsigned int sampling=25, const float factor=-20, + const bool is_arrow=true, const unsigned int pattern=~0U) { + if (is_empty()) return *this; + if (!flow || flow._spectrum!=2) + throw CImgArgumentException(_cimg_instance + "draw_quiver(): Invalid dimensions of specified flow (%u,%u,%u,%u,%p).", + cimg_instance, + flow._width,flow._height,flow._depth,flow._spectrum,flow._data); + if (sampling<=0) + throw CImgArgumentException(_cimg_instance + "draw_quiver(): Invalid sampling value %g " + "(should be >0)", + cimg_instance, + sampling); + const bool colorfield = (color._width==flow._width && color._height==flow._height && + color._depth==1 && color._spectrum==_spectrum); + if (is_overlapped(flow)) return draw_quiver(+flow,color,opacity,sampling,factor,is_arrow,pattern); + float vmax,fact; + if (factor<=0) { + float m, M = (float)flow.get_norm(2).max_min(m); + vmax = (float)std::max(cimg::abs(m),cimg::abs(M)); + if (!vmax) vmax = 1; + fact = -factor; + } else { fact = factor; vmax = 1; } + + for (unsigned int y = sampling/2; y<_height; y+=sampling) + for (unsigned int x = sampling/2; x<_width; x+=sampling) { + const unsigned int X = x*flow._width/_width, Y = y*flow._height/_height; + float u = (float)flow(X,Y,0,0)*fact/vmax, v = (float)flow(X,Y,0,1)*fact/vmax; + if (is_arrow) { + const int xx = (int)(x + u), yy = (int)(y + v); + if (colorfield) draw_arrow(x,y,xx,yy,color.get_vector_at(X,Y)._data,opacity,45,sampling/5.0f,pattern); + else draw_arrow(x,y,xx,yy,color._data,opacity,45,sampling/5.0f,pattern); + } else { + if (colorfield) + draw_line((int)(x - 0.5*u),(int)(y - 0.5*v),(int)(x + 0.5*u),(int)(y + 0.5*v), + color.get_vector_at(X,Y)._data,opacity,pattern); + else draw_line((int)(x - 0.5*u),(int)(y - 0.5*v),(int)(x + 0.5*u),(int)(y + 0.5*v), + color._data,opacity,pattern); + } + } + return *this; + } + + //! Draw a labeled horizontal axis. + /** + \param values_x Values along the horizontal axis. + \param y Y-coordinate of the horizontal axis in the image instance. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + \param pattern Drawing pattern. + \param font_height Height of the labels (exact match for 13,23,53,103, interpolated otherwise). + \param allow_zero Enable/disable the drawing of label '0' if found. + **/ + template + CImg& draw_axis(const CImg& values_x, const int y, + const tc *const color, const float opacity=1, + const unsigned int pattern=~0U, const unsigned int font_height=13, + const bool allow_zero=true) { + if (is_empty()) return *this; + const int yt = (y + 3 + font_height)<_height?y + 3:y - 2 - (int)font_height; + const int siz = (int)values_x.size() - 1; + CImg txt(32); + CImg label; + if (siz<=0) { // Degenerated case. + draw_line(0,y,_width - 1,y,color,opacity,pattern); + if (!siz) { + cimg_snprintf(txt,txt._width,"%g",(double)*values_x); + label.assign().draw_text(0,0,txt,color,(tc*)0,opacity,font_height); + const int + _xt = (width() - label.width())/2, + xt = _xt<3?3:_xt + label.width()>=width() - 2?width() - 3 - label.width():_xt; + draw_point(width()/2,y - 1,color,opacity).draw_point(width()/2,y + 1,color,opacity); + if (allow_zero || *txt!='0' || txt[1]!=0) + draw_text(xt,yt,txt,color,(tc*)0,opacity,font_height); + } + } else { // Regular case. + if (values_x[0]=width() - 2?width() - 3 - label.width():_xt; + draw_point(xi,y - 1,color,opacity).draw_point(xi,y + 1,color,opacity); + if (allow_zero || *txt!='0' || txt[1]!=0) + draw_text(xt,yt,txt,color,(tc*)0,opacity,font_height); + } + } + return *this; + } + + //! Draw a labeled vertical axis. + /** + \param x X-coordinate of the vertical axis in the image instance. + \param values_y Values along the Y-axis. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + \param pattern Drawing pattern. + \param font_height Height of the labels (exact match for 13,23,53,103, interpolated otherwise). + \param allow_zero Enable/disable the drawing of label '0' if found. + **/ + template + CImg& draw_axis(const int x, const CImg& values_y, + const tc *const color, const float opacity=1, + const unsigned int pattern=~0U, const unsigned int font_height=13, + const bool allow_zero=true) { + if (is_empty()) return *this; + int siz = (int)values_y.size() - 1; + CImg txt(32); + CImg label; + if (siz<=0) { // Degenerated case. + draw_line(x,0,x,_height - 1,color,opacity,pattern); + if (!siz) { + cimg_snprintf(txt,txt._width,"%g",(double)*values_y); + label.assign().draw_text(0,0,txt,color,(tc*)0,opacity,font_height); + const int + _yt = (height() - label.height())/2, + yt = _yt<0?0:_yt + label.height()>=height()?height() - 1-label.height():_yt, + _xt = x - 2 - label.width(), + xt = _xt>=0?_xt:x + 3; + draw_point(x - 1,height()/2,color,opacity).draw_point(x + 1,height()/2,color,opacity); + if (allow_zero || *txt!='0' || txt[1]!=0) + draw_text(xt,yt,txt,color,(tc*)0,opacity,font_height); + } + } else { // Regular case. + if (values_y[0]=height()?height() - 1-label.height():_yt, + _xt = x - 2 - label.width(), + xt = _xt>=0?_xt:x + 3; + draw_point(x - 1,yi,color,opacity).draw_point(x + 1,yi,color,opacity); + if (allow_zero || *txt!='0' || txt[1]!=0) + draw_text(xt,yt,txt,color,(tc*)0,opacity,font_height); + } + } + return *this; + } + + //! Draw labeled horizontal and vertical axes. + /** + \param values_x Values along the X-axis. + \param values_y Values along the Y-axis. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + \param pattern_x Drawing pattern for the X-axis. + \param pattern_y Drawing pattern for the Y-axis. + \param font_height Height of the labels (exact match for 13,23,53,103, interpolated otherwise). + \param allow_zero Enable/disable the drawing of label '0' if found. + **/ + template + CImg& draw_axes(const CImg& values_x, const CImg& values_y, + const tc *const color, const float opacity=1, + const unsigned int pattern_x=~0U, const unsigned int pattern_y=~0U, + const unsigned int font_height=13, const bool allow_zero=true) { + if (is_empty()) return *this; + const CImg nvalues_x(values_x._data,values_x.size(),1,1,1,true); + const int sizx = (int)values_x.size() - 1, wm1 = width() - 1; + if (sizx>=0) { + float ox = (float)*nvalues_x; + for (unsigned int x = sizx?1U:0U; x<_width; ++x) { + const float nx = (float)nvalues_x._linear_atX((float)x*sizx/wm1); + if (nx*ox<=0) { draw_axis(nx==0?x:x - 1,values_y,color,opacity,pattern_y,font_height,allow_zero); break; } + ox = nx; + } + } + const CImg nvalues_y(values_y._data,values_y.size(),1,1,1,true); + const int sizy = (int)values_y.size() - 1, hm1 = height() - 1; + if (sizy>0) { + float oy = (float)nvalues_y[0]; + for (unsigned int y = sizy?1U:0U; y<_height; ++y) { + const float ny = (float)nvalues_y._linear_atX((float)y*sizy/hm1); + if (ny*oy<=0) { draw_axis(values_x,ny==0?y:y - 1,color,opacity,pattern_x,font_height,allow_zero); break; } + oy = ny; + } + } + return *this; + } + + //! Draw labeled horizontal and vertical axes \overloading. + template + CImg& draw_axes(const float x0, const float x1, const float y0, const float y1, + const tc *const color, const float opacity=1, + const int subdivisionx=-60, const int subdivisiony=-60, + const float precisionx=0, const float precisiony=0, + const unsigned int pattern_x=~0U, const unsigned int pattern_y=~0U, + const unsigned int font_height=13) { + if (is_empty()) return *this; + const bool allow_zero = (x0*x1>0) || (y0*y1>0); + const float + dx = cimg::abs(x1-x0), dy = cimg::abs(y1-y0), + px = dx<=0?1:precisionx==0?(float)std::pow(10.0,(int)std::log10(dx) - 2.0):precisionx, + py = dy<=0?1:precisiony==0?(float)std::pow(10.0,(int)std::log10(dy) - 2.0):precisiony; + if (x0!=x1 && y0!=y1) + draw_axes(CImg::sequence(subdivisionx>0?subdivisionx:1-width()/subdivisionx,x0,x1).round(px), + CImg::sequence(subdivisiony>0?subdivisiony:1-height()/subdivisiony,y0,y1).round(py), + color,opacity,pattern_x,pattern_y,font_height,allow_zero); + else if (x0==x1 && y0!=y1) + draw_axis((int)x0,CImg::sequence(subdivisiony>0?subdivisiony:1-height()/subdivisiony,y0,y1).round(py), + color,opacity,pattern_y,font_height); + else if (x0!=x1 && y0==y1) + draw_axis(CImg::sequence(subdivisionx>0?subdivisionx:1-width()/subdivisionx,x0,x1).round(px),(int)y0, + color,opacity,pattern_x,font_height); + return *this; + } + + //! Draw 2d grid. + /** + \param values_x X-coordinates of the vertical lines. + \param values_y Y-coordinates of the horizontal lines. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + \param pattern_x Drawing pattern for vertical lines. + \param pattern_y Drawing pattern for horizontal lines. + **/ + template + CImg& draw_grid(const CImg& values_x, const CImg& values_y, + const tc *const color, const float opacity=1, + const unsigned int pattern_x=~0U, const unsigned int pattern_y=~0U) { + if (is_empty()) return *this; + if (values_x) cimg_foroff(values_x,x) { + const int xi = (int)values_x[x]; + if (xi>=0 && xi=0 && yi + CImg& draw_grid(const float delta_x, const float delta_y, + const float offsetx, const float offsety, + const bool invertx, const bool inverty, + const tc *const color, const float opacity=1, + const unsigned int pattern_x=~0U, const unsigned int pattern_y=~0U) { + if (is_empty()) return *this; + CImg seqx, seqy; + if (delta_x!=0) { + const float dx = delta_x>0?delta_x:_width*-delta_x/100; + const unsigned int nx = (unsigned int)(_width/dx); + seqx = CImg::sequence(1 + nx,0,(unsigned int)(dx*nx)); + if (offsetx) cimg_foroff(seqx,x) seqx(x) = (unsigned int)cimg::mod(seqx(x) + offsetx,(float)_width); + if (invertx) cimg_foroff(seqx,x) seqx(x) = _width - 1 - seqx(x); + } + if (delta_y!=0) { + const float dy = delta_y>0?delta_y:_height*-delta_y/100; + const unsigned int ny = (unsigned int)(_height/dy); + seqy = CImg::sequence(1 + ny,0,(unsigned int)(dy*ny)); + if (offsety) cimg_foroff(seqy,y) seqy(y) = (unsigned int)cimg::mod(seqy(y) + offsety,(float)_height); + if (inverty) cimg_foroff(seqy,y) seqy(y) = _height - 1 - seqy(y); + } + return draw_grid(seqx,seqy,color,opacity,pattern_x,pattern_y); + } + + //! Draw 1d graph. + /** + \param data Image containing the graph values I = f(x). + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + + \param plot_type Define the type of the plot: + - 0 = No plot. + - 1 = Plot using segments. + - 2 = Plot using cubic splines. + - 3 = Plot with bars. + \param vertex_type Define the type of points: + - 0 = No points. + - 1 = Point. + - 2 = Straight cross. + - 3 = Diagonal cross. + - 4 = Filled circle. + - 5 = Outlined circle. + - 6 = Square. + - 7 = Diamond. + \param ymin Lower bound of the y-range. + \param ymax Upper bound of the y-range. + \param pattern Drawing pattern. + \note + - if \c ymin==ymax==0, the y-range is computed automatically from the input samples. + **/ + template + CImg& draw_graph(const CImg& data, + const tc *const color, const float opacity=1, + const unsigned int plot_type=1, const int vertex_type=1, + const double ymin=0, const double ymax=0, const unsigned int pattern=~0U) { + if (is_empty() || _height<=1) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_graph(): Specified color is (null).", + cimg_instance); + + // Create shaded colors for displaying bar plots. + CImg color1, color2; + if (plot_type==3) { + color1.assign(_spectrum); color2.assign(_spectrum); + cimg_forC(*this,c) { + color1[c] = (tc)std::min((float)cimg::type::max(),(float)color[c]*1.2f); + color2[c] = (tc)(color[c]*0.4f); + } + } + + // Compute min/max and normalization factors. + const ulongT + siz = data.size(), + _siz1 = siz - (plot_type!=3), + siz1 = _siz1?_siz1:1; + const unsigned int + _width1 = _width - (plot_type!=3), + width1 = _width1?_width1:1; + double m = ymin, M = ymax; + if (ymin==ymax) m = (double)data.max_min(M); + if (m==M) { --m; ++M; } + const float ca = (float)(M-m)/(_height - 1); + bool init_hatch = true; + + // Draw graph edges + switch (plot_type%4) { + case 1 : { // Segments + int oX = 0, oY = (int)((data[0] - m)/ca); + if (siz==1) { + const int Y = (int)((*data - m)/ca); + draw_line(0,Y,width() - 1,Y,color,opacity,pattern); + } else { + const float fx = (float)_width/siz1; + for (ulongT off = 1; off ndata(data._data,siz,1,1,1,true); + int oY = (int)((data[0] - m)/ca); + cimg_forX(*this,x) { + const int Y = (int)((ndata._cubic_atX((float)x*siz1/width1)-m)/ca); + if (x>0) draw_line(x,oY,x + 1,Y,color,opacity,pattern,init_hatch); + init_hatch = false; + oY = Y; + } + } break; + case 3 : { // Bars + const int Y0 = (int)(-m/ca); + const float fx = (float)_width/siz1; + int oX = 0; + cimg_foroff(data,off) { + const int + X = (int)((off + 1)*fx) - 1, + Y = (int)((data[off] - m)/ca); + draw_rectangle(oX,Y0,X,Y,color,opacity). + draw_line(oX,Y,oX,Y0,color2.data(),opacity). + draw_line(oX,Y0,X,Y0,Y<=Y0?color2.data():color1.data(),opacity). + draw_line(X,Y,X,Y0,color1.data(),opacity). + draw_line(oX,Y,X,Y,Y<=Y0?color1.data():color2.data(),opacity); + oX = X + 1; + } + } break; + default : break; // No edges + } + + // Draw graph points + const unsigned int wb2 = plot_type==3?_width1/(2*siz):0; + const float fx = (float)_width1/siz1; + switch (vertex_type%8) { + case 1 : { // Point + cimg_foroff(data,off) { + const int + X = (int)(off*fx + wb2), + Y = (int)((data[off]-m)/ca); + draw_point(X,Y,color,opacity); + } + } break; + case 2 : { // Straight Cross + cimg_foroff(data,off) { + const int + X = (int)(off*fx + wb2), + Y = (int)((data[off]-m)/ca); + draw_line(X - 3,Y,X + 3,Y,color,opacity).draw_line(X,Y - 3,X,Y + 3,color,opacity); + } + } break; + case 3 : { // Diagonal Cross + cimg_foroff(data,off) { + const int + X = (int)(off*fx + wb2), + Y = (int)((data[off]-m)/ca); + draw_line(X - 3,Y - 3,X + 3,Y + 3,color,opacity).draw_line(X - 3,Y + 3,X + 3,Y - 3,color,opacity); + } + } break; + case 4 : { // Filled Circle + cimg_foroff(data,off) { + const int + X = (int)(off*fx + wb2), + Y = (int)((data[off]-m)/ca); + draw_circle(X,Y,3,color,opacity); + } + } break; + case 5 : { // Outlined circle + cimg_foroff(data,off) { + const int + X = (int)(off*fx + wb2), + Y = (int)((data[off]-m)/ca); + draw_circle(X,Y,3,color,opacity,0U); + } + } break; + case 6 : { // Square + cimg_foroff(data,off) { + const int + X = (int)(off*fx + wb2), + Y = (int)((data[off]-m)/ca); + draw_rectangle(X - 3,Y - 3,X + 3,Y + 3,color,opacity,~0U); + } + } break; + case 7 : { // Diamond + cimg_foroff(data,off) { + const int + X = (int)(off*fx + wb2), + Y = (int)((data[off]-m)/ca); + draw_line(X,Y - 4,X + 4,Y,color,opacity). + draw_line(X + 4,Y,X,Y + 4,color,opacity). + draw_line(X,Y + 4,X - 4,Y,color,opacity). + draw_line(X - 4,Y,X,Y - 4,color,opacity); + } + } break; + default : break; // No points + } + return *this; + } + + bool _draw_fill(const int x, const int y, const int z, + const CImg& ref, const float tolerance2) const { + const T *ptr1 = data(x,y,z), *ptr2 = ref._data; + const unsigned long off = _width*_height*_depth; + float diff = 0; + cimg_forC(*this,c) { diff += cimg::sqr(*ptr1 - *(ptr2++)); ptr1+=off; } + return diff<=tolerance2; + } + + //! Draw filled 3d region with the flood fill algorithm. + /** + \param x0 X-coordinate of the starting point of the region to fill. + \param y0 Y-coordinate of the starting point of the region to fill. + \param z0 Z-coordinate of the starting point of the region to fill. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param[out] region Image that will contain the mask of the filled region mask, as an output. + \param tolerance Tolerance concerning neighborhood values. + \param opacity Opacity of the drawing. + \param is_high_connectivity Tells if 8-connexity must be used. + \return \c region is initialized with the binary mask of the filled region. + **/ + template + CImg& draw_fill(const int x0, const int y0, const int z0, + const tc *const color, const float opacity, + CImg ®ion, + const float tolerance = 0, + const bool is_high_connectivity = false) { +#define _draw_fill_push(x,y,z) if (N>=stack._width) stack.resize(2*N + 1,1,1,3,0); \ + stack[N] = x; stack(N,1) = y; stack(N++,2) = z +#define _draw_fill_pop(x,y,z) x = stack[--N]; y = stack(N,1); z = stack(N,2) +#define _draw_fill_is_inside(x,y,z) !_region(x,y,z) && _draw_fill(x,y,z,ref,tolerance2) + + if (!containsXYZC(x0,y0,z0,0)) return *this; + const float nopacity = cimg::abs((float)opacity), copacity = 1 - std::max((float)opacity,0.0f); + const float tolerance2 = cimg::sqr(tolerance); + const CImg ref = get_vector_at(x0,y0,z0); + CImg stack(256,1,1,3); + CImg _region(_width,_height,_depth,1,0); + unsigned int N = 0; + int x, y, z; + + _draw_fill_push(x0,y0,z0); + while (N>0) { + _draw_fill_pop(x,y,z); + if (!_region(x,y,z)) { + const int yp = y - 1, yn = y + 1, zp = z - 1, zn = z + 1; + int xl = x, xr = x; + + // Using these booleans reduces the number of pushes drastically. + bool is_yp = false, is_yn = false, is_zp = false, is_zn = false; + for (int step = -1; step<2; step+=2) { + while (x>=0 && x=0 && _draw_fill_is_inside(x,yp,z)) { + if (!is_yp) { _draw_fill_push(x,yp,z); is_yp = true; } + } else is_yp = false; + if (yn1) { + if (zp>=0 && _draw_fill_is_inside(x,y,zp)) { + if (!is_zp) { _draw_fill_push(x,y,zp); is_zp = true; } + } else is_zp = false; + if (zn=0 && !is_yp) { + if (xp>=0 && _draw_fill_is_inside(xp,yp,z)) { + _draw_fill_push(xp,yp,z); if (step<0) is_yp = true; + } + if (xn0) is_yp = true; + } + } + if (yn=0 && _draw_fill_is_inside(xp,yn,z)) { + _draw_fill_push(xp,yn,z); if (step<0) is_yn = true; + } + if (xn0) is_yn = true; + } + } + if (depth()>1) { + if (zp>=0 && !is_zp) { + if (xp>=0 && _draw_fill_is_inside(xp,y,zp)) { + _draw_fill_push(xp,y,zp); if (step<0) is_zp = true; + } + if (xn0) is_zp = true; + } + + if (yp>=0 && !is_yp) { + if (_draw_fill_is_inside(x,yp,zp)) { _draw_fill_push(x,yp,zp); } + if (xp>=0 && _draw_fill_is_inside(xp,yp,zp)) { _draw_fill_push(xp,yp,zp); } + if (xn=0 && _draw_fill_is_inside(xp,yn,zp)) { _draw_fill_push(xp,yn,zp); } + if (xn=0 && _draw_fill_is_inside(xp,y,zn)) { + _draw_fill_push(xp,y,zn); if (step<0) is_zn = true; + } + if (xn0) is_zn = true; + } + + if (yp>=0 && !is_yp) { + if (_draw_fill_is_inside(x,yp,zn)) { _draw_fill_push(x,yp,zn); } + if (xp>=0 && _draw_fill_is_inside(xp,yp,zn)) { _draw_fill_push(xp,yp,zn); } + if (xn=0 && _draw_fill_is_inside(xp,yn,zn)) { _draw_fill_push(xp,yn,zn); } + if (xn + CImg& draw_fill(const int x0, const int y0, const int z0, + const tc *const color, const float opacity=1, + const float tolerance=0, const bool is_high_connexity=false) { + CImg tmp; + return draw_fill(x0,y0,z0,color,opacity,tmp,tolerance,is_high_connexity); + } + + //! Draw filled 2d region with the flood fill algorithm \simplification. + template + CImg& draw_fill(const int x0, const int y0, + const tc *const color, const float opacity=1, + const float tolerance=0, const bool is_high_connexity=false) { + CImg tmp; + return draw_fill(x0,y0,0,color,opacity,tmp,tolerance,is_high_connexity); + } + + //! Draw a random plasma texture. + /** + \param alpha Alpha-parameter. + \param beta Beta-parameter. + \param scale Scale-parameter. + \note Use the mid-point algorithm to render. + **/ + CImg& draw_plasma(const float alpha=1, const float beta=0, const unsigned int scale=8) { + if (is_empty()) return *this; + const int w = width(), h = height(); + const Tfloat m = (Tfloat)cimg::type::min(), M = (Tfloat)cimg::type::max(); + cimg_forZC(*this,z,c) { + CImg ref = get_shared_slice(z,c); + for (int delta = 1<1; delta>>=1) { + const int delta2 = delta>>1; + const float r = alpha*delta + beta; + + // Square step. + for (int y0 = 0; y0M?M:val); + } + + // Diamond steps. + for (int y = -delta2; yM?M:val); + } + for (int y0 = 0; y0M?M:val); + } + for (int y = -delta2; yM?M:val); + } + } + } + return *this; + } + + //! Draw a quadratic Mandelbrot or Julia 2d fractal. + /** + \param x0 X-coordinate of the upper-left pixel. + \param y0 Y-coordinate of the upper-left pixel. + \param x1 X-coordinate of the lower-right pixel. + \param y1 Y-coordinate of the lower-right pixel. + \param colormap Colormap. + \param opacity Drawing opacity. + \param z0r Real part of the upper-left fractal vertex. + \param z0i Imaginary part of the upper-left fractal vertex. + \param z1r Real part of the lower-right fractal vertex. + \param z1i Imaginary part of the lower-right fractal vertex. + \param iteration_max Maximum number of iterations for each estimated point. + \param is_normalized_iteration Tells if iterations are normalized. + \param is_julia_set Tells if the Mandelbrot or Julia set is rendered. + \param param_r Real part of the Julia set parameter. + \param param_i Imaginary part of the Julia set parameter. + \note Fractal rendering is done by the Escape Time Algorithm. + **/ + template + CImg& draw_mandelbrot(const int x0, const int y0, const int x1, const int y1, + const CImg& colormap, const float opacity=1, + const double z0r=-2, const double z0i=-2, const double z1r=2, const double z1i=2, + const unsigned int iteration_max=255, + const bool is_normalized_iteration=false, + const bool is_julia_set=false, + const double param_r=0, const double param_i=0) { + if (is_empty()) return *this; + CImg palette; + if (colormap) palette.assign(colormap._data,colormap.size()/colormap._spectrum,1,1,colormap._spectrum,true); + if (palette && palette._spectrum!=_spectrum) + throw CImgArgumentException(_cimg_instance + "draw_mandelbrot(): Instance and specified colormap (%u,%u,%u,%u,%p) have " + "incompatible dimensions.", + cimg_instance, + colormap._width,colormap._height,colormap._depth,colormap._spectrum,colormap._data); + + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f), ln2 = (float)std::log(2.0); + const int + _x0 = cimg::cut(x0,0,width() - 1), + _y0 = cimg::cut(y0,0,height() - 1), + _x1 = cimg::cut(x1,0,width() - 1), + _y1 = cimg::cut(y1,0,height() - 1); + + cimg_pragma_openmp(parallel for collapse(2) cimg_openmp_if((1 + _x1 - _x0)*(1 + _y1 - _y0)>=2048)) + for (int q = _y0; q<=_y1; ++q) + for (int p = _x0; p<=_x1; ++p) { + unsigned int iteration = 0; + const double x = z0r + p*(z1r-z0r)/_width, y = z0i + q*(z1i-z0i)/_height; + double zr, zi, cr, ci; + if (is_julia_set) { zr = x; zi = y; cr = param_r; ci = param_i; } + else { zr = param_r; zi = param_i; cr = x; ci = y; } + for (iteration=1; zr*zr + zi*zi<=4 && iteration<=iteration_max; ++iteration) { + const double temp = zr*zr - zi*zi + cr; + zi = 2*zr*zi + ci; + zr = temp; + } + if (iteration>iteration_max) { + if (palette) { + if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)palette(0,c); + else cimg_forC(*this,c) (*this)(p,q,0,c) = (T)(palette(0,c)*nopacity + (*this)(p,q,0,c)*copacity); + } else { + if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)0; + else cimg_forC(*this,c) (*this)(p,q,0,c) = (T)((*this)(p,q,0,c)*copacity); + } + } else if (is_normalized_iteration) { + const float + normz = (float)cimg::abs(zr*zr + zi*zi), + niteration = (float)(iteration + 1 - std::log(std::log(normz))/ln2); + if (palette) { + if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)palette._linear_atX(niteration,c); + else cimg_forC(*this,c) + (*this)(p,q,0,c) = (T)(palette._linear_atX(niteration,c)*nopacity + (*this)(p,q,0,c)*copacity); + } else { + if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)niteration; + else cimg_forC(*this,c) (*this)(p,q,0,c) = (T)(niteration*nopacity + (*this)(p,q,0,c)*copacity); + } + } else { + if (palette) { + if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)palette._atX(iteration,c); + else cimg_forC(*this,c) (*this)(p,q,0,c) = (T)(palette(iteration,c)*nopacity + (*this)(p,q,0,c)*copacity); + } else { + if (opacity>=1) cimg_forC(*this,c) (*this)(p,q,0,c) = (T)iteration; + else cimg_forC(*this,c) (*this)(p,q,0,c) = (T)(iteration*nopacity + (*this)(p,q,0,c)*copacity); + } + } + } + return *this; + } + + //! Draw a quadratic Mandelbrot or Julia 2d fractal \overloading. + template + CImg& draw_mandelbrot(const CImg& colormap, const float opacity=1, + const double z0r=-2, const double z0i=-2, const double z1r=2, const double z1i=2, + const unsigned int iteration_max=255, + const bool is_normalized_iteration=false, + const bool is_julia_set=false, + const double param_r=0, const double param_i=0) { + return draw_mandelbrot(0,0,_width - 1,_height - 1,colormap,opacity, + z0r,z0i,z1r,z1i,iteration_max,is_normalized_iteration,is_julia_set,param_r,param_i); + } + + //! Draw a 1d gaussian function. + /** + \param xc X-coordinate of the gaussian center. + \param sigma Standard variation of the gaussian distribution. + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + **/ + template + CImg& draw_gaussian(const float xc, const float sigma, + const tc *const color, const float opacity=1) { + if (is_empty()) return *this; + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_gaussian(): Specified color is (null).", + cimg_instance); + const float sigma2 = 2*sigma*sigma, nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + const ulongT whd = (ulongT)_width*_height*_depth; + const tc *col = color; + cimg_forX(*this,x) { + const float dx = (x - xc), val = (float)std::exp(-dx*dx/sigma2); + T *ptrd = data(x,0,0,0); + if (opacity>=1) cimg_forC(*this,c) { *ptrd = (T)(val*(*col++)); ptrd+=whd; } + else cimg_forC(*this,c) { *ptrd = (T)(nopacity*val*(*col++) + *ptrd*copacity); ptrd+=whd; } + col-=_spectrum; + } + return *this; + } + + //! Draw a 2d gaussian function. + /** + \param xc X-coordinate of the gaussian center. + \param yc Y-coordinate of the gaussian center. + \param tensor Covariance matrix (must be 2x2). + \param color Pointer to \c spectrum() consecutive values, defining the drawing color. + \param opacity Drawing opacity. + **/ + template + CImg& draw_gaussian(const float xc, const float yc, const CImg& tensor, + const tc *const color, const float opacity=1) { + if (is_empty()) return *this; + if (tensor._width!=2 || tensor._height!=2 || tensor._depth!=1 || tensor._spectrum!=1) + throw CImgArgumentException(_cimg_instance + "draw_gaussian(): Specified tensor (%u,%u,%u,%u,%p) is not a 2x2 matrix.", + cimg_instance, + tensor._width,tensor._height,tensor._depth,tensor._spectrum,tensor._data); + if (!color) + throw CImgArgumentException(_cimg_instance + "draw_gaussian(): Specified color is (null).", + cimg_instance); + typedef typename CImg::Tfloat tfloat; + const CImg invT = tensor.get_invert(), invT2 = (invT*invT)/(-2.0); + const tfloat a = invT2(0,0), b = 2*invT2(1,0), c = invT2(1,1); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + const ulongT whd = (ulongT)_width*_height*_depth; + const tc *col = color; + float dy = -yc; + cimg_forY(*this,y) { + float dx = -xc; + cimg_forX(*this,x) { + const float val = (float)std::exp(a*dx*dx + b*dx*dy + c*dy*dy); + T *ptrd = data(x,y,0,0); + if (opacity>=1) cimg_forC(*this,c) { *ptrd = (T)(val*(*col++)); ptrd+=whd; } + else cimg_forC(*this,c) { *ptrd = (T)(nopacity*val*(*col++) + *ptrd*copacity); ptrd+=whd; } + col-=_spectrum; + ++dx; + } + ++dy; + } + return *this; + } + + //! Draw a 2d gaussian function \overloading. + template + CImg& draw_gaussian(const int xc, const int yc, const float r1, const float r2, const float ru, const float rv, + const tc *const color, const float opacity=1) { + const double + a = r1*ru*ru + r2*rv*rv, + b = (r1-r2)*ru*rv, + c = r1*rv*rv + r2*ru*ru; + const CImg tensor(2,2,1,1, a,b,b,c); + return draw_gaussian(xc,yc,tensor,color,opacity); + } + + //! Draw a 2d gaussian function \overloading. + template + CImg& draw_gaussian(const float xc, const float yc, const float sigma, + const tc *const color, const float opacity=1) { + return draw_gaussian(xc,yc,CImg::diagonal(sigma,sigma),color,opacity); + } + + //! Draw a 3d gaussian function \overloading. + template + CImg& draw_gaussian(const float xc, const float yc, const float zc, const CImg& tensor, + const tc *const color, const float opacity=1) { + if (is_empty()) return *this; + typedef typename CImg::Tfloat tfloat; + if (tensor._width!=3 || tensor._height!=3 || tensor._depth!=1 || tensor._spectrum!=1) + throw CImgArgumentException(_cimg_instance + "draw_gaussian(): Specified tensor (%u,%u,%u,%u,%p) is not a 3x3 matrix.", + cimg_instance, + tensor._width,tensor._height,tensor._depth,tensor._spectrum,tensor._data); + + const CImg invT = tensor.get_invert(), invT2 = (invT*invT)/(-2.0); + const tfloat a = invT2(0,0), b = 2*invT2(1,0), c = 2*invT2(2,0), d = invT2(1,1), e = 2*invT2(2,1), f = invT2(2,2); + const float nopacity = cimg::abs(opacity), copacity = 1 - std::max(opacity,0.0f); + const ulongT whd = (ulongT)_width*_height*_depth; + const tc *col = color; + cimg_forXYZ(*this,x,y,z) { + const float + dx = (x - xc), dy = (y - yc), dz = (z - zc), + val = (float)std::exp(a*dx*dx + b*dx*dy + c*dx*dz + d*dy*dy + e*dy*dz + f*dz*dz); + T *ptrd = data(x,y,z,0); + if (opacity>=1) cimg_forC(*this,c) { *ptrd = (T)(val*(*col++)); ptrd+=whd; } + else cimg_forC(*this,c) { *ptrd = (T)(nopacity*val*(*col++) + *ptrd*copacity); ptrd+=whd; } + col-=_spectrum; + } + return *this; + } + + //! Draw a 3d gaussian function \overloading. + template + CImg& draw_gaussian(const float xc, const float yc, const float zc, const float sigma, + const tc *const color, const float opacity=1) { + return draw_gaussian(xc,yc,zc,CImg::diagonal(sigma,sigma,sigma),color,opacity); + } + + //! Draw a 3d object. + /** + \param x0 X-coordinate of the 3d object position + \param y0 Y-coordinate of the 3d object position + \param z0 Z-coordinate of the 3d object position + \param vertices Image Nx3 describing 3d point coordinates + \param primitives List of P primitives + \param colors List of P color (or textures) + \param opacities Image or list of P opacities + \param render_type d Render type (0=Points, 1=Lines, 2=Faces (no light), 3=Faces (flat), 4=Faces(Gouraud) + \param is_double_sided Tells if object faces have two sides or are oriented. + \param focale length of the focale (0 for parallel projection) + \param lightx X-coordinate of the light + \param lighty Y-coordinate of the light + \param lightz Z-coordinate of the light + \param specular_lightness Amount of specular light. + \param specular_shininess Shininess of the object + **/ + template + CImg& draw_object3d(const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, const CImg& opacities, + const unsigned int render_type=4, + const bool is_double_sided=false, const float focale=700, + const float lightx=0, const float lighty=0, const float lightz=-5e8, + const float specular_lightness=0.2f, const float specular_shininess=0.1f) { + return draw_object3d(x0,y0,z0,vertices,primitives,colors,opacities,render_type, + is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,CImg::empty()); + } + + //! Draw a 3d object \simplification. + template + CImg& draw_object3d(const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, const CImg& opacities, + const unsigned int render_type, + const bool is_double_sided, const float focale, + const float lightx, const float lighty, const float lightz, + const float specular_lightness, const float specular_shininess, + CImg& zbuffer) { + return _draw_object3d(0,zbuffer,x0,y0,z0,vertices,primitives,colors,opacities, + render_type,is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,1); + } + +#ifdef cimg_use_board + template + CImg& draw_object3d(LibBoard::Board& board, + const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, const CImg& opacities, + const unsigned int render_type=4, + const bool is_double_sided=false, const float focale=700, + const float lightx=0, const float lighty=0, const float lightz=-5e8, + const float specular_lightness=0.2f, const float specular_shininess=0.1f) { + return draw_object3d(board,x0,y0,z0,vertices,primitives,colors,opacities,render_type, + is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,CImg::empty()); + } + + template + CImg& draw_object3d(LibBoard::Board& board, + const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, const CImg& opacities, + const unsigned int render_type, + const bool is_double_sided, const float focale, + const float lightx, const float lighty, const float lightz, + const float specular_lightness, const float specular_shininess, + CImg& zbuffer) { + return _draw_object3d((void*)&board,zbuffer,x0,y0,z0,vertices,primitives,colors,opacities, + render_type,is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,1); + } +#endif + + //! Draw a 3d object \simplification. + template + CImg& draw_object3d(const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, const CImgList& opacities, + const unsigned int render_type=4, + const bool is_double_sided=false, const float focale=700, + const float lightx=0, const float lighty=0, const float lightz=-5e8, + const float specular_lightness=0.2f, const float specular_shininess=0.1f) { + return draw_object3d(x0,y0,z0,vertices,primitives,colors,opacities,render_type, + is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,CImg::empty()); + } + + //! Draw a 3d object \simplification. + template + CImg& draw_object3d(const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, const CImgList& opacities, + const unsigned int render_type, + const bool is_double_sided, const float focale, + const float lightx, const float lighty, const float lightz, + const float specular_lightness, const float specular_shininess, + CImg& zbuffer) { + return _draw_object3d(0,zbuffer,x0,y0,z0,vertices,primitives,colors,opacities, + render_type,is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,1); + } + +#ifdef cimg_use_board + template + CImg& draw_object3d(LibBoard::Board& board, + const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, const CImgList& opacities, + const unsigned int render_type=4, + const bool is_double_sided=false, const float focale=700, + const float lightx=0, const float lighty=0, const float lightz=-5e8, + const float specular_lightness=0.2f, const float specular_shininess=0.1f) { + return draw_object3d(board,x0,y0,z0,vertices,primitives,colors,opacities,render_type, + is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,CImg::empty()); + } + + template + CImg& draw_object3d(LibBoard::Board& board, + const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, const CImgList& opacities, + const unsigned int render_type, + const bool is_double_sided, const float focale, + const float lightx, const float lighty, const float lightz, + const float specular_lightness, const float specular_shininess, + CImg& zbuffer) { + return _draw_object3d((void*)&board,zbuffer,x0,y0,z0,vertices,primitives,colors,opacities, + render_type,is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,1); + } +#endif + + //! Draw a 3d object \simplification. + template + CImg& draw_object3d(const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, + const unsigned int render_type=4, + const bool is_double_sided=false, const float focale=700, + const float lightx=0, const float lighty=0, const float lightz=-5e8, + const float specular_lightness=0.2f, const float specular_shininess=0.1f) { + return draw_object3d(x0,y0,z0,vertices,primitives,colors,CImg::const_empty(), + render_type,is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,CImg::empty()); + } + + //! Draw a 3d object \simplification. + template + CImg& draw_object3d(const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, + const unsigned int render_type, + const bool is_double_sided, const float focale, + const float lightx, const float lighty, const float lightz, + const float specular_lightness, const float specular_shininess, + CImg& zbuffer) { + return draw_object3d(x0,y0,z0,vertices,primitives,colors,CImg::const_empty(), + render_type,is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,zbuffer); + } + +#ifdef cimg_use_board + template + CImg& draw_object3d(LibBoard::Board& board, + const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, + const unsigned int render_type=4, + const bool is_double_sided=false, const float focale=700, + const float lightx=0, const float lighty=0, const float lightz=-5e8, + const float specular_lightness=0.2f, const float specular_shininess=0.1f) { + return draw_object3d(x0,y0,z0,vertices,primitives,colors,CImg::const_empty(), + render_type,is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,CImg::empty()); + } + + template + CImg& draw_object3d(LibBoard::Board& board, + const float x0, const float y0, const float z0, + const CImg& vertices, const CImgList& primitives, + const CImgList& colors, + const unsigned int render_type, + const bool is_double_sided, const float focale, + const float lightx, const float lighty, const float lightz, + const float specular_lightness, const float specular_shininess, + CImg& zbuffer) { + return draw_object3d(x0,y0,z0,vertices,primitives,colors,CImg::const_empty(), + render_type,is_double_sided,focale,lightx,lighty,lightz, + specular_lightness,specular_shininess,zbuffer); + } +#endif + + template + static float __draw_object3d(const CImgList& opacities, const unsigned int n_primitive, CImg& opacity) { + if (n_primitive>=opacities._width || opacities[n_primitive].is_empty()) { opacity.assign(); return 1; } + if (opacities[n_primitive].size()==1) { opacity.assign(); return opacities(n_primitive,0); } + opacity.assign(opacities[n_primitive],true); + return 1.0f; + } + + template + static float __draw_object3d(const CImg& opacities, const unsigned int n_primitive, CImg& opacity) { + opacity.assign(); + return n_primitive>=opacities._width?1.0f:(float)opacities[n_primitive]; + } + + template + static float ___draw_object3d(const CImgList& opacities, const unsigned int n_primitive) { + return n_primitive + static float ___draw_object3d(const CImg& opacities, const unsigned int n_primitive) { + return n_primitive + CImg& _draw_object3d(void *const pboard, CImg& zbuffer, + const float X, const float Y, const float Z, + const CImg& vertices, + const CImgList& primitives, + const CImgList& colors, + const to& opacities, + const unsigned int render_type, + const bool is_double_sided, const float focale, + const float lightx, const float lighty, const float lightz, + const float specular_lightness, const float specular_shininess, + const float sprite_scale) { + typedef typename cimg::superset2::type tpfloat; + typedef typename to::value_type _to; + if (is_empty() || !vertices || !primitives) return *this; + CImg error_message(1024); + if (!vertices.is_object3d(primitives,colors,opacities,false,error_message)) + throw CImgArgumentException(_cimg_instance + "draw_object3d(): Invalid specified 3d object (%u,%u) (%s).", + cimg_instance,vertices._width,primitives._width,error_message.data()); +#ifndef cimg_use_board + if (pboard) return *this; +#endif + if (render_type==5) cimg::mutex(10); // Static variable used in this case, breaks thread-safety. + + const float + nspec = 1 - (specular_lightness<0.0f?0.0f:(specular_lightness>1.0f?1.0f:specular_lightness)), + nspec2 = 1 + (specular_shininess<0.0f?0.0f:specular_shininess), + nsl1 = (nspec2 - 1)/cimg::sqr(nspec - 1), + nsl2 = 1 - 2*nsl1*nspec, + nsl3 = nspec2 - nsl1 - nsl2; + + // Create light texture for phong-like rendering. + CImg light_texture; + if (render_type==5) { + if (colors._width>primitives._width) { + static CImg default_light_texture; + static const tc *lptr = 0; + static tc ref_values[64] = { 0 }; + const CImg& img = colors.back(); + bool is_same_texture = (lptr==img._data); + if (is_same_texture) + for (unsigned int r = 0, j = 0; j<8; ++j) + for (unsigned int i = 0; i<8; ++i) + if (ref_values[r++]!=img(i*img._width/9,j*img._height/9,0,(i + j)%img._spectrum)) { + is_same_texture = false; break; + } + if (!is_same_texture || default_light_texture._spectrum<_spectrum) { + (default_light_texture.assign(img,false)/=255).resize(-100,-100,1,_spectrum); + lptr = colors.back().data(); + for (unsigned int r = 0, j = 0; j<8; ++j) + for (unsigned int i = 0; i<8; ++i) + ref_values[r++] = img(i*img._width/9,j*img._height/9,0,(i + j)%img._spectrum); + } + light_texture.assign(default_light_texture,true); + } else { + static CImg default_light_texture; + static float olightx = 0, olighty = 0, olightz = 0, ospecular_shininess = 0; + if (!default_light_texture || + lightx!=olightx || lighty!=olighty || lightz!=olightz || + specular_shininess!=ospecular_shininess || default_light_texture._spectrum<_spectrum) { + default_light_texture.assign(512,512); + const float + dlx = lightx - X, + dly = lighty - Y, + dlz = lightz - Z, + nl = cimg::hypot(dlx,dly,dlz), + nlx = (default_light_texture._width - 1)/2*(1 + dlx/nl), + nly = (default_light_texture._height - 1)/2*(1 + dly/nl), + white[] = { 1 }; + default_light_texture.draw_gaussian(nlx,nly,default_light_texture._width/3.0f,white); + cimg_forXY(default_light_texture,x,y) { + const float factor = default_light_texture(x,y); + if (factor>nspec) default_light_texture(x,y) = std::min(2.0f,nsl1*factor*factor + nsl2*factor + nsl3); + } + default_light_texture.resize(-100,-100,1,_spectrum); + olightx = lightx; olighty = lighty; olightz = lightz; ospecular_shininess = specular_shininess; + } + light_texture.assign(default_light_texture,true); + } + } + + // Compute 3d to 2d projection. + CImg projections(vertices._width,2); + tpfloat parallzmin = cimg::type::max(); + const float absfocale = focale?cimg::abs(focale):0; + if (absfocale) { + cimg_pragma_openmp(parallel for cimg_openmp_if(projections.size()>4096)) + cimg_forX(projections,l) { // Perspective projection + const tpfloat + x = (tpfloat)vertices(l,0), + y = (tpfloat)vertices(l,1), + z = (tpfloat)vertices(l,2); + const tpfloat projectedz = z + Z + absfocale; + projections(l,1) = Y + absfocale*y/projectedz; + projections(l,0) = X + absfocale*x/projectedz; + } + } else { + cimg_pragma_openmp(parallel for cimg_openmp_if(projections.size()>4096)) + cimg_forX(projections,l) { // Parallel projection + const tpfloat + x = (tpfloat)vertices(l,0), + y = (tpfloat)vertices(l,1), + z = (tpfloat)vertices(l,2); + if (z visibles(primitives._width,1,1,1,~0U); + CImg zrange(primitives._width); + const tpfloat zmin = absfocale?(tpfloat)(1.5f - absfocale):cimg::type::min(); + bool is_forward = zbuffer?true:false; + + cimg_pragma_openmp(parallel for cimg_openmp_if(primitives.size()>4096)) + cimglist_for(primitives,l) { + const CImg& primitive = primitives[l]; + switch (primitive.size()) { + case 1 : { // Point + CImg<_to> _opacity; + __draw_object3d(opacities,l,_opacity); + if (l<=colors.width() && (colors[l].size()!=_spectrum || _opacity)) is_forward = false; + const unsigned int i0 = (unsigned int)primitive(0); + const tpfloat z0 = Z + vertices(i0,2); + if (z0>zmin) { + visibles(l) = (unsigned int)l; + zrange(l) = z0; + } + } break; + case 5 : { // Sphere + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1); + const tpfloat + Xc = 0.5f*((float)vertices(i0,0) + (float)vertices(i1,0)), + Yc = 0.5f*((float)vertices(i0,1) + (float)vertices(i1,1)), + Zc = 0.5f*((float)vertices(i0,2) + (float)vertices(i1,2)), + _zc = Z + Zc, + zc = _zc + _focale, + xc = X + Xc*(absfocale?absfocale/zc:1), + yc = Y + Yc*(absfocale?absfocale/zc:1), + radius = 0.5f*cimg::hypot(vertices(i1,0) - vertices(i0,0), + vertices(i1,1) - vertices(i0,1), + vertices(i1,2) - vertices(i0,2))*(absfocale?absfocale/zc:1), + xm = xc - radius, + ym = yc - radius, + xM = xc + radius, + yM = yc + radius; + if (xM>=0 && xm<_width && yM>=0 && ym<_height && _zc>zmin) { + visibles(l) = (unsigned int)l; + zrange(l) = _zc; + } + is_forward = false; + } break; + case 2 : // Segment + case 6 : { + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1); + const tpfloat + x0 = projections(i0,0), y0 = projections(i0,1), z0 = Z + vertices(i0,2), + x1 = projections(i1,0), y1 = projections(i1,1), z1 = Z + vertices(i1,2); + tpfloat xm, xM, ym, yM; + if (x0=0 && xm<_width && yM>=0 && ym<_height && z0>zmin && z1>zmin) { + visibles(l) = (unsigned int)l; + zrange(l) = (z0 + z1)/2; + } + } break; + case 3 : // Triangle + case 9 : { + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1), + i2 = (unsigned int)primitive(2); + const tpfloat + x0 = projections(i0,0), y0 = projections(i0,1), z0 = Z + vertices(i0,2), + x1 = projections(i1,0), y1 = projections(i1,1), z1 = Z + vertices(i1,2), + x2 = projections(i2,0), y2 = projections(i2,1), z2 = Z + vertices(i2,2); + tpfloat xm, xM, ym, yM; + if (x0xM) xM = x2; + if (y0yM) yM = y2; + if (xM>=0 && xm<_width && yM>=0 && ym<_height && z0>zmin && z1>zmin && z2>zmin) { + const tpfloat d = (x1-x0)*(y2-y0) - (x2-x0)*(y1-y0); + if (is_double_sided || d<0) { + visibles(l) = (unsigned int)l; + zrange(l) = (z0 + z1 + z2)/3; + } + } + } break; + case 4 : // Rectangle + case 12 : { + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1), + i2 = (unsigned int)primitive(2), + i3 = (unsigned int)primitive(3); + const tpfloat + x0 = projections(i0,0), y0 = projections(i0,1), z0 = Z + vertices(i0,2), + x1 = projections(i1,0), y1 = projections(i1,1), z1 = Z + vertices(i1,2), + x2 = projections(i2,0), y2 = projections(i2,1), z2 = Z + vertices(i2,2), + x3 = projections(i3,0), y3 = projections(i3,1), z3 = Z + vertices(i3,2); + tpfloat xm, xM, ym, yM; + if (x0xM) xM = x2; + if (x3xM) xM = x3; + if (y0yM) yM = y2; + if (y3yM) yM = y3; + if (xM>=0 && xm<_width && yM>=0 && ym<_height && z0>zmin && z1>zmin && z2>zmin && z3>zmin) { + const float d = (x1 - x0)*(y2 - y0) - (x2 - x0)*(y1 - y0); + if (is_double_sided || d<0) { + visibles(l) = (unsigned int)l; + zrange(l) = (z0 + z1 + z2 + z3)/4; + } + } + } break; + default : + if (render_type==5) cimg::mutex(10,0); + throw CImgArgumentException(_cimg_instance + "draw_object3d(): Invalid primitive[%u] with size %u " + "(should have size 1,2,3,4,5,6,9 or 12).", + cimg_instance, + l,primitive.size()); + } + } + + // Force transparent primitives to be drawn last when zbuffer is activated + // (and if object contains no spheres or sprites). + if (is_forward) + cimglist_for(primitives,l) + if (___draw_object3d(opacities,l)!=1) zrange(l) = 2*zmax - zrange(l); + + // Sort only visibles primitives. + unsigned int *p_visibles = visibles._data; + tpfloat *p_zrange = zrange._data; + const tpfloat *ptrz = p_zrange; + cimg_for(visibles,ptr,unsigned int) { + if (*ptr!=~0U) { *(p_visibles++) = *ptr; *(p_zrange++) = *ptrz; } + ++ptrz; + } + const unsigned int nb_visibles = (unsigned int)(p_zrange - zrange._data); + if (!nb_visibles) { + if (render_type==5) cimg::mutex(10,0); + return *this; + } + CImg permutations; + CImg(zrange._data,nb_visibles,1,1,1,true).sort(permutations,is_forward); + + // Compute light properties + CImg lightprops; + switch (render_type) { + case 3 : { // Flat Shading + lightprops.assign(nb_visibles); + cimg_pragma_openmp(parallel for cimg_openmp_if(nb_visibles>4096)) + cimg_forX(lightprops,l) { + const CImg& primitive = primitives(visibles(permutations(l))); + const unsigned int psize = (unsigned int)primitive.size(); + if (psize==3 || psize==4 || psize==9 || psize==12) { + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1), + i2 = (unsigned int)primitive(2); + const tpfloat + x0 = (tpfloat)vertices(i0,0), y0 = (tpfloat)vertices(i0,1), z0 = (tpfloat)vertices(i0,2), + x1 = (tpfloat)vertices(i1,0), y1 = (tpfloat)vertices(i1,1), z1 = (tpfloat)vertices(i1,2), + x2 = (tpfloat)vertices(i2,0), y2 = (tpfloat)vertices(i2,1), z2 = (tpfloat)vertices(i2,2), + dx1 = x1 - x0, dy1 = y1 - y0, dz1 = z1 - z0, + dx2 = x2 - x0, dy2 = y2 - y0, dz2 = z2 - z0, + nx = dy1*dz2 - dz1*dy2, + ny = dz1*dx2 - dx1*dz2, + nz = dx1*dy2 - dy1*dx2, + norm = 1e-5f + cimg::hypot(nx,ny,nz), + lx = X + (x0 + x1 + x2)/3 - lightx, + ly = Y + (y0 + y1 + y2)/3 - lighty, + lz = Z + (z0 + z1 + z2)/3 - lightz, + nl = 1e-5f + cimg::hypot(lx,ly,lz), + factor = std::max(cimg::abs(-lx*nx - ly*ny - lz*nz)/(norm*nl),(tpfloat)0); + lightprops[l] = factor<=nspec?factor:(nsl1*factor*factor + nsl2*factor + nsl3); + } else lightprops[l] = 1; + } + } break; + + case 4 : // Gouraud Shading + case 5 : { // Phong-Shading + CImg vertices_normals(vertices._width,6,1,1,0); + cimg_pragma_openmp(parallel for cimg_openmp_if(nb_visibles>4096)) + for (unsigned int l = 0; l& primitive = primitives[visibles(l)]; + const unsigned int psize = (unsigned int)primitive.size(); + const bool + triangle_flag = (psize==3) || (psize==9), + rectangle_flag = (psize==4) || (psize==12); + if (triangle_flag || rectangle_flag) { + const unsigned int + i0 = (unsigned int)primitive(0), + i1 = (unsigned int)primitive(1), + i2 = (unsigned int)primitive(2), + i3 = rectangle_flag?(unsigned int)primitive(3):0; + const tpfloat + x0 = (tpfloat)vertices(i0,0), y0 = (tpfloat)vertices(i0,1), z0 = (tpfloat)vertices(i0,2), + x1 = (tpfloat)vertices(i1,0), y1 = (tpfloat)vertices(i1,1), z1 = (tpfloat)vertices(i1,2), + x2 = (tpfloat)vertices(i2,0), y2 = (tpfloat)vertices(i2,1), z2 = (tpfloat)vertices(i2,2), + dx1 = x1 - x0, dy1 = y1 - y0, dz1 = z1 - z0, + dx2 = x2 - x0, dy2 = y2 - y0, dz2 = z2 - z0, + nnx = dy1*dz2 - dz1*dy2, + nny = dz1*dx2 - dx1*dz2, + nnz = dx1*dy2 - dy1*dx2, + norm = 1e-5f + cimg::hypot(nnx,nny,nnz), + nx = nnx/norm, + ny = nny/norm, + nz = nnz/norm; + unsigned int ix = 0, iy = 1, iz = 2; + if (is_double_sided && nz>0) { ix = 3; iy = 4; iz = 5; } + vertices_normals(i0,ix)+=nx; vertices_normals(i0,iy)+=ny; vertices_normals(i0,iz)+=nz; + vertices_normals(i1,ix)+=nx; vertices_normals(i1,iy)+=ny; vertices_normals(i1,iz)+=nz; + vertices_normals(i2,ix)+=nx; vertices_normals(i2,iy)+=ny; vertices_normals(i2,iz)+=nz; + if (rectangle_flag) { + vertices_normals(i3,ix)+=nx; vertices_normals(i3,iy)+=ny; vertices_normals(i3,iz)+=nz; + } + } + } + + if (is_double_sided) cimg_forX(vertices_normals,p) { + const float + nx0 = vertices_normals(p,0), ny0 = vertices_normals(p,1), nz0 = vertices_normals(p,2), + nx1 = vertices_normals(p,3), ny1 = vertices_normals(p,4), nz1 = vertices_normals(p,5), + n0 = nx0*nx0 + ny0*ny0 + nz0*nz0, n1 = nx1*nx1 + ny1*ny1 + nz1*nz1; + if (n1>n0) { + vertices_normals(p,0) = -nx1; + vertices_normals(p,1) = -ny1; + vertices_normals(p,2) = -nz1; + } + } + + if (render_type==4) { + lightprops.assign(vertices._width); + cimg_pragma_openmp(parallel for cimg_openmp_if(nb_visibles>4096)) + cimg_forX(lightprops,l) { + const tpfloat + nx = vertices_normals(l,0), + ny = vertices_normals(l,1), + nz = vertices_normals(l,2), + norm = 1e-5f + cimg::hypot(nx,ny,nz), + lx = X + vertices(l,0) - lightx, + ly = Y + vertices(l,1) - lighty, + lz = Z + vertices(l,2) - lightz, + nl = 1e-5f + cimg::hypot(lx,ly,lz), + factor = std::max((-lx*nx - ly*ny - lz*nz)/(norm*nl),(tpfloat)0); + lightprops[l] = factor<=nspec?factor:(nsl1*factor*factor + nsl2*factor + nsl3); + } + } else { + const unsigned int + lw2 = light_texture._width/2 - 1, + lh2 = light_texture._height/2 - 1; + lightprops.assign(vertices._width,2); + cimg_pragma_openmp(parallel for cimg_openmp_if(nb_visibles>4096)) + cimg_forX(lightprops,l) { + const tpfloat + nx = vertices_normals(l,0), + ny = vertices_normals(l,1), + nz = vertices_normals(l,2), + norm = 1e-5f + cimg::hypot(nx,ny,nz), + nnx = nx/norm, + nny = ny/norm; + lightprops(l,0) = lw2*(1 + nnx); + lightprops(l,1) = lh2*(1 + nny); + } + } + } break; + } + + // Draw visible primitives + const CImg default_color(1,_spectrum,1,1,(tc)200); + CImg<_to> _opacity; + + for (unsigned int l = 0; l& primitive = primitives[n_primitive]; + const CImg + &__color = n_primitive(), + _color = (__color && __color.size()!=_spectrum && __color._spectrum<_spectrum)? + __color.get_resize(-100,-100,-100,_spectrum,0):CImg(), + &color = _color?_color:(__color?__color:default_color); + const tc *const pcolor = color._data; + const float opacity = __draw_object3d(opacities,n_primitive,_opacity); + +#ifdef cimg_use_board + LibBoard::Board &board = *(LibBoard::Board*)pboard; +#endif + + switch (primitive.size()) { + case 1 : { // Colored point or sprite + const unsigned int n0 = (unsigned int)primitive[0]; + const int x0 = (int)projections(n0,0), y0 = (int)projections(n0,1); + + if (_opacity.is_empty()) { // Scalar opacity. + + if (color.size()==_spectrum) { // Colored point. + draw_point(x0,y0,pcolor,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.drawDot((float)x0,height()-(float)y0); + } +#endif + } else { // Sprite. + const tpfloat z = Z + vertices(n0,2); + const float factor = focale<0?1:sprite_scale*(absfocale?absfocale/(z + absfocale):1); + const unsigned int + _sw = (unsigned int)(color._width*factor), + _sh = (unsigned int)(color._height*factor), + sw = _sw?_sw:1, sh = _sh?_sh:1; + const int nx0 = x0 - (int)sw/2, ny0 = y0 - (int)sh/2; + if (sw<=3*_width/2 && sh<=3*_height/2 && + (nx0 + (int)sw/2>=0 || nx0 - (int)sw/2=0 || ny0 - (int)sh/2 + _sprite = (sw!=color._width || sh!=color._height)? + color.get_resize(sw,sh,1,-100,render_type<=3?1:3):CImg(), + &sprite = _sprite?_sprite:color; + draw_image(nx0,ny0,sprite,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128); + board.setFillColor(LibBoard::Color::Null); + board.drawRectangle((float)nx0,height() - (float)ny0,sw,sh); + } +#endif + } + } + } else { // Opacity mask. + const tpfloat z = Z + vertices(n0,2); + const float factor = focale<0?1:sprite_scale*(absfocale?absfocale/(z + absfocale):1); + const unsigned int + _sw = (unsigned int)(std::max(color._width,_opacity._width)*factor), + _sh = (unsigned int)(std::max(color._height,_opacity._height)*factor), + sw = _sw?_sw:1, sh = _sh?_sh:1; + const int nx0 = x0 - (int)sw/2, ny0 = y0 - (int)sh/2; + if (sw<=3*_width/2 && sh<=3*_height/2 && + (nx0 + (int)sw/2>=0 || nx0 - (int)sw/2=0 || ny0 - (int)sh/2 + _sprite = (sw!=color._width || sh!=color._height)? + color.get_resize(sw,sh,1,-100,render_type<=3?1:3):CImg(), + &sprite = _sprite?_sprite:color; + const CImg<_to> + _nopacity = (sw!=_opacity._width || sh!=_opacity._height)? + _opacity.get_resize(sw,sh,1,-100,render_type<=3?1:3):CImg<_to>(), + &nopacity = _nopacity?_nopacity:_opacity; + draw_image(nx0,ny0,sprite,nopacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128); + board.setFillColor(LibBoard::Color::Null); + board.drawRectangle((float)nx0,height() - (float)ny0,sw,sh); + } +#endif + } + } + } break; + case 2 : { // Colored line + const unsigned int + n0 = (unsigned int)primitive[0], + n1 = (unsigned int)primitive[1]; + const int + x0 = (int)projections(n0,0), y0 = (int)projections(n0,1), + x1 = (int)projections(n1,0), y1 = (int)projections(n1,1); + const float + z0 = vertices(n0,2) + Z + _focale, + z1 = vertices(n1,2) + Z + _focale; + if (render_type) { + if (zbuffer) draw_line(zbuffer,x0,y0,z0,x1,y1,z1,pcolor,opacity); + else draw_line(x0,y0,x1,y1,pcolor,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.drawLine((float)x0,height() - (float)y0,x1,height() - (float)y1); + } +#endif + } else { + draw_point(x0,y0,pcolor,opacity).draw_point(x1,y1,pcolor,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.drawDot((float)x0,height() - (float)y0); + board.drawDot((float)x1,height() - (float)y1); + } +#endif + } + } break; + case 5 : { // Colored sphere + const unsigned int + n0 = (unsigned int)primitive[0], + n1 = (unsigned int)primitive[1], + is_wireframe = (unsigned int)primitive[2]; + const float + Xc = 0.5f*((float)vertices(n0,0) + (float)vertices(n1,0)), + Yc = 0.5f*((float)vertices(n0,1) + (float)vertices(n1,1)), + Zc = 0.5f*((float)vertices(n0,2) + (float)vertices(n1,2)), + zc = Z + Zc + _focale, + xc = X + Xc*(absfocale?absfocale/zc:1), + yc = Y + Yc*(absfocale?absfocale/zc:1), + radius = 0.5f*cimg::hypot(vertices(n1,0) - vertices(n0,0), + vertices(n1,1) - vertices(n0,1), + vertices(n1,2) - vertices(n0,2))*(absfocale?absfocale/zc:1); + switch (render_type) { + case 0 : + draw_point((int)xc,(int)yc,pcolor,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.drawDot(xc,height() - yc); + } +#endif + break; + case 1 : + draw_circle((int)xc,(int)yc,(int)radius,pcolor,opacity,~0U); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.setFillColor(LibBoard::Color::Null); + board.drawCircle(xc,height() - yc,radius); + } +#endif + break; + default : + if (is_wireframe) draw_circle((int)xc,(int)yc,(int)radius,pcolor,opacity,~0U); + else draw_circle((int)xc,(int)yc,(int)radius,pcolor,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + if (!is_wireframe) board.fillCircle(xc,height() - yc,radius); + else { + board.setFillColor(LibBoard::Color::Null); + board.drawCircle(xc,height() - yc,radius); + } + } +#endif + break; + } + } break; + case 6 : { // Textured line + if (!__color) { + if (render_type==5) cimg::mutex(10,0); + throw CImgArgumentException(_cimg_instance + "draw_object3d(): Undefined texture for line primitive [%u].", + cimg_instance,n_primitive); + } + const unsigned int + n0 = (unsigned int)primitive[0], + n1 = (unsigned int)primitive[1]; + const int + tx0 = (int)primitive[2], ty0 = (int)primitive[3], + tx1 = (int)primitive[4], ty1 = (int)primitive[5], + x0 = (int)projections(n0,0), y0 = (int)projections(n0,1), + x1 = (int)projections(n1,0), y1 = (int)projections(n1,1); + const float + z0 = vertices(n0,2) + Z + _focale, + z1 = vertices(n1,2) + Z + _focale; + if (render_type) { + if (zbuffer) draw_line(zbuffer,x0,y0,z0,x1,y1,z1,color,tx0,ty0,tx1,ty1,opacity); + else draw_line(x0,y0,x1,y1,color,tx0,ty0,tx1,ty1,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.drawLine((float)x0,height() - (float)y0,(float)x1,height() - (float)y1); + } +#endif + } else { + draw_point(x0,y0,color.get_vector_at(tx0<=0?0:tx0>=color.width()?color.width() - 1:tx0, + ty0<=0?0:ty0>=color.height()?color.height() - 1:ty0)._data,opacity). + draw_point(x1,y1,color.get_vector_at(tx1<=0?0:tx1>=color.width()?color.width() - 1:tx1, + ty1<=0?0:ty1>=color.height()?color.height() - 1:ty1)._data,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.drawDot((float)x0,height() - (float)y0); + board.drawDot((float)x1,height() - (float)y1); + } +#endif + } + } break; + case 3 : { // Colored triangle + const unsigned int + n0 = (unsigned int)primitive[0], + n1 = (unsigned int)primitive[1], + n2 = (unsigned int)primitive[2]; + const int + x0 = (int)projections(n0,0), y0 = (int)projections(n0,1), + x1 = (int)projections(n1,0), y1 = (int)projections(n1,1), + x2 = (int)projections(n2,0), y2 = (int)projections(n2,1); + const float + z0 = vertices(n0,2) + Z + _focale, + z1 = vertices(n1,2) + Z + _focale, + z2 = vertices(n2,2) + Z + _focale; + switch (render_type) { + case 0 : + draw_point(x0,y0,pcolor,opacity).draw_point(x1,y1,pcolor,opacity).draw_point(x2,y2,pcolor,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.drawDot((float)x0,height() - (float)y0); + board.drawDot((float)x1,height() - (float)y1); + board.drawDot((float)x2,height() - (float)y2); + } +#endif + break; + case 1 : + if (zbuffer) + draw_line(zbuffer,x0,y0,z0,x1,y1,z1,pcolor,opacity).draw_line(zbuffer,x0,y0,z0,x2,y2,z2,pcolor,opacity). + draw_line(zbuffer,x1,y1,z1,x2,y2,z2,pcolor,opacity); + else + draw_line(x0,y0,x1,y1,pcolor,opacity).draw_line(x0,y0,x2,y2,pcolor,opacity). + draw_line(x1,y1,x2,y2,pcolor,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.drawLine((float)x0,height() - (float)y0,(float)x1,height() - (float)y1); + board.drawLine((float)x0,height() - (float)y0,(float)x2,height() - (float)y2); + board.drawLine((float)x1,height() - (float)y1,(float)x2,height() - (float)y2); + } +#endif + break; + case 2 : + if (zbuffer) draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,opacity); + else draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x1,height() - (float)y1, + (float)x2,height() - (float)y2); + } +#endif + break; + case 3 : + if (zbuffer) draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,opacity,lightprops(l)); + else _draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,opacity,lightprops(l)); +#ifdef cimg_use_board + if (pboard) { + const float lp = std::min(lightprops(l),1); + board.setPenColorRGBi((unsigned char)(color[0]*lp), + (unsigned char)(color[1]*lp), + (unsigned char)(color[2]*lp), + (unsigned char)(opacity*255)); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x1,height() - (float)y1, + (float)x2,height() - (float)y2); + } +#endif + break; + case 4 : + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor, + lightprops(n0),lightprops(n1),lightprops(n2),opacity); + else draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,lightprops(n0),lightprops(n1),lightprops(n2),opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi((unsigned char)(color[0]), + (unsigned char)(color[1]), + (unsigned char)(color[2]), + (unsigned char)(opacity*255)); + board.fillGouraudTriangle((float)x0,height() - (float)y0,lightprops(n0), + (float)x1,height() - (float)y1,lightprops(n1), + (float)x2,height() - (float)y2,lightprops(n2)); + } +#endif + break; + case 5 : { + const unsigned int + lx0 = (unsigned int)lightprops(n0,0), ly0 = (unsigned int)lightprops(n0,1), + lx1 = (unsigned int)lightprops(n1,0), ly1 = (unsigned int)lightprops(n1,1), + lx2 = (unsigned int)lightprops(n2,0), ly2 = (unsigned int)lightprops(n2,1); + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,light_texture,lx0,ly0,lx1,ly1,lx2,ly2,opacity); + else draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,light_texture,lx0,ly0,lx1,ly1,lx2,ly2,opacity); +#ifdef cimg_use_board + if (pboard) { + const float + l0 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n0,0))), + (int)(light_texture.height()/2*(1 + lightprops(n0,1)))), + l1 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n1,0))), + (int)(light_texture.height()/2*(1 + lightprops(n1,1)))), + l2 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n2,0))), + (int)(light_texture.height()/2*(1 + lightprops(n2,1)))); + board.setPenColorRGBi((unsigned char)(color[0]), + (unsigned char)(color[1]), + (unsigned char)(color[2]), + (unsigned char)(opacity*255)); + board.fillGouraudTriangle((float)x0,height() - (float)y0,l0, + (float)x1,height() - (float)y1,l1, + (float)x2,height() - (float)y2,l2); + } +#endif + } break; + } + } break; + case 4 : { // Colored rectangle + const unsigned int + n0 = (unsigned int)primitive[0], + n1 = (unsigned int)primitive[1], + n2 = (unsigned int)primitive[2], + n3 = (unsigned int)primitive[3]; + const int + x0 = (int)projections(n0,0), y0 = (int)projections(n0,1), + x1 = (int)projections(n1,0), y1 = (int)projections(n1,1), + x2 = (int)projections(n2,0), y2 = (int)projections(n2,1), + x3 = (int)projections(n3,0), y3 = (int)projections(n3,1); + const float + z0 = vertices(n0,2) + Z + _focale, + z1 = vertices(n1,2) + Z + _focale, + z2 = vertices(n2,2) + Z + _focale, + z3 = vertices(n3,2) + Z + _focale; + + switch (render_type) { + case 0 : + draw_point(x0,y0,pcolor,opacity).draw_point(x1,y1,pcolor,opacity). + draw_point(x2,y2,pcolor,opacity).draw_point(x3,y3,pcolor,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.drawDot((float)x0,height() - (float)y0); + board.drawDot((float)x1,height() - (float)y1); + board.drawDot((float)x2,height() - (float)y2); + board.drawDot((float)x3,height() - (float)y3); + } +#endif + break; + case 1 : + if (zbuffer) + draw_line(zbuffer,x0,y0,z0,x1,y1,z1,pcolor,opacity).draw_line(zbuffer,x1,y1,z1,x2,y2,z2,pcolor,opacity). + draw_line(zbuffer,x2,y2,z2,x3,y3,z3,pcolor,opacity).draw_line(zbuffer,x3,y3,z3,x0,y0,z0,pcolor,opacity); + else + draw_line(x0,y0,x1,y1,pcolor,opacity).draw_line(x1,y1,x2,y2,pcolor,opacity). + draw_line(x2,y2,x3,y3,pcolor,opacity).draw_line(x3,y3,x0,y0,pcolor,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.drawLine((float)x0,height() - (float)y0,(float)x1,height() - (float)y1); + board.drawLine((float)x1,height() - (float)y1,(float)x2,height() - (float)y2); + board.drawLine((float)x2,height() - (float)y2,(float)x3,height() - (float)y3); + board.drawLine((float)x3,height() - (float)y3,(float)x0,height() - (float)y0); + } +#endif + break; + case 2 : + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,opacity). + draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,pcolor,opacity); + else + draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,opacity).draw_triangle(x0,y0,x2,y2,x3,y3,pcolor,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(color[0],color[1],color[2],(unsigned char)(opacity*255)); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x1,height() - (float)y1, + (float)x2,height() - (float)y2); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x2,height() - (float)y2, + (float)x3,height() - (float)y3); + } +#endif + break; + case 3 : + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,opacity,lightprops(l)). + draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,pcolor,opacity,lightprops(l)); + else + _draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,opacity,lightprops(l)). + _draw_triangle(x0,y0,x2,y2,x3,y3,pcolor,opacity,lightprops(l)); +#ifdef cimg_use_board + if (pboard) { + const float lp = std::min(lightprops(l),1); + board.setPenColorRGBi((unsigned char)(color[0]*lp), + (unsigned char)(color[1]*lp), + (unsigned char)(color[2]*lp),(unsigned char)(opacity*255)); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x1,height() - (float)y1, + (float)x2,height() - (float)y2); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x2,height() - (float)y2, + (float)x3,height() - (float)y3); + } +#endif + break; + case 4 : { + const float + lightprop0 = lightprops(n0), lightprop1 = lightprops(n1), + lightprop2 = lightprops(n2), lightprop3 = lightprops(n3); + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,lightprop0,lightprop1,lightprop2,opacity). + draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,pcolor,lightprop0,lightprop2,lightprop3,opacity); + else + draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,lightprop0,lightprop1,lightprop2,opacity). + draw_triangle(x0,y0,x2,y2,x3,y3,pcolor,lightprop0,lightprop2,lightprop3,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi((unsigned char)(color[0]), + (unsigned char)(color[1]), + (unsigned char)(color[2]), + (unsigned char)(opacity*255)); + board.fillGouraudTriangle((float)x0,height() - (float)y0,lightprop0, + (float)x1,height() - (float)y1,lightprop1, + (float)x2,height() - (float)y2,lightprop2); + board.fillGouraudTriangle((float)x0,height() - (float)y0,lightprop0, + (float)x2,height() - (float)y2,lightprop2, + (float)x3,height() - (float)y3,lightprop3); + } +#endif + } break; + case 5 : { + const unsigned int + lx0 = (unsigned int)lightprops(n0,0), ly0 = (unsigned int)lightprops(n0,1), + lx1 = (unsigned int)lightprops(n1,0), ly1 = (unsigned int)lightprops(n1,1), + lx2 = (unsigned int)lightprops(n2,0), ly2 = (unsigned int)lightprops(n2,1), + lx3 = (unsigned int)lightprops(n3,0), ly3 = (unsigned int)lightprops(n3,1); + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,pcolor,light_texture,lx0,ly0,lx1,ly1,lx2,ly2,opacity). + draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,pcolor,light_texture,lx0,ly0,lx2,ly2,lx3,ly3,opacity); + else + draw_triangle(x0,y0,x1,y1,x2,y2,pcolor,light_texture,lx0,ly0,lx1,ly1,lx2,ly2,opacity). + draw_triangle(x0,y0,x2,y2,x3,y3,pcolor,light_texture,lx0,ly0,lx2,ly2,lx3,ly3,opacity); +#ifdef cimg_use_board + if (pboard) { + const float + l0 = light_texture((int)(light_texture.width()/2*(1 + lx0)), (int)(light_texture.height()/2*(1 + ly0))), + l1 = light_texture((int)(light_texture.width()/2*(1 + lx1)), (int)(light_texture.height()/2*(1 + ly1))), + l2 = light_texture((int)(light_texture.width()/2*(1 + lx2)), (int)(light_texture.height()/2*(1 + ly2))), + l3 = light_texture((int)(light_texture.width()/2*(1 + lx3)), (int)(light_texture.height()/2*(1 + ly3))); + board.setPenColorRGBi((unsigned char)(color[0]), + (unsigned char)(color[1]), + (unsigned char)(color[2]), + (unsigned char)(opacity*255)); + board.fillGouraudTriangle((float)x0,height() - (float)y0,l0, + (float)x1,height() - (float)y1,l1, + (float)x2,height() - (float)y2,l2); + board.fillGouraudTriangle((float)x0,height() - (float)y0,l0, + (float)x2,height() - (float)y2,l2, + (float)x3,height() - (float)y3,l3); + } +#endif + } break; + } + } break; + case 9 : { // Textured triangle + if (!__color) { + if (render_type==5) cimg::mutex(10,0); + throw CImgArgumentException(_cimg_instance + "draw_object3d(): Undefined texture for triangle primitive [%u].", + cimg_instance,n_primitive); + } + const unsigned int + n0 = (unsigned int)primitive[0], + n1 = (unsigned int)primitive[1], + n2 = (unsigned int)primitive[2]; + const int + tx0 = (int)primitive[3], ty0 = (int)primitive[4], + tx1 = (int)primitive[5], ty1 = (int)primitive[6], + tx2 = (int)primitive[7], ty2 = (int)primitive[8], + x0 = (int)projections(n0,0), y0 = (int)projections(n0,1), + x1 = (int)projections(n1,0), y1 = (int)projections(n1,1), + x2 = (int)projections(n2,0), y2 = (int)projections(n2,1); + const float + z0 = vertices(n0,2) + Z + _focale, + z1 = vertices(n1,2) + Z + _focale, + z2 = vertices(n2,2) + Z + _focale; + switch (render_type) { + case 0 : + draw_point(x0,y0,color.get_vector_at(tx0<=0?0:tx0>=color.width()?color.width() - 1:tx0, + ty0<=0?0:ty0>=color.height()?color.height() - 1:ty0)._data,opacity). + draw_point(x1,y1,color.get_vector_at(tx1<=0?0:tx1>=color.width()?color.width() - 1:tx1, + ty1<=0?0:ty1>=color.height()?color.height() - 1:ty1)._data,opacity). + draw_point(x2,y2,color.get_vector_at(tx2<=0?0:tx2>=color.width()?color.width() - 1:tx2, + ty2<=0?0:ty2>=color.height()?color.height() - 1:ty2)._data,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.drawDot((float)x0,height() - (float)y0); + board.drawDot((float)x1,height() - (float)y1); + board.drawDot((float)x2,height() - (float)y2); + } +#endif + break; + case 1 : + if (zbuffer) + draw_line(zbuffer,x0,y0,z0,x1,y1,z1,color,tx0,ty0,tx1,ty1,opacity). + draw_line(zbuffer,x0,y0,z0,x2,y2,z2,color,tx0,ty0,tx2,ty2,opacity). + draw_line(zbuffer,x1,y1,z1,x2,y2,z2,color,tx1,ty1,tx2,ty2,opacity); + else + draw_line(x0,y0,z0,x1,y1,z1,color,tx0,ty0,tx1,ty1,opacity). + draw_line(x0,y0,z0,x2,y2,z2,color,tx0,ty0,tx2,ty2,opacity). + draw_line(x1,y1,z1,x2,y2,z2,color,tx1,ty1,tx2,ty2,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.drawLine((float)x0,height() - (float)y0,(float)x1,height() - (float)y1); + board.drawLine((float)x0,height() - (float)y0,(float)x2,height() - (float)y2); + board.drawLine((float)x1,height() - (float)y1,(float)x2,height() - (float)y2); + } +#endif + break; + case 2 : + if (zbuffer) draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity); + else draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x1,height() - (float)y1, + (float)x2,height() - (float)y2); + } +#endif + break; + case 3 : + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity,lightprops(l)); + else draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity,lightprops(l)); +#ifdef cimg_use_board + if (pboard) { + const float lp = std::min(lightprops(l),1); + board.setPenColorRGBi((unsigned char)(128*lp), + (unsigned char)(128*lp), + (unsigned char)(128*lp), + (unsigned char)(opacity*255)); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x1,height() - (float)y1, + (float)x2,height() - (float)y2); + } +#endif + break; + case 4 : + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2, + lightprops(n0),lightprops(n1),lightprops(n2),opacity); + else + draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2, + lightprops(n0),lightprops(n1),lightprops(n2),opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.fillGouraudTriangle((float)x0,height() - (float)y0,lightprops(n0), + (float)x1,height() - (float)y1,lightprops(n1), + (float)x2,height() - (float)y2,lightprops(n2)); + } +#endif + break; + case 5 : + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,light_texture, + (unsigned int)lightprops(n0,0),(unsigned int)lightprops(n0,1), + (unsigned int)lightprops(n1,0),(unsigned int)lightprops(n1,1), + (unsigned int)lightprops(n2,0),(unsigned int)lightprops(n2,1), + opacity); + else + draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,light_texture, + (unsigned int)lightprops(n0,0),(unsigned int)lightprops(n0,1), + (unsigned int)lightprops(n1,0),(unsigned int)lightprops(n1,1), + (unsigned int)lightprops(n2,0),(unsigned int)lightprops(n2,1), + opacity); +#ifdef cimg_use_board + if (pboard) { + const float + l0 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n0,0))), + (int)(light_texture.height()/2*(1 + lightprops(n0,1)))), + l1 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n1,0))), + (int)(light_texture.height()/2*(1 + lightprops(n1,1)))), + l2 = light_texture((int)(light_texture.width()/2*(1 + lightprops(n2,0))), + (int)(light_texture.height()/2*(1 + lightprops(n2,1)))); + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.fillGouraudTriangle((float)x0,height() - (float)y0,l0, + (float)x1,height() - (float)y1,l1, + (float)x2,height() - (float)y2,l2); + } +#endif + break; + } + } break; + case 12 : { // Textured quadrangle + if (!__color) { + if (render_type==5) cimg::mutex(10,0); + throw CImgArgumentException(_cimg_instance + "draw_object3d(): Undefined texture for quadrangle primitive [%u].", + cimg_instance,n_primitive); + } + const unsigned int + n0 = (unsigned int)primitive[0], + n1 = (unsigned int)primitive[1], + n2 = (unsigned int)primitive[2], + n3 = (unsigned int)primitive[3]; + const int + tx0 = (int)primitive[4], ty0 = (int)primitive[5], + tx1 = (int)primitive[6], ty1 = (int)primitive[7], + tx2 = (int)primitive[8], ty2 = (int)primitive[9], + tx3 = (int)primitive[10], ty3 = (int)primitive[11], + x0 = (int)projections(n0,0), y0 = (int)projections(n0,1), + x1 = (int)projections(n1,0), y1 = (int)projections(n1,1), + x2 = (int)projections(n2,0), y2 = (int)projections(n2,1), + x3 = (int)projections(n3,0), y3 = (int)projections(n3,1); + const float + z0 = vertices(n0,2) + Z + _focale, + z1 = vertices(n1,2) + Z + _focale, + z2 = vertices(n2,2) + Z + _focale, + z3 = vertices(n3,2) + Z + _focale; + + switch (render_type) { + case 0 : + draw_point(x0,y0,color.get_vector_at(tx0<=0?0:tx0>=color.width()?color.width() - 1:tx0, + ty0<=0?0:ty0>=color.height()?color.height() - 1:ty0)._data,opacity). + draw_point(x1,y1,color.get_vector_at(tx1<=0?0:tx1>=color.width()?color.width() - 1:tx1, + ty1<=0?0:ty1>=color.height()?color.height() - 1:ty1)._data,opacity). + draw_point(x2,y2,color.get_vector_at(tx2<=0?0:tx2>=color.width()?color.width() - 1:tx2, + ty2<=0?0:ty2>=color.height()?color.height() - 1:ty2)._data,opacity). + draw_point(x3,y3,color.get_vector_at(tx3<=0?0:tx3>=color.width()?color.width() - 1:tx3, + ty3<=0?0:ty3>=color.height()?color.height() - 1:ty3)._data,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.drawDot((float)x0,height() - (float)y0); + board.drawDot((float)x1,height() - (float)y1); + board.drawDot((float)x2,height() - (float)y2); + board.drawDot((float)x3,height() - (float)y3); + } +#endif + break; + case 1 : + if (zbuffer) + draw_line(zbuffer,x0,y0,z0,x1,y1,z1,color,tx0,ty0,tx1,ty1,opacity). + draw_line(zbuffer,x1,y1,z1,x2,y2,z2,color,tx1,ty1,tx2,ty2,opacity). + draw_line(zbuffer,x2,y2,z2,x3,y3,z3,color,tx2,ty2,tx3,ty3,opacity). + draw_line(zbuffer,x3,y3,z3,x0,y0,z0,color,tx3,ty3,tx0,ty0,opacity); + else + draw_line(x0,y0,z0,x1,y1,z1,color,tx0,ty0,tx1,ty1,opacity). + draw_line(x1,y1,z1,x2,y2,z2,color,tx1,ty1,tx2,ty2,opacity). + draw_line(x2,y2,z2,x3,y3,z3,color,tx2,ty2,tx3,ty3,opacity). + draw_line(x3,y3,z3,x0,y0,z0,color,tx3,ty3,tx0,ty0,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.drawLine((float)x0,height() - (float)y0,(float)x1,height() - (float)y1); + board.drawLine((float)x1,height() - (float)y1,(float)x2,height() - (float)y2); + board.drawLine((float)x2,height() - (float)y2,(float)x3,height() - (float)y3); + board.drawLine((float)x3,height() - (float)y3,(float)x0,height() - (float)y0); + } +#endif + break; + case 2 : + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity). + draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3,opacity); + else + draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity). + draw_triangle(x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x1,height() - (float)y1, + (float)x2,height() - (float)y2); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x2,height() - (float)y2, + (float)x3,height() - (float)y3); + } +#endif + break; + case 3 : + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity,lightprops(l)). + draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3,opacity,lightprops(l)); + else + draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2,opacity,lightprops(l)). + draw_triangle(x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3,opacity,lightprops(l)); +#ifdef cimg_use_board + if (pboard) { + const float lp = std::min(lightprops(l),1); + board.setPenColorRGBi((unsigned char)(128*lp), + (unsigned char)(128*lp), + (unsigned char)(128*lp), + (unsigned char)(opacity*255)); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x1,height() - (float)y1, + (float)x2,height() - (float)y2); + board.fillTriangle((float)x0,height() - (float)y0, + (float)x2,height() - (float)y2, + (float)x3,height() - (float)y3); + } +#endif + break; + case 4 : { + const float + lightprop0 = lightprops(n0), lightprop1 = lightprops(n1), + lightprop2 = lightprops(n2), lightprop3 = lightprops(n3); + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2, + lightprop0,lightprop1,lightprop2,opacity). + draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3, + lightprop0,lightprop2,lightprop3,opacity); + else + draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2, + lightprop0,lightprop1,lightprop2,opacity). + draw_triangle(x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3, + lightprop0,lightprop2,lightprop3,opacity); +#ifdef cimg_use_board + if (pboard) { + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.fillGouraudTriangle((float)x0,height() - (float)y0,lightprop0, + (float)x1,height() - (float)y1,lightprop1, + (float)x2,height() - (float)y2,lightprop2); + board.fillGouraudTriangle((float)x0,height() -(float)y0,lightprop0, + (float)x2,height() - (float)y2,lightprop2, + (float)x3,height() - (float)y3,lightprop3); + } +#endif + } break; + case 5 : { + const unsigned int + lx0 = (unsigned int)lightprops(n0,0), ly0 = (unsigned int)lightprops(n0,1), + lx1 = (unsigned int)lightprops(n1,0), ly1 = (unsigned int)lightprops(n1,1), + lx2 = (unsigned int)lightprops(n2,0), ly2 = (unsigned int)lightprops(n2,1), + lx3 = (unsigned int)lightprops(n3,0), ly3 = (unsigned int)lightprops(n3,1); + if (zbuffer) + draw_triangle(zbuffer,x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2, + light_texture,lx0,ly0,lx1,ly1,lx2,ly2,opacity). + draw_triangle(zbuffer,x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3, + light_texture,lx0,ly0,lx2,ly2,lx3,ly3,opacity); + else + draw_triangle(x0,y0,z0,x1,y1,z1,x2,y2,z2,color,tx0,ty0,tx1,ty1,tx2,ty2, + light_texture,lx0,ly0,lx1,ly1,lx2,ly2,opacity). + draw_triangle(x0,y0,z0,x2,y2,z2,x3,y3,z3,color,tx0,ty0,tx2,ty2,tx3,ty3, + light_texture,lx0,ly0,lx2,ly2,lx3,ly3,opacity); +#ifdef cimg_use_board + if (pboard) { + const float + l0 = light_texture((int)(light_texture.width()/2*(1 + lx0)), (int)(light_texture.height()/2*(1 + ly0))), + l1 = light_texture((int)(light_texture.width()/2*(1 + lx1)), (int)(light_texture.height()/2*(1 + ly1))), + l2 = light_texture((int)(light_texture.width()/2*(1 + lx2)), (int)(light_texture.height()/2*(1 + ly2))), + l3 = light_texture((int)(light_texture.width()/2*(1 + lx3)), (int)(light_texture.height()/2*(1 + ly3))); + board.setPenColorRGBi(128,128,128,(unsigned char)(opacity*255)); + board.fillGouraudTriangle((float)x0,height() - (float)y0,l0, + (float)x1,height() - (float)y1,l1, + (float)x2,height() - (float)y2,l2); + board.fillGouraudTriangle((float)x0,height() -(float)y0,l0, + (float)x2,height() - (float)y2,l2, + (float)x3,height() - (float)y3,l3); + } +#endif + } break; + } + } break; + } + } + + if (render_type==5) cimg::mutex(10,0); + return *this; + } + + //@} + //--------------------------- + // + //! \name Data Input + //@{ + //--------------------------- + + //! Launch simple interface to select a shape from an image. + /** + \param disp Display window to use. + \param feature_type Type of feature to select. Can be { 0=point | 1=line | 2=rectangle | 3=ellipse }. + \param XYZ Pointer to 3 values X,Y,Z which tells about the projection point coordinates, for volumetric images. + \param exit_on_anykey Exit function when any key is pressed. + **/ + CImg& select(CImgDisplay &disp, + const unsigned int feature_type=2, unsigned int *const XYZ=0, + const bool exit_on_anykey=false) { + return get_select(disp,feature_type,XYZ,exit_on_anykey).move_to(*this); + } + + //! Simple interface to select a shape from an image \overloading. + CImg& select(const char *const title, + const unsigned int feature_type=2, unsigned int *const XYZ=0, + const bool exit_on_anykey=false) { + return get_select(title,feature_type,XYZ,exit_on_anykey).move_to(*this); + } + + //! Simple interface to select a shape from an image \newinstance. + CImg get_select(CImgDisplay &disp, + const unsigned int feature_type=2, unsigned int *const XYZ=0, + const bool exit_on_anykey=false) const { + return _select(disp,0,feature_type,XYZ,0,0,0,exit_on_anykey,true,false); + } + + //! Simple interface to select a shape from an image \newinstance. + CImg get_select(const char *const title, + const unsigned int feature_type=2, unsigned int *const XYZ=0, + const bool exit_on_anykey=false) const { + CImgDisplay disp; + return _select(disp,title,feature_type,XYZ,0,0,0,exit_on_anykey,true,false); + } + + CImg _select(CImgDisplay &disp, const char *const title, + const unsigned int feature_type, unsigned int *const XYZ, + const int origX, const int origY, const int origZ, + const bool exit_on_anykey, + const bool reset_view3d, + const bool force_display_z_coord) const { + if (is_empty()) return CImg(1,feature_type==0?3:6,1,1,-1); + if (!disp) { + disp.assign(cimg_fitscreen(_width,_height,_depth),title?title:0,1); + if (!title) disp.set_title("CImg<%s> (%ux%ux%ux%u)",pixel_type(),_width,_height,_depth,_spectrum); + } else if (title) disp.set_title("%s",title); + + CImg thumb; + if (width()>disp.screen_width() || height()>disp.screen_height()) + get_resize(cimg_fitscreen(width(),height(),1),1,-100).move_to(thumb); + + const unsigned int old_normalization = disp.normalization(); + bool old_is_resized = disp.is_resized(); + disp._normalization = 0; + disp.show().set_key(0).set_wheel().show_mouse(); + + static const unsigned char foreground_color[] = { 255,255,255 }, background_color[] = { 0,0,0 }; + + int area = 0, starting_area = 0, clicked_area = 0, phase = 0, + X0 = (int)((XYZ?XYZ[0]:(_width - 1)/2)%_width), + Y0 = (int)((XYZ?XYZ[1]:(_height - 1)/2)%_height), + Z0 = (int)((XYZ?XYZ[2]:(_depth - 1)/2)%_depth), + X1 =-1, Y1 = -1, Z1 = -1, + X3d = -1, Y3d = -1, + oX3d = X3d, oY3d = -1, + omx = -1, omy = -1; + float X = -1, Y = -1, Z = -1; + unsigned int old_button = 0, key = 0; + + bool shape_selected = false, text_down = false, visible_cursor = true; + static CImg pose3d; + static bool is_view3d = false, is_axes = true; + if (reset_view3d) { pose3d.assign(); is_view3d = false; } + CImg points3d, opacities3d, sel_opacities3d; + CImgList primitives3d, sel_primitives3d; + CImgList colors3d, sel_colors3d; + CImg visu, visu0, view3d; + CImg text(1024); *text = 0; + + while (!key && !disp.is_closed() && !shape_selected) { + + // Handle mouse motion and selection + int + mx = disp.mouse_x(), + my = disp.mouse_y(); + + const float + mX = mx<0?-1.0f:(float)mx*(width() + (depth()>1?depth():0))/disp.width(), + mY = my<0?-1.0f:(float)my*(height() + (depth()>1?depth():0))/disp.height(); + + area = 0; + if (mX>=0 && mY>=0 && mX=0 && mX=height()) { area = 2; X = mX; Z = mY - _height; Y = (float)(phase?Y1:Y0); } + if (mY>=0 && mX>=width() && mY=width() && mY>=height()) area = 4; + if (disp.button()) { if (!clicked_area) clicked_area = area; } else clicked_area = 0; + + CImg filename(32); + + switch (key = disp.key()) { +#if cimg_OS!=2 + case cimg::keyCTRLRIGHT : +#endif + case 0 : case cimg::keyCTRLLEFT : key = 0; break; + case cimg::keyPAGEUP : + if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_wheel(1); key = 0; } break; + case cimg::keyPAGEDOWN : + if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { disp.set_wheel(-1); key = 0; } break; + case cimg::keyA : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + is_axes = !is_axes; disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyD : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,false), + CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,true),false). + _is_resized = true; + disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyC : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(cimg_fitscreen(2*disp.width()/3,2*disp.height()/3,1),false)._is_resized = true; + disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyR : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false).resize(cimg_fitscreen(_width,_height,_depth),false)._is_resized = true; + disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyF : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.resize(disp.screen_width(),disp.screen_height(),false).toggle_fullscreen()._is_resized = true; + disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyV : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + is_view3d = !is_view3d; disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyS : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + static unsigned int snap_number = 0; + std::FILE *file; + do { + cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.bmp",snap_number++); + if ((file=std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + if (visu0) { + (+visu0).draw_text(0,0," Saving snapshot... ",foreground_color,background_color,0.7f,13).display(disp); + visu0.save(filename); + (+visu0).draw_text(0,0," Snapshot '%s' saved. ",foreground_color,background_color,0.7f,13,filename._data). + display(disp); + } + disp.set_key(key,false); key = 0; + } break; + case cimg::keyO : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + static unsigned int snap_number = 0; + std::FILE *file; + do { +#ifdef cimg_use_zlib + cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.cimgz",snap_number++); +#else + cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.cimg",snap_number++); +#endif + if ((file=std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+visu0).draw_text(0,0," Saving instance... ",foreground_color,background_color,0.7f,13).display(disp); + save(filename); + (+visu0).draw_text(0,0," Instance '%s' saved. ",foreground_color,background_color,0.7f,13,filename._data). + display(disp); + disp.set_key(key,false); key = 0; + } break; + } + + switch (area) { + + case 0 : // When mouse is out of image range. + mx = my = -1; X = Y = Z = -1; + break; + + case 1 : case 2 : case 3 : // When mouse is over the XY,XZ or YZ projections. + if (disp.button()&1 && phase<2 && clicked_area==area) { // When selection has been started (1st step). + if (_depth>1 && (X1!=(int)X || Y1!=(int)Y || Z1!=(int)Z)) visu0.assign(); + X1 = (int)X; Y1 = (int)Y; Z1 = (int)Z; + } + if (!(disp.button()&1) && phase>=2 && clicked_area!=area) { // When selection is at 2nd step (for volumes). + switch (starting_area) { + case 1 : if (Z1!=(int)Z) visu0.assign(); Z1 = (int)Z; break; + case 2 : if (Y1!=(int)Y) visu0.assign(); Y1 = (int)Y; break; + case 3 : if (X1!=(int)X) visu0.assign(); X1 = (int)X; break; + } + } + if (disp.button()&2 && clicked_area==area) { // When moving through the image/volume. + if (phase) { + if (_depth>1 && (X1!=(int)X || Y1!=(int)Y || Z1!=(int)Z)) visu0.assign(); + X1 = (int)X; Y1 = (int)Y; Z1 = (int)Z; + } else { + if (_depth>1 && (X0!=(int)X || Y0!=(int)Y || Z0!=(int)Z)) visu0.assign(); + X0 = (int)X; Y0 = (int)Y; Z0 = (int)Z; + } + } + if (disp.button()&4) { + X = (float)X0; Y = (float)Y0; Z = (float)Z0; phase = area = clicked_area = starting_area = 0; + visu0.assign(); + } + if (disp.wheel()) { // When moving through the slices of the volume (with mouse wheel). + if (_depth>1 && !disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT() && + !disp.is_keySHIFTLEFT() && !disp.is_keySHIFTRIGHT() && + !disp.is_keyALT() && !disp.is_keyALTGR()) { + switch (area) { + case 1 : + if (phase) Z = (float)(Z1+=disp.wheel()); else Z = (float)(Z0+=disp.wheel()); + visu0.assign(); break; + case 2 : + if (phase) Y = (float)(Y1+=disp.wheel()); else Y = (float)(Y0+=disp.wheel()); + visu0.assign(); break; + case 3 : + if (phase) X = (float)(X1+=disp.wheel()); else X = (float)(X0+=disp.wheel()); + visu0.assign(); break; + } + disp.set_wheel(); + } else key = ~0U; + } + if ((disp.button()&1)!=old_button) { // When left button has just been pressed or released. + switch (phase) { + case 0 : + if (area==clicked_area) { + X0 = X1 = (int)X; Y0 = Y1 = (int)Y; Z0 = Z1 = (int)Z; starting_area = area; ++phase; + } break; + case 1 : + if (area==starting_area) { + X1 = (int)X; Y1 = (int)Y; Z1 = (int)Z; ++phase; + } else if (!(disp.button()&1)) { X = (float)X0; Y = (float)Y0; Z = (float)Z0; phase = 0; visu0.assign(); } + break; + case 2 : ++phase; break; + } + old_button = disp.button()&1; + } + break; + + case 4 : // When mouse is over the 3d view. + if (is_view3d && points3d) { + X3d = mx - width()*disp.width()/(width() + (depth()>1?depth():0)); + Y3d = my - height()*disp.height()/(height() + (depth()>1?depth():0)); + if (oX3d<0) { oX3d = X3d; oY3d = Y3d; } + // Left + right buttons: reset. + if ((disp.button()&3)==3) { pose3d.assign(); view3d.assign(); oX3d = oY3d = X3d = Y3d = -1; } + else if (disp.button()&1 && pose3d && (oX3d!=X3d || oY3d!=Y3d)) { // Left button: rotate. + const float + R = 0.45f*std::min(view3d._width,view3d._height), + R2 = R*R, + u0 = (float)(oX3d - view3d.width()/2), + v0 = (float)(oY3d - view3d.height()/2), + u1 = (float)(X3d - view3d.width()/2), + v1 = (float)(Y3d - view3d.height()/2), + n0 = cimg::hypot(u0,v0), + n1 = cimg::hypot(u1,v1), + nu0 = n0>R?(u0*R/n0):u0, + nv0 = n0>R?(v0*R/n0):v0, + nw0 = (float)std::sqrt(std::max(0.0f,R2 - nu0*nu0 - nv0*nv0)), + nu1 = n1>R?(u1*R/n1):u1, + nv1 = n1>R?(v1*R/n1):v1, + nw1 = (float)std::sqrt(std::max(0.0f,R2 - nu1*nu1 - nv1*nv1)), + u = nv0*nw1 - nw0*nv1, + v = nw0*nu1 - nu0*nw1, + w = nv0*nu1 - nu0*nv1, + n = cimg::hypot(u,v,w), + alpha = (float)std::asin(n/R2)*180/cimg::PI; + pose3d.draw_image(CImg::rotation_matrix(u,v,w,-alpha)*pose3d.get_crop(0,0,2,2)); + view3d.assign(); + } else if (disp.button()&2 && pose3d && oY3d!=Y3d) { // Right button: zoom. + pose3d(3,2)-=(oY3d - Y3d)*1.5f; view3d.assign(); + } + if (disp.wheel()) { // Wheel: zoom + pose3d(3,2)-=disp.wheel()*15; view3d.assign(); disp.set_wheel(); + } + if (disp.button()&4 && pose3d && (oX3d!=X3d || oY3d!=Y3d)) { // Middle button: shift. + pose3d(3,0)-=oX3d - X3d; pose3d(3,1)-=oY3d - Y3d; view3d.assign(); + } + oX3d = X3d; oY3d = Y3d; + } + mx = my = -1; X = Y = Z = -1; + break; + } + + if (phase) { + if (!feature_type) shape_selected = phase?true:false; + else { + if (_depth>1) shape_selected = (phase==3)?true:false; + else shape_selected = (phase==2)?true:false; + } + } + + if (X0<0) X0 = 0; + if (X0>=width()) X0 = width() - 1; + if (Y0<0) Y0 = 0; + if (Y0>=height()) Y0 = height() - 1; + if (Z0<0) Z0 = 0; + if (Z0>=depth()) Z0 = depth() - 1; + if (X1<1) X1 = 0; + if (X1>=width()) X1 = width() - 1; + if (Y1<0) Y1 = 0; + if (Y1>=height()) Y1 = height() - 1; + if (Z1<0) Z1 = 0; + if (Z1>=depth()) Z1 = depth() - 1; + + // Draw visualization image on the display + if (mx!=omx || my!=omy || !visu0 || (_depth>1 && !view3d)) { + + if (!visu0) { // Create image of projected planes. + if (thumb) thumb.__get_select(disp,old_normalization,phase?X1:X0,phase?Y1:Y0,phase?Z1:Z0).move_to(visu0); + else __get_select(disp,old_normalization,phase?X1:X0,phase?Y1:Y0,phase?Z1:Z0).move_to(visu0); + visu0.resize(disp); + view3d.assign(); + points3d.assign(); + } + + if (is_view3d && _depth>1 && !view3d) { // Create 3d view for volumetric images. + const unsigned int + _x3d = (unsigned int)cimg::round((float)_width*visu0._width/(_width + _depth),1,1), + _y3d = (unsigned int)cimg::round((float)_height*visu0._height/(_height + _depth),1,1), + x3d = _x3d>=visu0._width?visu0._width - 1:_x3d, + y3d = _y3d>=visu0._height?visu0._height - 1:_y3d; + CImg(1,2,1,1,64,128).resize(visu0._width - x3d,visu0._height - y3d,1,visu0._spectrum,3). + move_to(view3d); + if (!points3d) { + get_projections3d(primitives3d,colors3d,phase?X1:X0,phase?Y1:Y0,phase?Z1:Z0,true).move_to(points3d); + points3d.append(CImg(8,3,1,1, + 0,_width - 1,_width - 1,0,0,_width - 1,_width - 1,0, + 0,0,_height - 1,_height - 1,0,0,_height - 1,_height - 1, + 0,0,0,0,_depth - 1,_depth - 1,_depth - 1,_depth - 1),'x'); + CImg::vector(12,13).move_to(primitives3d); CImg::vector(13,14).move_to(primitives3d); + CImg::vector(14,15).move_to(primitives3d); CImg::vector(15,12).move_to(primitives3d); + CImg::vector(16,17).move_to(primitives3d); CImg::vector(17,18).move_to(primitives3d); + CImg::vector(18,19).move_to(primitives3d); CImg::vector(19,16).move_to(primitives3d); + CImg::vector(12,16).move_to(primitives3d); CImg::vector(13,17).move_to(primitives3d); + CImg::vector(14,18).move_to(primitives3d); CImg::vector(15,19).move_to(primitives3d); + colors3d.insert(12,CImg::vector(255,255,255)); + opacities3d.assign(primitives3d.width(),1,1,1,0.5f); + if (!phase) { + opacities3d[0] = opacities3d[1] = opacities3d[2] = 0.8f; + sel_primitives3d.assign(); + sel_colors3d.assign(); + sel_opacities3d.assign(); + } else { + if (feature_type==2) { + points3d.append(CImg(8,3,1,1, + X0,X1,X1,X0,X0,X1,X1,X0, + Y0,Y0,Y1,Y1,Y0,Y0,Y1,Y1, + Z0,Z0,Z0,Z0,Z1,Z1,Z1,Z1),'x'); + sel_primitives3d.assign(); + CImg::vector(20,21).move_to(sel_primitives3d); + CImg::vector(21,22).move_to(sel_primitives3d); + CImg::vector(22,23).move_to(sel_primitives3d); + CImg::vector(23,20).move_to(sel_primitives3d); + CImg::vector(24,25).move_to(sel_primitives3d); + CImg::vector(25,26).move_to(sel_primitives3d); + CImg::vector(26,27).move_to(sel_primitives3d); + CImg::vector(27,24).move_to(sel_primitives3d); + CImg::vector(20,24).move_to(sel_primitives3d); + CImg::vector(21,25).move_to(sel_primitives3d); + CImg::vector(22,26).move_to(sel_primitives3d); + CImg::vector(23,27).move_to(sel_primitives3d); + } else { + points3d.append(CImg(2,3,1,1, + X0,X1, + Y0,Y1, + Z0,Z1),'x'); + sel_primitives3d.assign(CImg::vector(20,21)); + } + sel_colors3d.assign(sel_primitives3d._width,CImg::vector(255,255,255)); + sel_opacities3d.assign(sel_primitives3d._width,1,1,1,0.8f); + } + points3d.shift_object3d(-0.5f*(_width - 1),-0.5f*(_height - 1),-0.5f*(_depth - 1)).resize_object3d(); + points3d*=0.75f*std::min(view3d._width,view3d._height); + } + + if (!pose3d) CImg(4,3,1,1, 1,0,0,0, 0,1,0,0, 0,0,1,0).move_to(pose3d); + CImg zbuffer3d(view3d._width,view3d._height,1,1,0); + const CImg rotated_points3d = pose3d.get_crop(0,0,2,2)*points3d; + if (sel_primitives3d) + view3d.draw_object3d(pose3d(3,0) + 0.5f*view3d._width, + pose3d(3,1) + 0.5f*view3d._height, + pose3d(3,2), + rotated_points3d,sel_primitives3d,sel_colors3d,sel_opacities3d, + 2,true,500,0,0,0,0,0,zbuffer3d); + view3d.draw_object3d(pose3d(3,0) + 0.5f*view3d._width, + pose3d(3,1) + 0.5f*view3d._height, + pose3d(3,2), + rotated_points3d,primitives3d,colors3d,opacities3d, + 2,true,500,0,0,0,0,0,zbuffer3d); + visu0.draw_image(x3d,y3d,view3d); + } + visu = visu0; + + if (X<0 || Y<0 || Z<0) { if (!visible_cursor) { disp.show_mouse(); visible_cursor = true; }} + else { + if (is_axes) { if (visible_cursor) { disp.hide_mouse(); visible_cursor = false; }} + else { if (!visible_cursor) { disp.show_mouse(); visible_cursor = true; }} + const int d = (depth()>1)?depth():0; + int + _vX = (int)X, _vY = (int)Y, _vZ = (int)Z, + w = disp.width(), W = width() + d, + h = disp.height(), H = height() + d, + _xp = (int)(_vX*(float)w/W), xp = _xp + ((int)(_xp*(float)W/w)!=_vX), + _yp = (int)(_vY*(float)h/H), yp = _yp + ((int)(_yp*(float)H/h)!=_vY), + _xn = (int)((_vX + 1.0f)*w/W - 1), xn = _xn + ((int)((_xn + 1.0f)*W/w)!=_vX + 1), + _yn = (int)((_vY + 1.0f)*h/H - 1), yn = _yn + ((int)((_yn + 1.0f)*H/h)!=_vY + 1), + _zxp = (int)((_vZ + width())*(float)w/W), zxp = _zxp + ((int)(_zxp*(float)W/w)!=_vZ + width()), + _zyp = (int)((_vZ + height())*(float)h/H), zyp = _zyp + ((int)(_zyp*(float)H/h)!=_vZ + height()), + _zxn = (int)((_vZ + width() + 1.0f)*w/W - 1), + zxn = _zxn + ((int)((_zxn + 1.0f)*W/w)!=_vZ + width() + 1), + _zyn = (int)((_vZ + height() + 1.0f)*h/H - 1), + zyn = _zyn + ((int)((_zyn + 1.0f)*H/h)!=_vZ + height() + 1), + _xM = (int)(width()*(float)w/W - 1), xM = _xM + ((int)((_xM + 1.0f)*W/w)!=width()), + _yM = (int)(height()*(float)h/H - 1), yM = _yM + ((int)((_yM + 1.0f)*H/h)!=height()), + xc = (xp + xn)/2, + yc = (yp + yn)/2, + zxc = (zxp + zxn)/2, + zyc = (zyp + zyn)/2, + xf = (int)(X*w/W), + yf = (int)(Y*h/H), + zxf = (int)((Z + width())*w/W), + zyf = (int)((Z + height())*h/H); + + if (is_axes) { // Draw axes. + visu.draw_line(0,yf,visu.width() - 1,yf,foreground_color,0.7f,0xFF00FF00). + draw_line(0,yf,visu.width() - 1,yf,background_color,0.7f,0x00FF00FF). + draw_line(xf,0,xf,visu.height() - 1,foreground_color,0.7f,0xFF00FF00). + draw_line(xf,0,xf,visu.height() - 1,background_color,0.7f,0x00FF00FF); + if (_depth>1) + visu.draw_line(zxf,0,zxf,yM,foreground_color,0.7f,0xFF00FF00). + draw_line(zxf,0,zxf,yM,background_color,0.7f,0x00FF00FF). + draw_line(0,zyf,xM,zyf,foreground_color,0.7f,0xFF00FF00). + draw_line(0,zyf,xM,zyf,background_color,0.7f,0x00FF00FF); + } + + // Draw box cursor. + if (xn - xp>=4 && yn - yp>=4) visu.draw_rectangle(xp,yp,xn,yn,foreground_color,0.2f). + draw_rectangle(xp,yp,xn,yn,foreground_color,1,0xAAAAAAAA). + draw_rectangle(xp,yp,xn,yn,background_color,1,0x55555555); + if (_depth>1) { + if (yn - yp>=4 && zxn - zxp>=4) visu.draw_rectangle(zxp,yp,zxn,yn,background_color,0.2f). + draw_rectangle(zxp,yp,zxn,yn,foreground_color,1,0xAAAAAAAA). + draw_rectangle(zxp,yp,zxn,yn,background_color,1,0x55555555); + if (xn - xp>=4 && zyn - zyp>=4) visu.draw_rectangle(xp,zyp,xn,zyn,background_color,0.2f). + draw_rectangle(xp,zyp,xn,zyn,foreground_color,1,0xAAAAAAAA). + draw_rectangle(xp,zyp,xn,zyn,background_color,1,0x55555555); + } + + // Draw selection. + if (phase) { + const int + _xp0 = (int)(X0*(float)w/W), xp0 = _xp0 + ((int)(_xp0*(float)W/w)!=X0), + _yp0 = (int)(Y0*(float)h/H), yp0 = _yp0 + ((int)(_yp0*(float)H/h)!=Y0), + _xn0 = (int)((X0 + 1.0f)*w/W - 1), xn0 = _xn0 + ((int)((_xn0 + 1.0f)*W/w)!=X0 + 1), + _yn0 = (int)((Y0 + 1.0f)*h/H - 1), yn0 = _yn0 + ((int)((_yn0 + 1.0f)*H/h)!=Y0 + 1), + _zxp0 = (int)((Z0 + width())*(float)w/W), zxp0 = _zxp0 + ((int)(_zxp0*(float)W/w)!=Z0 + width()), + _zyp0 = (int)((Z0 + height())*(float)h/H), zyp0 = _zyp0 + ((int)(_zyp0*(float)H/h)!=Z0 + height()), + _zxn0 = (int)((Z0 + width() + 1.0f)*w/W - 1), + zxn0 = _zxn0 + ((int)((_zxn0 + 1.0f)*W/w)!=Z0 + width() + 1), + _zyn0 = (int)((Z0 + height() + 1.0f)*h/H - 1), + zyn0 = _zyn0 + ((int)((_zyn0 + 1.0f)*H/h)!=Z0 + height() + 1), + xc0 = (xp0 + xn0)/2, + yc0 = (yp0 + yn0)/2, + zxc0 = (zxp0 + zxn0)/2, + zyc0 = (zyp0 + zyn0)/2; + + switch (feature_type) { + case 1 : { + visu.draw_arrow(xc0,yc0,xc,yc,background_color,0.9f,30,5,0x55555555). + draw_arrow(xc0,yc0,xc,yc,foreground_color,0.9f,30,5,0xAAAAAAAA); + if (d) { + visu.draw_arrow(zxc0,yc0,zxc,yc,background_color,0.9f,30,5,0x55555555). + draw_arrow(zxc0,yc0,zxc,yc,foreground_color,0.9f,30,5,0xAAAAAAAA). + draw_arrow(xc0,zyc0,xc,zyc,background_color,0.9f,30,5,0x55555555). + draw_arrow(xc0,zyc0,xc,zyc,foreground_color,0.9f,30,5,0xAAAAAAAA); + } + } break; + case 2 : { + visu.draw_rectangle(X0=0 && my<13) text_down = true; else if (my>=visu.height() - 13) text_down = false; + if (!feature_type || !phase) { + if (X>=0 && Y>=0 && Z>=0 && X1 || force_display_z_coord) + cimg_snprintf(text,text._width," Point (%d,%d,%d) = [ ",origX + (int)X,origY + (int)Y,origZ + (int)Z); + else cimg_snprintf(text,text._width," Point (%d,%d) = [ ",origX + (int)X,origY + (int)Y); + CImg values = get_vector_at(X,Y,Z); + const bool is_large_spectrum = values._height>16; + if (is_large_spectrum) values.draw_image(0,8,values.get_rows(values._height - 8,values._height - 1)).resize(1,16,1,1,0); + char *ctext = text._data + std::strlen(text), *const ltext = text._data + 512; + for (unsigned int c = 0; c::format_s(), + cimg::type::format(values[c])); + ctext += std::strlen(ctext); + if (c==7 && is_large_spectrum) { + cimg_snprintf(ctext,24," (...)"); + ctext += std::strlen(ctext); + } + *(ctext++) = ' '; *ctext = 0; + } + std::strcpy(text._data + std::strlen(text),"] "); + } + } else switch (feature_type) { + case 1 : { + const double dX = (double)(X0 - X1), dY = (double)(Y0 - Y1), dZ = (double)(Z0 - Z1), + norm = cimg::hypot(dX,dY,dZ); + if (_depth>1 || force_display_z_coord) + cimg_snprintf(text,text._width," Vect (%d,%d,%d)-(%d,%d,%d), Norm = %g ", + origX + X0,origY + Y0,origZ + Z0,origX + X1,origY + Y1,origZ + Z1,norm); + else cimg_snprintf(text,text._width," Vect (%d,%d)-(%d,%d), Norm = %g ", + origX + X0,origY + Y0,origX + X1,origY + Y1,norm); + } break; + case 2 : + if (_depth>1 || force_display_z_coord) + cimg_snprintf(text,text._width," Box (%d,%d,%d)-(%d,%d,%d), Size = (%d,%d,%d) ", + origX + (X01 || force_display_z_coord) + cimg_snprintf(text,text._width," Ellipse (%d,%d,%d)-(%d,%d,%d), Radii = (%d,%d,%d) ", + origX + X0,origY + Y0,origZ + Z0,origX + X1,origY + Y1,origZ + Z1, + 1 + cimg::abs(X0 - X1),1 + cimg::abs(Y0 - Y1),1 + cimg::abs(Z0 - Z1)); + else cimg_snprintf(text,text._width," Ellipse (%d,%d)-(%d,%d), Radii = (%d,%d) ", + origX + X0,origY + Y0,origX + X1,origY + Y1, + 1 + cimg::abs(X0 - X1),1 + cimg::abs(Y0 - Y1)); + } + if (phase || (mx>=0 && my>=0)) + visu.draw_text(0,text_down?visu.height() - 13:0,text,foreground_color,background_color,0.7f,13); + } + + disp.display(visu).wait(); + } else if (!shape_selected) disp.wait(); + if (disp.is_resized()) { disp.resize(false)._is_resized = false; old_is_resized = true; visu0.assign(); } + omx = mx; omy = my; + if (!exit_on_anykey && key && key!=cimg::keyESC && + (key!=cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) { + key = 0; + } + } + + // Return result. + CImg res(1,feature_type==0?3:6,1,1,-1); + if (XYZ) { XYZ[0] = (unsigned int)X0; XYZ[1] = (unsigned int)Y0; XYZ[2] = (unsigned int)Z0; } + if (shape_selected) { + if (feature_type==2) { + if (X0>X1) cimg::swap(X0,X1); + if (Y0>Y1) cimg::swap(Y0,Y1); + if (Z0>Z1) cimg::swap(Z0,Z1); + } + if (X1<0 || Y1<0 || Z1<0) X0 = Y0 = Z0 = X1 = Y1 = Z1 = -1; + switch (feature_type) { + case 1 : case 2 : res[0] = X0; res[1] = Y0; res[2] = Z0; res[3] = X1; res[4] = Y1; res[5] = Z1; break; + case 3 : + res[3] = cimg::abs(X1 - X0); res[4] = cimg::abs(Y1 - Y0); res[5] = cimg::abs(Z1 - Z0); // keep no break here! + default : res[0] = X0; res[1] = Y0; res[2] = Z0; + } + } + if (!exit_on_anykey || !(disp.button()&4)) disp.set_button(); + if (!visible_cursor) disp.show_mouse(); + disp._normalization = old_normalization; + disp._is_resized = old_is_resized; + if (key!=~0U) disp.set_key(key); + return res; + } + + // Return a visualizable uchar8 image for display routines. + CImg __get_select(const CImgDisplay& disp, const int normalization, + const int x, const int y, const int z) const { + if (is_empty()) return CImg(1,1,1,1,0); + const CImg crop = get_shared_channels(0,std::min(2,spectrum() - 1)); + CImg img2d; + if (_depth>1) { + const int mdisp = std::min(disp.screen_width(),disp.screen_height()); + if (depth()>mdisp) { + crop.get_resize(-100,-100,mdisp,-100,0).move_to(img2d); + img2d.projections2d(x,y,z*img2d._depth/_depth); + } else crop.get_projections2d(x,y,z).move_to(img2d); + } else CImg(crop,false).move_to(img2d); + + // Check for inf and NaN values. + if (cimg::type::is_float() && normalization) { + bool is_inf = false, is_nan = false; + cimg_for(img2d,ptr,Tuchar) + if (cimg::type::is_inf(*ptr)) { is_inf = true; break; } + else if (cimg::type::is_nan(*ptr)) { is_nan = true; break; } + if (is_inf || is_nan) { + Tint m0 = (Tint)cimg::type::max(), M0 = (Tint)cimg::type::min(); + if (!normalization) { m0 = 0; M0 = 255; } + else if (normalization==2) { m0 = (Tint)disp._min; M0 = (Tint)disp._max; } + else + cimg_for(img2d,ptr,Tuchar) + if (!cimg::type::is_inf(*ptr) && !cimg::type::is_nan(*ptr)) { + if (*ptr<(Tuchar)m0) m0 = *ptr; + if (*ptr>(Tuchar)M0) M0 = *ptr; + } + const T + val_minf = (T)(normalization==1 || normalization==3?m0 - (M0 - m0)*20 - 1:m0), + val_pinf = (T)(normalization==1 || normalization==3?M0 + (M0 - m0)*20 + 1:M0); + if (is_nan) + cimg_for(img2d,ptr,Tuchar) + if (cimg::type::is_nan(*ptr)) *ptr = val_minf; // Replace NaN values. + if (is_inf) + cimg_for(img2d,ptr,Tuchar) + if (cimg::type::is_inf(*ptr)) *ptr = (float)*ptr<0?val_minf:val_pinf; // Replace +-inf values. + } + } + + switch (normalization) { + case 1 : img2d.normalize((T)0,(T)255); break; + case 2 : { + const float m = disp._min, M = disp._max; + (img2d-=m)*=255.0f/(M - m>0?M - m:1); + } break; + case 3 : + if (cimg::type::is_float()) img2d.normalize((T)0,(T)255); + else { + const float m = (float)cimg::type::min(), M = (float)cimg::type::max(); + (img2d-=m)*=255.0f/(M - m>0?M - m:1); + } break; + } + + if (img2d.spectrum()==2) img2d.channels(0,2); + return img2d; + } + + //! Select sub-graph in a graph. + CImg get_select_graph(CImgDisplay &disp, + const unsigned int plot_type=1, const unsigned int vertex_type=1, + const char *const labelx=0, const double xmin=0, const double xmax=0, + const char *const labely=0, const double ymin=0, const double ymax=0, + const bool exit_on_anykey=false) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "select_graph(): Empty instance.", + cimg_instance); + if (!disp) disp.assign(cimg_fitscreen(CImgDisplay::screen_width()/2,CImgDisplay::screen_height()/2,1),0,0). + set_title("CImg<%s>",pixel_type()); + const ulongT siz = (ulongT)_width*_height*_depth; + const unsigned int old_normalization = disp.normalization(); + disp.show().set_button().set_wheel()._normalization = 0; + + double nymin = ymin, nymax = ymax, nxmin = xmin, nxmax = xmax; + if (nymin==nymax) { nymin = (Tfloat)min_max(nymax); const double dy = nymax - nymin; nymin-=dy/20; nymax+=dy/20; } + if (nymin==nymax) { --nymin; ++nymax; } + if (nxmin==nxmax && nxmin==0) { nxmin = 0; nxmax = siz - 1.0; } + + static const unsigned char black[] = { 0, 0, 0 }, white[] = { 255, 255, 255 }, gray[] = { 220, 220, 220 }; + static const unsigned char gray2[] = { 110, 110, 110 }, ngray[] = { 35, 35, 35 }; + static unsigned int odimv = 0; + static CImg colormap; + if (odimv!=_spectrum) { + odimv = _spectrum; + colormap = CImg(3,_spectrum,1,1,120).noise(70,1); + if (_spectrum==1) { colormap[0] = colormap[1] = 120; colormap[2] = 200; } + else { + colormap(0,0) = 220; colormap(1,0) = 10; colormap(2,0) = 10; + if (_spectrum>1) { colormap(0,1) = 10; colormap(1,1) = 220; colormap(2,1) = 10; } + if (_spectrum>2) { colormap(0,2) = 10; colormap(1,2) = 10; colormap(2,2) = 220; } + } + } + + CImg visu0, visu, graph, text, axes; + int x0 = -1, x1 = -1, y0 = -1, y1 = -1, omouse_x = -2, omouse_y = -2; + const unsigned int one = plot_type==3?0U:1U; + unsigned int okey = 0, obutton = 0; + CImg message(1024); + CImg_3x3(I,unsigned char); + + for (bool selected = false; !selected && !disp.is_closed() && !okey && !disp.wheel(); ) { + const int mouse_x = disp.mouse_x(), mouse_y = disp.mouse_y(); + const unsigned int key = disp.key(), button = disp.button(); + + // Generate graph representation. + if (!visu0) { + visu0.assign(disp.width(),disp.height(),1,3,220); + const int gdimx = disp.width() - 32, gdimy = disp.height() - 32; + if (gdimx>0 && gdimy>0) { + graph.assign(gdimx,gdimy,1,3,255); + if (siz<32) { + if (siz>1) graph.draw_grid(gdimx/(float)(siz - one),gdimy/(float)(siz - one),0,0, + false,true,black,0.2f,0x33333333,0x33333333); + } else graph.draw_grid(-10,-10,0,0,false,true,black,0.2f,0x33333333,0x33333333); + cimg_forC(*this,c) + graph.draw_graph(get_shared_channel(c),&colormap(0,c),(plot_type!=3 || _spectrum==1)?1:0.6f, + plot_type,vertex_type,nymax,nymin); + + axes.assign(gdimx,gdimy,1,1,0); + const float + dx = (float)cimg::abs(nxmax - nxmin), dy = (float)cimg::abs(nymax - nymin), + px = (float)std::pow(10.0,(int)std::log10(dx?dx:1) - 2.0), + py = (float)std::pow(10.0,(int)std::log10(dy?dy:1) - 2.0); + const CImg + seqx = dx<=0?CImg::vector(nxmin): + CImg::sequence(1 + gdimx/60,nxmin,one?nxmax:nxmin + (nxmax - nxmin)*(siz + 1)/siz).round(px), + seqy = CImg::sequence(1 + gdimy/60,nymax,nymin).round(py); + + const bool allow_zero = (nxmin*nxmax>0) || (nymin*nymax>0); + axes.draw_axes(seqx,seqy,white,1,~0U,~0U,13,allow_zero); + if (nymin>0) axes.draw_axis(seqx,gdimy - 1,gray,1,~0U,13,allow_zero); + if (nymax<0) axes.draw_axis(seqx,0,gray,1,~0U,13,allow_zero); + if (nxmin>0) axes.draw_axis(0,seqy,gray,1,~0U,13,allow_zero); + if (nxmax<0) axes.draw_axis(gdimx - 1,seqy,gray,1,~0U,13,allow_zero); + + cimg_for3x3(axes,x,y,0,0,I,unsigned char) + if (Icc) { + if (Icc==255) cimg_forC(graph,c) graph(x,y,c) = 0; + else cimg_forC(graph,c) graph(x,y,c) = (unsigned char)(2*graph(x,y,c)/3); + } + else if (Ipc || Inc || Icp || Icn || Ipp || Inn || Ipn || Inp) + cimg_forC(graph,c) graph(x,y,c) = (unsigned char)((graph(x,y,c) + 511)/3); + + visu0.draw_image(16,16,graph); + visu0.draw_line(15,15,16 + gdimx,15,gray2).draw_line(16 + gdimx,15,16 + gdimx,16 + gdimy,gray2). + draw_line(16 + gdimx,16 + gdimy,15,16 + gdimy,white).draw_line(15,16 + gdimy,15,15,white); + } else graph.assign(); + text.assign().draw_text(0,0,labelx?labelx:"X-axis",white,ngray,1,13).resize(-100,-100,1,3); + visu0.draw_image((visu0.width() - text.width())/2,visu0.height() - 14,~text); + text.assign().draw_text(0,0,labely?labely:"Y-axis",white,ngray,1,13).rotate(-90).resize(-100,-100,1,3); + visu0.draw_image(1,(visu0.height() - text.height())/2,~text); + visu.assign(); + } + + // Generate and display current view. + if (!visu) { + visu.assign(visu0); + if (graph && x0>=0 && x1>=0) { + const int + nx0 = x0<=x1?x0:x1, + nx1 = x0<=x1?x1:x0, + ny0 = y0<=y1?y0:y1, + ny1 = y0<=y1?y1:y0, + sx0 = (int)(16 + nx0*(visu.width() - 32)/std::max((ulongT)1,siz - one)), + sx1 = (int)(15 + (nx1 + 1)*(visu.width() - 32)/std::max((ulongT)1,siz - one)), + sy0 = 16 + ny0, + sy1 = 16 + ny1; + if (y0>=0 && y1>=0) + visu.draw_rectangle(sx0,sy0,sx1,sy1,gray,0.5f).draw_rectangle(sx0,sy0,sx1,sy1,black,0.5f,0xCCCCCCCCU); + else visu.draw_rectangle(sx0,0,sx1,visu.height() - 17,gray,0.5f). + draw_line(sx0,16,sx0,visu.height() - 17,black,0.5f,0xCCCCCCCCU). + draw_line(sx1,16,sx1,visu.height() - 17,black,0.5f,0xCCCCCCCCU); + } + if (mouse_x>=16 && mouse_y>=16 && mouse_x=7) + cimg_snprintf(message,message._width,"Value[%u:%g] = ( %g %g %g ... %g %g %g )",x,cx, + (double)(*this)(x,0,0,0),(double)(*this)(x,0,0,1),(double)(*this)(x,0,0,2), + (double)(*this)(x,0,0,_spectrum - 4),(double)(*this)(x,0,0,_spectrum - 3), + (double)(*this)(x,0,0,_spectrum - 1)); + else { + cimg_snprintf(message,message._width,"Value[%u:%g] = ( ",x,cx); + cimg_forC(*this,c) cimg_sprintf(message._data + std::strlen(message),"%g ",(double)(*this)(x,0,0,c)); + cimg_sprintf(message._data + std::strlen(message),")"); + } + if (x0>=0 && x1>=0) { + const unsigned int + nx0 = (unsigned int)(x0<=x1?x0:x1), + nx1 = (unsigned int)(x0<=x1?x1:x0), + ny0 = (unsigned int)(y0<=y1?y0:y1), + ny1 = (unsigned int)(y0<=y1?y1:y0); + const double + cx0 = nxmin + nx0*(nxmax - nxmin)/std::max((ulongT)1,siz - 1), + cx1 = nxmin + (nx1 + one)*(nxmax - nxmin)/std::max((ulongT)1,siz - 1), + cy0 = nymax - ny0*(nymax - nymin)/(visu._height - 32), + cy1 = nymax - ny1*(nymax - nymin)/(visu._height - 32); + if (y0>=0 && y1>=0) + cimg_sprintf(message._data + std::strlen(message)," - Range ( %u:%g, %g ) - ( %u:%g, %g )", + x0,cx0,cy0,x1 + one,cx1,cy1); + else + cimg_sprintf(message._data + std::strlen(message)," - Range [ %u:%g - %u:%g ]", + x0,cx0,x1 + one,cx1); + } + text.assign().draw_text(0,0,message,white,ngray,1,13).resize(-100,-100,1,3); + visu.draw_image((visu.width() - text.width())/2,1,~text); + } + visu.display(disp); + } + + // Test keys. + CImg filename(32); + switch (okey = key) { +#if cimg_OS!=2 + case cimg::keyCTRLRIGHT : case cimg::keySHIFTRIGHT : +#endif + case cimg::keyCTRLLEFT : case cimg::keySHIFTLEFT : okey = 0; break; + case cimg::keyD : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,false), + CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,true),false). + _is_resized = true; + disp.set_key(key,false); okey = 0; + } break; + case cimg::keyC : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(cimg_fitscreen(2*disp.width()/3,2*disp.height()/3,1),false)._is_resized = true; + disp.set_key(key,false); okey = 0; + } break; + case cimg::keyR : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(cimg_fitscreen(CImgDisplay::screen_width()/2, + CImgDisplay::screen_height()/2,1),false)._is_resized = true; + disp.set_key(key,false); okey = 0; + } break; + case cimg::keyF : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.resize(disp.screen_width(),disp.screen_height(),false).toggle_fullscreen()._is_resized = true; + disp.set_key(key,false); okey = 0; + } break; + case cimg::keyS : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + static unsigned int snap_number = 0; + if (visu || visu0) { + CImg &screen = visu?visu:visu0; + std::FILE *file; + do { + cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.bmp",snap_number++); + if ((file=std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+screen).draw_text(0,0," Saving snapshot... ",black,gray,1,13).display(disp); + screen.save(filename); + (+screen).draw_text(0,0," Snapshot '%s' saved. ",black,gray,1,13,filename._data).display(disp); + } + disp.set_key(key,false); okey = 0; + } break; + case cimg::keyO : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + static unsigned int snap_number = 0; + if (visu || visu0) { + CImg &screen = visu?visu:visu0; + std::FILE *file; + do { +#ifdef cimg_use_zlib + cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.cimgz",snap_number++); +#else + cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.cimg",snap_number++); +#endif + if ((file=std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+screen).draw_text(0,0," Saving instance... ",black,gray,1,13).display(disp); + save(filename); + (+screen).draw_text(0,0," Instance '%s' saved. ",black,gray,1,13,filename._data).display(disp); + } + disp.set_key(key,false); okey = 0; + } break; + } + + // Handle mouse motion and mouse buttons + if (obutton!=button || omouse_x!=mouse_x || omouse_y!=mouse_y) { + visu.assign(); + if (disp.mouse_x()>=0 && disp.mouse_y()>=0) { + const int + mx = (mouse_x - 16)*(int)(siz - one)/(disp.width() - 32), + cx = cimg::cut(mx,0,(int)(siz - 1 - one)), + my = mouse_y - 16, + cy = cimg::cut(my,0,disp.height() - 32); + if (button&1) { + if (!obutton) { x0 = cx; y0 = -1; } else { x1 = cx; y1 = -1; } + } + else if (button&2) { + if (!obutton) { x0 = cx; y0 = cy; } else { x1 = cx; y1 = cy; } + } + else if (obutton) { x1 = x1>=0?cx:-1; y1 = y1>=0?cy:-1; selected = true; } + } else if (!button && obutton) selected = true; + obutton = button; omouse_x = mouse_x; omouse_y = mouse_y; + } + if (disp.is_resized()) { disp.resize(false); visu0.assign(); } + if (visu && visu0) disp.wait(); + if (!exit_on_anykey && okey && okey!=cimg::keyESC && + (okey!=cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) { + disp.set_key(key,false); + okey = 0; + } + } + + disp._normalization = old_normalization; + if (x1>=0 && x1(4,1,1,1,x0,y0,x1>=0?x1 + (int)one:-1,y1); + } + + //! Load image from a file. + /** + \param filename Filename, as a C-string. + \note The extension of \c filename defines the file format. If no filename + extension is provided, CImg::get_load() will try to load the file as a .cimg or .cimgz file. + **/ + CImg& load(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load(): Specified filename is (null).", + cimg_instance); + + if (!cimg::strncasecmp(filename,"http://",7) || !cimg::strncasecmp(filename,"https://",8)) { + CImg filename_local(256); + load(cimg::load_network(filename,filename_local)); + std::remove(filename_local); + return *this; + } + + const char *const ext = cimg::split_filename(filename); + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + bool is_loaded = true; + try { +#ifdef cimg_load_plugin + cimg_load_plugin(filename); +#endif +#ifdef cimg_load_plugin1 + cimg_load_plugin1(filename); +#endif +#ifdef cimg_load_plugin2 + cimg_load_plugin2(filename); +#endif +#ifdef cimg_load_plugin3 + cimg_load_plugin3(filename); +#endif +#ifdef cimg_load_plugin4 + cimg_load_plugin4(filename); +#endif +#ifdef cimg_load_plugin5 + cimg_load_plugin5(filename); +#endif +#ifdef cimg_load_plugin6 + cimg_load_plugin6(filename); +#endif +#ifdef cimg_load_plugin7 + cimg_load_plugin7(filename); +#endif +#ifdef cimg_load_plugin8 + cimg_load_plugin8(filename); +#endif + // Ascii formats + if (!cimg::strcasecmp(ext,"asc")) load_ascii(filename); + else if (!cimg::strcasecmp(ext,"dlm") || + !cimg::strcasecmp(ext,"txt")) load_dlm(filename); + + // 2d binary formats + else if (!cimg::strcasecmp(ext,"bmp")) load_bmp(filename); + else if (!cimg::strcasecmp(ext,"jpg") || + !cimg::strcasecmp(ext,"jpeg") || + !cimg::strcasecmp(ext,"jpe") || + !cimg::strcasecmp(ext,"jfif") || + !cimg::strcasecmp(ext,"jif")) load_jpeg(filename); + else if (!cimg::strcasecmp(ext,"png")) load_png(filename); + else if (!cimg::strcasecmp(ext,"ppm") || + !cimg::strcasecmp(ext,"pgm") || + !cimg::strcasecmp(ext,"pnm") || + !cimg::strcasecmp(ext,"pbm") || + !cimg::strcasecmp(ext,"pnk")) load_pnm(filename); + else if (!cimg::strcasecmp(ext,"pfm")) load_pfm(filename); + else if (!cimg::strcasecmp(ext,"tif") || + !cimg::strcasecmp(ext,"tiff")) load_tiff(filename); + else if (!cimg::strcasecmp(ext,"exr")) load_exr(filename); + else if (!cimg::strcasecmp(ext,"cr2") || + !cimg::strcasecmp(ext,"crw") || + !cimg::strcasecmp(ext,"dcr") || + !cimg::strcasecmp(ext,"mrw") || + !cimg::strcasecmp(ext,"nef") || + !cimg::strcasecmp(ext,"orf") || + !cimg::strcasecmp(ext,"pix") || + !cimg::strcasecmp(ext,"ptx") || + !cimg::strcasecmp(ext,"raf") || + !cimg::strcasecmp(ext,"srf")) load_dcraw_external(filename); + else if (!cimg::strcasecmp(ext,"gif")) load_gif_external(filename); + + // 3d binary formats + else if (!cimg::strcasecmp(ext,"dcm") || + !cimg::strcasecmp(ext,"dicom")) load_medcon_external(filename); + else if (!cimg::strcasecmp(ext,"hdr") || + !cimg::strcasecmp(ext,"nii")) load_analyze(filename); + else if (!cimg::strcasecmp(ext,"par") || + !cimg::strcasecmp(ext,"rec")) load_parrec(filename); + else if (!cimg::strcasecmp(ext,"mnc")) load_minc2(filename); + else if (!cimg::strcasecmp(ext,"inr")) load_inr(filename); + else if (!cimg::strcasecmp(ext,"pan")) load_pandore(filename); + else if (!cimg::strcasecmp(ext,"cimg") || + !cimg::strcasecmp(ext,"cimgz") || + !*ext) return load_cimg(filename); + + // Archive files + else if (!cimg::strcasecmp(ext,"gz")) load_gzip_external(filename); + + // Image sequences + else if (!cimg::strcasecmp(ext,"avi") || + !cimg::strcasecmp(ext,"mov") || + !cimg::strcasecmp(ext,"asf") || + !cimg::strcasecmp(ext,"divx") || + !cimg::strcasecmp(ext,"flv") || + !cimg::strcasecmp(ext,"mpg") || + !cimg::strcasecmp(ext,"m1v") || + !cimg::strcasecmp(ext,"m2v") || + !cimg::strcasecmp(ext,"m4v") || + !cimg::strcasecmp(ext,"mjp") || + !cimg::strcasecmp(ext,"mp4") || + !cimg::strcasecmp(ext,"mkv") || + !cimg::strcasecmp(ext,"mpe") || + !cimg::strcasecmp(ext,"movie") || + !cimg::strcasecmp(ext,"ogm") || + !cimg::strcasecmp(ext,"ogg") || + !cimg::strcasecmp(ext,"ogv") || + !cimg::strcasecmp(ext,"qt") || + !cimg::strcasecmp(ext,"rm") || + !cimg::strcasecmp(ext,"vob") || + !cimg::strcasecmp(ext,"wmv") || + !cimg::strcasecmp(ext,"xvid") || + !cimg::strcasecmp(ext,"mpeg")) load_video(filename); + else is_loaded = false; + } catch (CImgIOException&) { is_loaded = false; } + + // If nothing loaded, try to guess file format from magic number in file. + if (!is_loaded) { + std::FILE *file = std_fopen(filename,"rb"); + if (!file) { + cimg::exception_mode(omode); + throw CImgIOException(_cimg_instance + "load(): Failed to open file '%s'.", + cimg_instance, + filename); + } + + const char *const f_type = cimg::ftype(file,filename); + std::fclose(file); + is_loaded = true; + try { + if (!cimg::strcasecmp(f_type,"pnm")) load_pnm(filename); + else if (!cimg::strcasecmp(f_type,"pfm")) load_pfm(filename); + else if (!cimg::strcasecmp(f_type,"bmp")) load_bmp(filename); + else if (!cimg::strcasecmp(f_type,"inr")) load_inr(filename); + else if (!cimg::strcasecmp(f_type,"jpg")) load_jpeg(filename); + else if (!cimg::strcasecmp(f_type,"pan")) load_pandore(filename); + else if (!cimg::strcasecmp(f_type,"png")) load_png(filename); + else if (!cimg::strcasecmp(f_type,"tif")) load_tiff(filename); + else if (!cimg::strcasecmp(f_type,"gif")) load_gif_external(filename); + else if (!cimg::strcasecmp(f_type,"dcm")) load_medcon_external(filename); + else is_loaded = false; + } catch (CImgIOException&) { is_loaded = false; } + } + + // If nothing loaded, try to load file with other means. + if (!is_loaded) { + try { + load_other(filename); + } catch (CImgIOException&) { + cimg::exception_mode(omode); + throw CImgIOException(_cimg_instance + "load(): Failed to recognize format of file '%s'.", + cimg_instance, + filename); + } + } + cimg::exception_mode(omode); + return *this; + } + + //! Load image from a file \newinstance. + static CImg get_load(const char *const filename) { + return CImg().load(filename); + } + + //! Load image from an ascii file. + /** + \param filename Filename, as a C -string. + **/ + CImg& load_ascii(const char *const filename) { + return _load_ascii(0,filename); + } + + //! Load image from an ascii file \inplace. + static CImg get_load_ascii(const char *const filename) { + return CImg().load_ascii(filename); + } + + //! Load image from an ascii file \overloading. + CImg& load_ascii(std::FILE *const file) { + return _load_ascii(file,0); + } + + //! Loadimage from an ascii file \newinstance. + static CImg get_load_ascii(std::FILE *const file) { + return CImg().load_ascii(file); + } + + CImg& _load_ascii(std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_ascii(): Specified filename is (null).", + cimg_instance); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + CImg line(256); *line = 0; + int err = std::fscanf(nfile,"%255[^\n]",line._data); + unsigned int dx = 0, dy = 1, dz = 1, dc = 1; + cimg_sscanf(line,"%u%*c%u%*c%u%*c%u",&dx,&dy,&dz,&dc); + err = std::fscanf(nfile,"%*[^0-9.eEinfa+-]"); + if (!dx || !dy || !dz || !dc) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_ascii(): Invalid ascii header in file '%s', image dimensions are set " + "to (%u,%u,%u,%u).", + cimg_instance, + filename?filename:"(FILE*)",dx,dy,dz,dc); + } + assign(dx,dy,dz,dc); + const ulongT siz = size(); + ulongT off = 0; + double val; + T *ptr = _data; + for (err = 1, off = 0; off& load_dlm(const char *const filename) { + return _load_dlm(0,filename); + } + + //! Load image from a DLM file \newinstance. + static CImg get_load_dlm(const char *const filename) { + return CImg().load_dlm(filename); + } + + //! Load image from a DLM file \overloading. + CImg& load_dlm(std::FILE *const file) { + return _load_dlm(file,0); + } + + //! Load image from a DLM file \newinstance. + static CImg get_load_dlm(std::FILE *const file) { + return CImg().load_dlm(file); + } + + CImg& _load_dlm(std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_dlm(): Specified filename is (null).", + cimg_instance); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"r"); + CImg delimiter(256), tmp(256); *delimiter = *tmp = 0; + unsigned int cdx = 0, dx = 0, dy = 0; + int err = 0; + double val; + assign(256,256,1,1,(T)0); + while ((err = std::fscanf(nfile,"%lf%255[^0-9eEinfa.+-]",&val,delimiter._data))>0) { + if (err>0) (*this)(cdx++,dy) = (T)val; + if (cdx>=_width) resize(3*_width/2,_height,1,1,0); + char c = 0; + if (!cimg_sscanf(delimiter,"%255[^\n]%c",tmp._data,&c) || c=='\n') { + dx = std::max(cdx,dx); + if (++dy>=_height) resize(_width,3*_height/2,1,1,0); + cdx = 0; + } + } + if (cdx && err==1) { dx = cdx; ++dy; } + if (!dx || !dy) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_dlm(): Invalid DLM file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + resize(dx,dy,1,1,0); + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image from a BMP file. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_bmp(const char *const filename) { + return _load_bmp(0,filename); + } + + //! Load image from a BMP file \newinstance. + static CImg get_load_bmp(const char *const filename) { + return CImg().load_bmp(filename); + } + + //! Load image from a BMP file \overloading. + CImg& load_bmp(std::FILE *const file) { + return _load_bmp(file,0); + } + + //! Load image from a BMP file \newinstance. + static CImg get_load_bmp(std::FILE *const file) { + return CImg().load_bmp(file); + } + + CImg& _load_bmp(std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_bmp(): Specified filename is (null).", + cimg_instance); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + CImg header(54); + cimg::fread(header._data,54,nfile); + if (*header!='B' || header[1]!='M') { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_bmp(): Invalid BMP file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + + // Read header and pixel buffer + int + file_size = header[0x02] + (header[0x03]<<8) + (header[0x04]<<16) + (header[0x05]<<24), + offset = header[0x0A] + (header[0x0B]<<8) + (header[0x0C]<<16) + (header[0x0D]<<24), + header_size = header[0x0E] + (header[0x0F]<<8) + (header[0x10]<<16) + (header[0x11]<<24), + dx = header[0x12] + (header[0x13]<<8) + (header[0x14]<<16) + (header[0x15]<<24), + dy = header[0x16] + (header[0x17]<<8) + (header[0x18]<<16) + (header[0x19]<<24), + compression = header[0x1E] + (header[0x1F]<<8) + (header[0x20]<<16) + (header[0x21]<<24), + nb_colors = header[0x2E] + (header[0x2F]<<8) + (header[0x30]<<16) + (header[0x31]<<24), + bpp = header[0x1C] + (header[0x1D]<<8); + + if (!file_size || file_size==offset) { + cimg::fseek(nfile,0,SEEK_END); + file_size = (int)cimg::ftell(nfile); + cimg::fseek(nfile,54,SEEK_SET); + } + if (header_size>40) cimg::fseek(nfile,header_size - 40,SEEK_CUR); + + const int + dx_bytes = (bpp==1)?(dx/8 + (dx%8?1:0)):((bpp==4)?(dx/2 + (dx%2)):(dx*bpp/8)), + align_bytes = (4 - dx_bytes%4)%4; + const longT + cimg_iobuffer = (longT)24*1024*1024, + buf_size = std::min((longT)cimg::abs(dy)*(dx_bytes + align_bytes),(longT)file_size - offset); + + CImg colormap; + if (bpp<16) { if (!nb_colors) nb_colors = 1<0) cimg::fseek(nfile,xoffset,SEEK_CUR); + + CImg buffer; + if (buf_size=0; --y) { + if (buf_size>=cimg_iobuffer) { + cimg::fread(ptrs=buffer._data,dx_bytes,nfile); + cimg::fseek(nfile,align_bytes,SEEK_CUR); + } + unsigned char mask = 0x80, val = 0; + cimg_forX(*this,x) { + if (mask==0x80) val = *(ptrs++); + const unsigned char *col = (unsigned char*)(colormap._data + (val&mask?1:0)); + (*this)(x,y,2) = (T)*(col++); + (*this)(x,y,1) = (T)*(col++); + (*this)(x,y,0) = (T)*(col++); + mask = cimg::ror(mask); + } + ptrs+=align_bytes; + } + } break; + case 4 : { // 16 colors + for (int y = height() - 1; y>=0; --y) { + if (buf_size>=cimg_iobuffer) { + cimg::fread(ptrs=buffer._data,dx_bytes,nfile); + cimg::fseek(nfile,align_bytes,SEEK_CUR); + } + unsigned char mask = 0xF0, val = 0; + cimg_forX(*this,x) { + if (mask==0xF0) val = *(ptrs++); + const unsigned char color = (unsigned char)((mask<16)?(val&mask):((val&mask)>>4)); + const unsigned char *col = (unsigned char*)(colormap._data + color); + (*this)(x,y,2) = (T)*(col++); + (*this)(x,y,1) = (T)*(col++); + (*this)(x,y,0) = (T)*(col++); + mask = cimg::ror(mask,4); + } + ptrs+=align_bytes; + } + } break; + case 8 : { // 256 colors + for (int y = height() - 1; y>=0; --y) { + if (buf_size>=cimg_iobuffer) { + cimg::fread(ptrs=buffer._data,dx_bytes,nfile); + cimg::fseek(nfile,align_bytes,SEEK_CUR); + } + cimg_forX(*this,x) { + const unsigned char *col = (unsigned char*)(colormap._data + *(ptrs++)); + (*this)(x,y,2) = (T)*(col++); + (*this)(x,y,1) = (T)*(col++); + (*this)(x,y,0) = (T)*(col++); + } + ptrs+=align_bytes; + } + } break; + case 16 : { // 16 bits colors + for (int y = height() - 1; y>=0; --y) { + if (buf_size>=cimg_iobuffer) { + cimg::fread(ptrs=buffer._data,dx_bytes,nfile); + cimg::fseek(nfile,align_bytes,SEEK_CUR); + } + cimg_forX(*this,x) { + const unsigned char c1 = *(ptrs++), c2 = *(ptrs++); + const unsigned short col = (unsigned short)(c1|(c2<<8)); + (*this)(x,y,2) = (T)(col&0x1F); + (*this)(x,y,1) = (T)((col>>5)&0x1F); + (*this)(x,y,0) = (T)((col>>10)&0x1F); + } + ptrs+=align_bytes; + } + } break; + case 24 : { // 24 bits colors + for (int y = height() - 1; y>=0; --y) { + if (buf_size>=cimg_iobuffer) { + cimg::fread(ptrs=buffer._data,dx_bytes,nfile); + cimg::fseek(nfile,align_bytes,SEEK_CUR); + } + cimg_forX(*this,x) { + (*this)(x,y,2) = (T)*(ptrs++); + (*this)(x,y,1) = (T)*(ptrs++); + (*this)(x,y,0) = (T)*(ptrs++); + } + ptrs+=align_bytes; + } + } break; + case 32 : { // 32 bits colors + for (int y = height() - 1; y>=0; --y) { + if (buf_size>=cimg_iobuffer) { + cimg::fread(ptrs=buffer._data,dx_bytes,nfile); + cimg::fseek(nfile,align_bytes,SEEK_CUR); + } + cimg_forX(*this,x) { + (*this)(x,y,2) = (T)*(ptrs++); + (*this)(x,y,1) = (T)*(ptrs++); + (*this)(x,y,0) = (T)*(ptrs++); + ++ptrs; + } + ptrs+=align_bytes; + } + } break; + } + if (dy<0) mirror('y'); + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image from a JPEG file. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_jpeg(const char *const filename) { + return _load_jpeg(0,filename); + } + + //! Load image from a JPEG file \newinstance. + static CImg get_load_jpeg(const char *const filename) { + return CImg().load_jpeg(filename); + } + + //! Load image from a JPEG file \overloading. + CImg& load_jpeg(std::FILE *const file) { + return _load_jpeg(file,0); + } + + //! Load image from a JPEG file \newinstance. + static CImg get_load_jpeg(std::FILE *const file) { + return CImg().load_jpeg(file); + } + + // Custom error handler for libjpeg. +#ifdef cimg_use_jpeg + struct _cimg_error_mgr { + struct jpeg_error_mgr original; + jmp_buf setjmp_buffer; + char message[JMSG_LENGTH_MAX]; + }; + + typedef struct _cimg_error_mgr *_cimg_error_ptr; + + METHODDEF(void) _cimg_jpeg_error_exit(j_common_ptr cinfo) { + _cimg_error_ptr c_err = (_cimg_error_ptr) cinfo->err; // Return control to the setjmp point + (*cinfo->err->format_message)(cinfo,c_err->message); + jpeg_destroy(cinfo); // Clean memory and temp files. + longjmp(c_err->setjmp_buffer,1); + } +#endif + + CImg& _load_jpeg(std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_jpeg(): Specified filename is (null).", + cimg_instance); + +#ifndef cimg_use_jpeg + if (file) + throw CImgIOException(_cimg_instance + "load_jpeg(): Unable to load data from '(FILE*)' unless libjpeg is enabled.", + cimg_instance); + else return load_other(filename); +#else + + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + struct jpeg_decompress_struct cinfo; + struct _cimg_error_mgr jerr; + cinfo.err = jpeg_std_error(&jerr.original); + jerr.original.error_exit = _cimg_jpeg_error_exit; + if (setjmp(jerr.setjmp_buffer)) { // JPEG error + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_jpeg(): Error message returned by libjpeg: %s.", + cimg_instance,jerr.message); + } + + jpeg_create_decompress(&cinfo); + jpeg_stdio_src(&cinfo,nfile); + jpeg_read_header(&cinfo,TRUE); + jpeg_start_decompress(&cinfo); + + if (cinfo.output_components!=1 && cinfo.output_components!=3 && cinfo.output_components!=4) { + if (!file) { + cimg::fclose(nfile); + return load_other(filename); + } else + throw CImgIOException(_cimg_instance + "load_jpeg(): Failed to load JPEG data from file '%s'.", + cimg_instance,filename?filename:"(FILE*)"); + } + CImg buffer(cinfo.output_width*cinfo.output_components); + JSAMPROW row_pointer[1]; + try { assign(cinfo.output_width,cinfo.output_height,1,cinfo.output_components); } + catch (...) { if (!file) cimg::fclose(nfile); throw; } + T *ptr_r = _data, *ptr_g = _data + 1UL*_width*_height, *ptr_b = _data + 2UL*_width*_height, + *ptr_a = _data + 3UL*_width*_height; + while (cinfo.output_scanline + // This is experimental code, not much tested, use with care. + CImg& load_magick(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_magick(): Specified filename is (null).", + cimg_instance); +#ifdef cimg_use_magick + Magick::Image image(filename); + const unsigned int W = image.size().width(), H = image.size().height(); + switch (image.type()) { + case Magick::PaletteMatteType : + case Magick::TrueColorMatteType : + case Magick::ColorSeparationType : { + assign(W,H,1,4); + T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2), *ptr_a = data(0,0,0,3); + Magick::PixelPacket *pixels = image.getPixels(0,0,W,H); + for (ulongT off = (ulongT)W*H; off; --off) { + *(ptr_r++) = (T)(pixels->red); + *(ptr_g++) = (T)(pixels->green); + *(ptr_b++) = (T)(pixels->blue); + *(ptr_a++) = (T)(pixels->opacity); + ++pixels; + } + } break; + case Magick::PaletteType : + case Magick::TrueColorType : { + assign(W,H,1,3); + T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2); + Magick::PixelPacket *pixels = image.getPixels(0,0,W,H); + for (ulongT off = (ulongT)W*H; off; --off) { + *(ptr_r++) = (T)(pixels->red); + *(ptr_g++) = (T)(pixels->green); + *(ptr_b++) = (T)(pixels->blue); + ++pixels; + } + } break; + case Magick::GrayscaleMatteType : { + assign(W,H,1,2); + T *ptr_r = data(0,0,0,0), *ptr_a = data(0,0,0,1); + Magick::PixelPacket *pixels = image.getPixels(0,0,W,H); + for (ulongT off = (ulongT)W*H; off; --off) { + *(ptr_r++) = (T)(pixels->red); + *(ptr_a++) = (T)(pixels->opacity); + ++pixels; + } + } break; + default : { + assign(W,H,1,1); + T *ptr_r = data(0,0,0,0); + Magick::PixelPacket *pixels = image.getPixels(0,0,W,H); + for (ulongT off = (ulongT)W*H; off; --off) { + *(ptr_r++) = (T)(pixels->red); + ++pixels; + } + } + } + return *this; +#else + throw CImgIOException(_cimg_instance + "load_magick(): Unable to load file '%s' unless libMagick++ is enabled.", + cimg_instance, + filename); +#endif + } + + //! Load image from a file, using Magick++ library \newinstance. + static CImg get_load_magick(const char *const filename) { + return CImg().load_magick(filename); + } + + //! Load image from a PNG file. + /** + \param filename Filename, as a C-string. + \param[out] bits_per_pixel Number of bits per pixels used to store pixel values in the image file. + **/ + CImg& load_png(const char *const filename, unsigned int *const bits_per_pixel=0) { + return _load_png(0,filename,bits_per_pixel); + } + + //! Load image from a PNG file \newinstance. + static CImg get_load_png(const char *const filename, unsigned int *const bits_per_pixel=0) { + return CImg().load_png(filename,bits_per_pixel); + } + + //! Load image from a PNG file \overloading. + CImg& load_png(std::FILE *const file, unsigned int *const bits_per_pixel=0) { + return _load_png(file,0,bits_per_pixel); + } + + //! Load image from a PNG file \newinstance. + static CImg get_load_png(std::FILE *const file, unsigned int *const bits_per_pixel=0) { + return CImg().load_png(file,bits_per_pixel); + } + + // (Note: Most of this function has been written by Eric Fausett) + CImg& _load_png(std::FILE *const file, const char *const filename, unsigned int *const bits_per_pixel) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_png(): Specified filename is (null).", + cimg_instance); + +#ifndef cimg_use_png + cimg::unused(bits_per_pixel); + if (file) + throw CImgIOException(_cimg_instance + "load_png(): Unable to load data from '(FILE*)' unless libpng is enabled.", + cimg_instance); + + else return load_other(filename); +#else + // Open file and check for PNG validity +#if defined __GNUC__ + const char *volatile nfilename = filename; // Use 'volatile' to avoid (wrong) g++ warning. + std::FILE *volatile nfile = file?file:cimg::fopen(nfilename,"rb"); +#else + const char *nfilename = filename; + std::FILE *nfile = file?file:cimg::fopen(nfilename,"rb"); +#endif + unsigned char pngCheck[8] = { 0 }; + cimg::fread(pngCheck,8,(std::FILE*)nfile); + if (png_sig_cmp(pngCheck,0,8)) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_png(): Invalid PNG file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + + // Setup PNG structures for read + png_voidp user_error_ptr = 0; + png_error_ptr user_error_fn = 0, user_warning_fn = 0; + png_structp png_ptr = png_create_read_struct(PNG_LIBPNG_VER_STRING,user_error_ptr,user_error_fn,user_warning_fn); + if (!png_ptr) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_png(): Failed to initialize 'png_ptr' structure for file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + png_infop info_ptr = png_create_info_struct(png_ptr); + if (!info_ptr) { + if (!file) cimg::fclose(nfile); + png_destroy_read_struct(&png_ptr,(png_infopp)0,(png_infopp)0); + throw CImgIOException(_cimg_instance + "load_png(): Failed to initialize 'info_ptr' structure for file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + png_infop end_info = png_create_info_struct(png_ptr); + if (!end_info) { + if (!file) cimg::fclose(nfile); + png_destroy_read_struct(&png_ptr,&info_ptr,(png_infopp)0); + throw CImgIOException(_cimg_instance + "load_png(): Failed to initialize 'end_info' structure for file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + + // Error handling callback for png file reading + if (setjmp(png_jmpbuf(png_ptr))) { + if (!file) cimg::fclose((std::FILE*)nfile); + png_destroy_read_struct(&png_ptr, &end_info, (png_infopp)0); + throw CImgIOException(_cimg_instance + "load_png(): Encountered unknown fatal error in libpng for file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + png_init_io(png_ptr, nfile); + png_set_sig_bytes(png_ptr, 8); + + // Get PNG Header Info up to data block + png_read_info(png_ptr,info_ptr); + png_uint_32 W, H; + int bit_depth, color_type, interlace_type; + bool is_gray = false; + png_get_IHDR(png_ptr,info_ptr,&W,&H,&bit_depth,&color_type,&interlace_type,(int*)0,(int*)0); + if (bits_per_pixel) *bits_per_pixel = (unsigned int)bit_depth; + + // Transforms to unify image data + if (color_type==PNG_COLOR_TYPE_PALETTE) { + png_set_palette_to_rgb(png_ptr); + color_type = PNG_COLOR_TYPE_RGB; + bit_depth = 8; + } + if (color_type==PNG_COLOR_TYPE_GRAY && bit_depth<8) { + png_set_expand_gray_1_2_4_to_8(png_ptr); + is_gray = true; + bit_depth = 8; + } + if (png_get_valid(png_ptr,info_ptr,PNG_INFO_tRNS)) { + png_set_tRNS_to_alpha(png_ptr); + color_type |= PNG_COLOR_MASK_ALPHA; + } + if (color_type==PNG_COLOR_TYPE_GRAY || color_type==PNG_COLOR_TYPE_GRAY_ALPHA) { + png_set_gray_to_rgb(png_ptr); + color_type |= PNG_COLOR_MASK_COLOR; + is_gray = true; + } + if (color_type==PNG_COLOR_TYPE_RGB) + png_set_filler(png_ptr,0xffffU,PNG_FILLER_AFTER); + + png_read_update_info(png_ptr,info_ptr); + if (bit_depth!=8 && bit_depth!=16) { + if (!file) cimg::fclose(nfile); + png_destroy_read_struct(&png_ptr,&end_info,(png_infopp)0); + throw CImgIOException(_cimg_instance + "load_png(): Invalid bit depth %u in file '%s'.", + cimg_instance, + bit_depth,nfilename?nfilename:"(FILE*)"); + } + const int byte_depth = bit_depth>>3; + + // Allocate Memory for Image Read + png_bytep *const imgData = new png_bytep[H]; + for (unsigned int row = 0; row& load_pnm(const char *const filename) { + return _load_pnm(0,filename); + } + + //! Load image from a PNM file \newinstance. + static CImg get_load_pnm(const char *const filename) { + return CImg().load_pnm(filename); + } + + //! Load image from a PNM file \overloading. + CImg& load_pnm(std::FILE *const file) { + return _load_pnm(file,0); + } + + //! Load image from a PNM file \newinstance. + static CImg get_load_pnm(std::FILE *const file) { + return CImg().load_pnm(file); + } + + CImg& _load_pnm(std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_pnm(): Specified filename is (null).", + cimg_instance); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + unsigned int ppm_type, W, H, D = 1, colormax = 255; + CImg item(16384,1,1,1,0); + int err, rval, gval, bval; + const longT cimg_iobuffer = (longT)24*1024*1024; + while ((err=std::fscanf(nfile,"%16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile); + if (cimg_sscanf(item," P%u",&ppm_type)!=1) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_pnm(): PNM header not found in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + while ((err=std::fscanf(nfile," %16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile); + if ((err=cimg_sscanf(item," %u %u %u %u",&W,&H,&D,&colormax))<2) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_pnm(): WIDTH and HEIGHT fields undefined in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + if (ppm_type!=1 && ppm_type!=4) { + if (err==2 || (err==3 && (ppm_type==5 || ppm_type==7 || ppm_type==8 || ppm_type==9))) { + while ((err=std::fscanf(nfile," %16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile); + if (cimg_sscanf(item,"%u",&colormax)!=1) + cimg::warn(_cimg_instance + "load_pnm(): COLORMAX field is undefined in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } else { colormax = D; D = 1; } + } + std::fgetc(nfile); + + switch (ppm_type) { + case 1 : { // 2d b&w ascii. + assign(W,H,1,1); + T* ptrd = _data; + cimg_foroff(*this,off) { if (std::fscanf(nfile,"%d",&rval)>0) *(ptrd++) = (T)(rval?0:255); else break; } + } break; + case 2 : { // 2d grey ascii. + assign(W,H,1,1); + T* ptrd = _data; + cimg_foroff(*this,off) { if (std::fscanf(nfile,"%d",&rval)>0) *(ptrd++) = (T)rval; else break; } + } break; + case 3 : { // 2d color ascii. + assign(W,H,1,3); + T *ptrd = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2); + cimg_forXY(*this,x,y) { + if (std::fscanf(nfile,"%d %d %d",&rval,&gval,&bval)==3) { + *(ptrd++) = (T)rval; *(ptr_g++) = (T)gval; *(ptr_b++) = (T)bval; + } else break; + } + } break; + case 4 : { // 2d b&w binary (support 3D PINK extension). + CImg raw; + assign(W,H,D,1); + T *ptrd = data(0,0,0,0); + unsigned int w = 0, h = 0, d = 0; + for (longT to_read = (longT)((W/8 + (W%8?1:0))*H*D); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer)); + cimg::fread(raw._data,raw._width,nfile); + to_read-=raw._width; + const unsigned char *ptrs = raw._data; + unsigned char mask = 0, val = 0; + for (ulongT off = (ulongT)raw._width; off || mask; mask>>=1) { + if (!mask) { if (off--) val = *(ptrs++); mask = 128; } + *(ptrd++) = (T)((val&mask)?0:255); + if (++w==W) { w = 0; mask = 0; if (++h==H) { h = 0; if (++d==D) break; }} + } + } + } break; + case 5 : case 7 : { // 2d/3d grey binary (support 3D PINK extension). + if (colormax<256) { // 8 bits. + CImg raw; + assign(W,H,D,1); + T *ptrd = data(0,0,0,0); + for (longT to_read = (longT)size(); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer)); + cimg::fread(raw._data,raw._width,nfile); + to_read-=raw._width; + const unsigned char *ptrs = raw._data; + for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T)*(ptrs++); + } + } else { // 16 bits. + CImg raw; + assign(W,H,D,1); + T *ptrd = data(0,0,0,0); + for (longT to_read = (longT)size(); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer/2)); + cimg::fread(raw._data,raw._width,nfile); + if (!cimg::endianness()) cimg::invert_endianness(raw._data,raw._width); + to_read-=raw._width; + const unsigned short *ptrs = raw._data; + for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T)*(ptrs++); + } + } + } break; + case 6 : { // 2d color binary. + if (colormax<256) { // 8 bits. + CImg raw; + assign(W,H,1,3); + T + *ptr_r = data(0,0,0,0), + *ptr_g = data(0,0,0,1), + *ptr_b = data(0,0,0,2); + for (longT to_read = (longT)size(); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer)); + cimg::fread(raw._data,raw._width,nfile); + to_read-=raw._width; + const unsigned char *ptrs = raw._data; + for (ulongT off = (ulongT)raw._width/3; off; --off) { + *(ptr_r++) = (T)*(ptrs++); + *(ptr_g++) = (T)*(ptrs++); + *(ptr_b++) = (T)*(ptrs++); + } + } + } else { // 16 bits. + CImg raw; + assign(W,H,1,3); + T + *ptr_r = data(0,0,0,0), + *ptr_g = data(0,0,0,1), + *ptr_b = data(0,0,0,2); + for (longT to_read = (longT)size(); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer/2)); + cimg::fread(raw._data,raw._width,nfile); + if (!cimg::endianness()) cimg::invert_endianness(raw._data,raw._width); + to_read-=raw._width; + const unsigned short *ptrs = raw._data; + for (ulongT off = (ulongT)raw._width/3; off; --off) { + *(ptr_r++) = (T)*(ptrs++); + *(ptr_g++) = (T)*(ptrs++); + *(ptr_b++) = (T)*(ptrs++); + } + } + } + } break; + case 8 : { // 2d/3d grey binary with int32 integers (PINK extension). + CImg raw; + assign(W,H,D,1); + T *ptrd = data(0,0,0,0); + for (longT to_read = (longT)size(); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer)); + cimg::fread(raw._data,raw._width,nfile); + to_read-=raw._width; + const int *ptrs = raw._data; + for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T)*(ptrs++); + } + } break; + case 9 : { // 2d/3d grey binary with float values (PINK extension). + CImg raw; + assign(W,H,D,1); + T *ptrd = data(0,0,0,0); + for (longT to_read = (longT)size(); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer)); + cimg::fread(raw._data,raw._width,nfile); + to_read-=raw._width; + const float *ptrs = raw._data; + for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T)*(ptrs++); + } + } break; + default : + assign(); + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_pnm(): PNM type 'P%d' found, but type is not supported.", + cimg_instance, + filename?filename:"(FILE*)",ppm_type); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image from a PFM file. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_pfm(const char *const filename) { + return _load_pfm(0,filename); + } + + //! Load image from a PFM file \newinstance. + static CImg get_load_pfm(const char *const filename) { + return CImg().load_pfm(filename); + } + + //! Load image from a PFM file \overloading. + CImg& load_pfm(std::FILE *const file) { + return _load_pfm(file,0); + } + + //! Load image from a PFM file \newinstance. + static CImg get_load_pfm(std::FILE *const file) { + return CImg().load_pfm(file); + } + + CImg& _load_pfm(std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_pfm(): Specified filename is (null).", + cimg_instance); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + char pfm_type; + CImg item(16384,1,1,1,0); + int W = 0, H = 0, err = 0; + double scale = 0; + while ((err=std::fscanf(nfile,"%16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile); + if (cimg_sscanf(item," P%c",&pfm_type)!=1) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_pfm(): PFM header not found in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + while ((err=std::fscanf(nfile," %16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile); + if ((err=cimg_sscanf(item," %d %d",&W,&H))<2) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_pfm(): WIDTH and HEIGHT fields are undefined in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + if (err==2) { + while ((err=std::fscanf(nfile," %16383[^\n]",item.data()))!=EOF && (*item=='#' || !err)) std::fgetc(nfile); + if (cimg_sscanf(item,"%lf",&scale)!=1) + cimg::warn(_cimg_instance + "load_pfm(): SCALE field is undefined in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + std::fgetc(nfile); + const bool is_color = (pfm_type=='F'), is_inverted = (scale>0)!=cimg::endianness(); + if (is_color) { + assign(W,H,1,3,(T)0); + CImg buf(3*W); + T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2); + cimg_forY(*this,y) { + cimg::fread(buf._data,3*W,nfile); + if (is_inverted) cimg::invert_endianness(buf._data,3*W); + const float *ptrs = buf._data; + cimg_forX(*this,x) { + *(ptr_r++) = (T)*(ptrs++); + *(ptr_g++) = (T)*(ptrs++); + *(ptr_b++) = (T)*(ptrs++); + } + } + } else { + assign(W,H,1,1,(T)0); + CImg buf(W); + T *ptrd = data(0,0,0,0); + cimg_forY(*this,y) { + cimg::fread(buf._data,W,nfile); + if (is_inverted) cimg::invert_endianness(buf._data,W); + const float *ptrs = buf._data; + cimg_forX(*this,x) *(ptrd++) = (T)*(ptrs++); + } + } + if (!file) cimg::fclose(nfile); + return mirror('y'); // Most of the .pfm files are flipped along the y-axis. + } + + //! Load image from a RGB file. + /** + \param filename Filename, as a C-string. + \param dimw Width of the image buffer. + \param dimh Height of the image buffer. + **/ + CImg& load_rgb(const char *const filename, const unsigned int dimw, const unsigned int dimh=1) { + return _load_rgb(0,filename,dimw,dimh); + } + + //! Load image from a RGB file \newinstance. + static CImg get_load_rgb(const char *const filename, const unsigned int dimw, const unsigned int dimh=1) { + return CImg().load_rgb(filename,dimw,dimh); + } + + //! Load image from a RGB file \overloading. + CImg& load_rgb(std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1) { + return _load_rgb(file,0,dimw,dimh); + } + + //! Load image from a RGB file \newinstance. + static CImg get_load_rgb(std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1) { + return CImg().load_rgb(file,dimw,dimh); + } + + CImg& _load_rgb(std::FILE *const file, const char *const filename, + const unsigned int dimw, const unsigned int dimh) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_rgb(): Specified filename is (null).", + cimg_instance); + + if (!dimw || !dimh) return assign(); + const longT cimg_iobuffer = (longT)24*1024*1024; + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + CImg raw; + assign(dimw,dimh,1,3); + T + *ptr_r = data(0,0,0,0), + *ptr_g = data(0,0,0,1), + *ptr_b = data(0,0,0,2); + for (longT to_read = (longT)size(); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer)); + cimg::fread(raw._data,raw._width,nfile); + to_read-=raw._width; + const unsigned char *ptrs = raw._data; + for (ulongT off = raw._width/3UL; off; --off) { + *(ptr_r++) = (T)*(ptrs++); + *(ptr_g++) = (T)*(ptrs++); + *(ptr_b++) = (T)*(ptrs++); + } + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image from a RGBA file. + /** + \param filename Filename, as a C-string. + \param dimw Width of the image buffer. + \param dimh Height of the image buffer. + **/ + CImg& load_rgba(const char *const filename, const unsigned int dimw, const unsigned int dimh=1) { + return _load_rgba(0,filename,dimw,dimh); + } + + //! Load image from a RGBA file \newinstance. + static CImg get_load_rgba(const char *const filename, const unsigned int dimw, const unsigned int dimh=1) { + return CImg().load_rgba(filename,dimw,dimh); + } + + //! Load image from a RGBA file \overloading. + CImg& load_rgba(std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1) { + return _load_rgba(file,0,dimw,dimh); + } + + //! Load image from a RGBA file \newinstance. + static CImg get_load_rgba(std::FILE *const file, const unsigned int dimw, const unsigned int dimh=1) { + return CImg().load_rgba(file,dimw,dimh); + } + + CImg& _load_rgba(std::FILE *const file, const char *const filename, + const unsigned int dimw, const unsigned int dimh) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_rgba(): Specified filename is (null).", + cimg_instance); + + if (!dimw || !dimh) return assign(); + const longT cimg_iobuffer = (longT)24*1024*1024; + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + CImg raw; + assign(dimw,dimh,1,4); + T + *ptr_r = data(0,0,0,0), + *ptr_g = data(0,0,0,1), + *ptr_b = data(0,0,0,2), + *ptr_a = data(0,0,0,3); + for (longT to_read = (longT)size(); to_read>0; ) { + raw.assign(std::min(to_read,cimg_iobuffer)); + cimg::fread(raw._data,raw._width,nfile); + to_read-=raw._width; + const unsigned char *ptrs = raw._data; + for (ulongT off = raw._width/4UL; off; --off) { + *(ptr_r++) = (T)*(ptrs++); + *(ptr_g++) = (T)*(ptrs++); + *(ptr_b++) = (T)*(ptrs++); + *(ptr_a++) = (T)*(ptrs++); + } + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image from a TIFF file. + /** + \param filename Filename, as a C-string. + \param first_frame First frame to read (for multi-pages tiff). + \param last_frame Last frame to read (for multi-pages tiff). + \param step_frame Step value of frame reading. + \param[out] voxel_size Voxel size, as stored in the filename. + \param[out] description Description, as stored in the filename. + \note + - libtiff support is enabled by defining the precompilation + directive \c cimg_use_tif. + - When libtiff is enabled, 2D and 3D (multipage) several + channel per pixel are supported for + char,uchar,short,ushort,float and \c double pixel types. + - If \c cimg_use_tif is not defined at compile time the + function uses CImg& load_other(const char*). + **/ + CImg& load_tiff(const char *const filename, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, + float *const voxel_size=0, + CImg *const description=0) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_tiff(): Specified filename is (null).", + cimg_instance); + + const unsigned int + nfirst_frame = first_frame1) + throw CImgArgumentException(_cimg_instance + "load_tiff(): Unable to read sub-images from file '%s' unless libtiff is enabled.", + cimg_instance, + filename); + return load_other(filename); +#else +#if cimg_verbosity<3 + TIFFSetWarningHandler(0); + TIFFSetErrorHandler(0); +#endif + TIFF *tif = TIFFOpen(filename,"r"); + if (tif) { + unsigned int nb_images = 0; + do ++nb_images; while (TIFFReadDirectory(tif)); + if (nfirst_frame>=nb_images || (nlast_frame!=~0U && nlast_frame>=nb_images)) + cimg::warn(_cimg_instance + "load_tiff(): File '%s' contains %u image(s) while specified frame range is [%u,%u] (step %u).", + cimg_instance, + filename,nb_images,nfirst_frame,nlast_frame,nstep_frame); + + if (nfirst_frame>=nb_images) return assign(); + if (nlast_frame>=nb_images) nlast_frame = nb_images - 1; + TIFFSetDirectory(tif,0); + CImg frame; + for (unsigned int l = nfirst_frame; l<=nlast_frame; l+=nstep_frame) { + frame._load_tiff(tif,l,voxel_size,description); + if (l==nfirst_frame) + assign(frame._width,frame._height,1 + (nlast_frame - nfirst_frame)/nstep_frame,frame._spectrum); + if (frame._width>_width || frame._height>_height || frame._spectrum>_spectrum) + resize(std::max(frame._width,_width), + std::max(frame._height,_height),-100, + std::max(frame._spectrum,_spectrum),0); + draw_image(0,0,(l - nfirst_frame)/nstep_frame,frame); + } + TIFFClose(tif); + } else throw CImgIOException(_cimg_instance + "load_tiff(): Failed to open file '%s'.", + cimg_instance, + filename); + return *this; +#endif + } + + //! Load image from a TIFF file \newinstance. + static CImg get_load_tiff(const char *const filename, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, + float *const voxel_size=0, + CImg *const description=0) { + return CImg().load_tiff(filename,first_frame,last_frame,step_frame,voxel_size,description); + } + + // (Original contribution by Jerome Boulanger). +#ifdef cimg_use_tiff + template + void _load_tiff_tiled_contig(TIFF *const tif, const uint16 samplesperpixel, + const uint32 nx, const uint32 ny, const uint32 tw, const uint32 th) { + t *const buf = (t*)_TIFFmalloc(TIFFTileSize(tif)); + if (buf) { + for (unsigned int row = 0; row + void _load_tiff_tiled_separate(TIFF *const tif, const uint16 samplesperpixel, + const uint32 nx, const uint32 ny, const uint32 tw, const uint32 th) { + t *const buf = (t*)_TIFFmalloc(TIFFTileSize(tif)); + if (buf) { + for (unsigned int vv = 0; vv + void _load_tiff_contig(TIFF *const tif, const uint16 samplesperpixel, const uint32 nx, const uint32 ny) { + t *const buf = (t*)_TIFFmalloc(TIFFStripSize(tif)); + if (buf) { + uint32 row, rowsperstrip = (uint32)-1; + TIFFGetField(tif,TIFFTAG_ROWSPERSTRIP,&rowsperstrip); + for (row = 0; rowny?ny - row:rowsperstrip); + tstrip_t strip = TIFFComputeStrip(tif, row, 0); + if ((TIFFReadEncodedStrip(tif,strip,buf,-1))<0) { + _TIFFfree(buf); TIFFClose(tif); + throw CImgIOException(_cimg_instance + "load_tiff(): Invalid strip in file '%s'.", + cimg_instance, + TIFFFileName(tif)); + } + const t *ptr = buf; + for (unsigned int rr = 0; rr + void _load_tiff_separate(TIFF *const tif, const uint16 samplesperpixel, const uint32 nx, const uint32 ny) { + t *buf = (t*)_TIFFmalloc(TIFFStripSize(tif)); + if (buf) { + uint32 row, rowsperstrip = (uint32)-1; + TIFFGetField(tif,TIFFTAG_ROWSPERSTRIP,&rowsperstrip); + for (unsigned int vv = 0; vvny?ny - row:rowsperstrip); + tstrip_t strip = TIFFComputeStrip(tif, row, vv); + if ((TIFFReadEncodedStrip(tif,strip,buf,-1))<0) { + _TIFFfree(buf); TIFFClose(tif); + throw CImgIOException(_cimg_instance + "load_tiff(): Invalid strip in file '%s'.", + cimg_instance, + TIFFFileName(tif)); + } + const t *ptr = buf; + for (unsigned int rr = 0;rr& _load_tiff(TIFF *const tif, const unsigned int directory, + float *const voxel_size, CImg *const description) { + if (!TIFFSetDirectory(tif,directory)) return assign(); + uint16 samplesperpixel = 1, bitspersample = 8, photo = 0; + uint16 sampleformat = 1; + uint32 nx = 1, ny = 1; + const char *const filename = TIFFFileName(tif); + const bool is_spp = (bool)TIFFGetField(tif,TIFFTAG_SAMPLESPERPIXEL,&samplesperpixel); + TIFFGetField(tif,TIFFTAG_IMAGEWIDTH,&nx); + TIFFGetField(tif,TIFFTAG_IMAGELENGTH,&ny); + TIFFGetField(tif, TIFFTAG_SAMPLEFORMAT, &sampleformat); + TIFFGetFieldDefaulted(tif,TIFFTAG_BITSPERSAMPLE,&bitspersample); + TIFFGetField(tif,TIFFTAG_PHOTOMETRIC,&photo); + if (voxel_size) { + const char *s_description = 0; + float vx = 0, vy = 0, vz = 0; + if (TIFFGetField(tif,TIFFTAG_IMAGEDESCRIPTION,&s_description) && s_description) { + const char *s_desc = std::strstr(s_description,"VX="); + if (s_desc && cimg_sscanf(s_desc,"VX=%f VY=%f VZ=%f",&vx,&vy,&vz)==3) { // CImg format. + voxel_size[0] = vx; voxel_size[1] = vy; voxel_size[2] = vz; + } + s_desc = std::strstr(s_description,"spacing="); + if (s_desc && cimg_sscanf(s_desc,"spacing=%f",&vz)==1) { // fiji format. + voxel_size[2] = vz; + } + } + TIFFGetField(tif,TIFFTAG_XRESOLUTION,voxel_size); + TIFFGetField(tif,TIFFTAG_YRESOLUTION,voxel_size + 1); + voxel_size[0] = 1.0f/voxel_size[0]; + voxel_size[1] = 1.0f/voxel_size[1]; + } + if (description) { + const char *s_description = 0; + if (TIFFGetField(tif,TIFFTAG_IMAGEDESCRIPTION,&s_description) && s_description) + CImg::string(s_description).move_to(*description); + } + const unsigned int spectrum = !is_spp || photo>=3?(photo>1?3:1):samplesperpixel; + assign(nx,ny,1,spectrum); + + if ((photo>=3 && sampleformat==1 && + (bitspersample==4 || bitspersample==8) && + (samplesperpixel==1 || samplesperpixel==3 || samplesperpixel==4)) || + (bitspersample==1 && samplesperpixel==1)) { + // Special case for unsigned color images. + uint32 *const raster = (uint32*)_TIFFmalloc(nx*ny*sizeof(uint32)); + if (!raster) { + _TIFFfree(raster); TIFFClose(tif); + throw CImgException(_cimg_instance + "load_tiff(): Failed to allocate memory (%s) for file '%s'.", + cimg_instance, + cimg::strbuffersize(nx*ny*sizeof(uint32)),filename); + } + TIFFReadRGBAImage(tif,nx,ny,raster,0); + switch (spectrum) { + case 1 : + cimg_forXY(*this,x,y) + (*this)(x,y,0) = (T)(float)TIFFGetR(raster[nx*(ny - 1 -y) + x]); + break; + case 3 : + cimg_forXY(*this,x,y) { + (*this)(x,y,0) = (T)(float)TIFFGetR(raster[nx*(ny - 1 -y) + x]); + (*this)(x,y,1) = (T)(float)TIFFGetG(raster[nx*(ny - 1 -y) + x]); + (*this)(x,y,2) = (T)(float)TIFFGetB(raster[nx*(ny - 1 -y) + x]); + } + break; + case 4 : + cimg_forXY(*this,x,y) { + (*this)(x,y,0) = (T)(float)TIFFGetR(raster[nx*(ny - 1 - y) + x]); + (*this)(x,y,1) = (T)(float)TIFFGetG(raster[nx*(ny - 1 - y) + x]); + (*this)(x,y,2) = (T)(float)TIFFGetB(raster[nx*(ny - 1 - y) + x]); + (*this)(x,y,3) = (T)(float)TIFFGetA(raster[nx*(ny - 1 - y) + x]); + } + break; + } + _TIFFfree(raster); + } else { // Other cases. + uint16 config; + TIFFGetField(tif,TIFFTAG_PLANARCONFIG,&config); + if (TIFFIsTiled(tif)) { + uint32 tw = 1, th = 1; + TIFFGetField(tif,TIFFTAG_TILEWIDTH,&tw); + TIFFGetField(tif,TIFFTAG_TILELENGTH,&th); + if (config==PLANARCONFIG_CONTIG) switch (bitspersample) { + case 8 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + else _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + break; + case 16 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + else _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + break; + case 32 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + else if (sampleformat==SAMPLEFORMAT_INT) + _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + else _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + break; + case 64 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + else if (sampleformat==SAMPLEFORMAT_INT) + _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + else _load_tiff_tiled_contig(tif,samplesperpixel,nx,ny,tw,th); + break; + } else switch (bitspersample) { + case 8 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + else _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + break; + case 16 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + else _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + break; + case 32 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + else if (sampleformat==SAMPLEFORMAT_INT) + _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + else _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + break; + case 64 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + else if (sampleformat==SAMPLEFORMAT_INT) + _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + else _load_tiff_tiled_separate(tif,samplesperpixel,nx,ny,tw,th); + break; + } + } else { + if (config==PLANARCONFIG_CONTIG) switch (bitspersample) { + case 8 : + if (sampleformat==SAMPLEFORMAT_UINT) + _load_tiff_contig(tif,samplesperpixel,nx,ny); + else _load_tiff_contig(tif,samplesperpixel,nx,ny); + break; + case 16 : + if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_contig(tif,samplesperpixel,nx,ny); + else _load_tiff_contig(tif,samplesperpixel,nx,ny); + break; + case 32 : + if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_contig(tif,samplesperpixel,nx,ny); + else if (sampleformat==SAMPLEFORMAT_INT) _load_tiff_contig(tif,samplesperpixel,nx,ny); + else _load_tiff_contig(tif,samplesperpixel,nx,ny); + break; + case 64 : + if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_contig(tif,samplesperpixel,nx,ny); + else if (sampleformat==SAMPLEFORMAT_INT) _load_tiff_contig(tif,samplesperpixel,nx,ny); + else _load_tiff_contig(tif,samplesperpixel,nx,ny); + break; + } else switch (bitspersample) { + case 8 : + if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_separate(tif,samplesperpixel,nx,ny); + else _load_tiff_separate(tif,samplesperpixel,nx,ny); + break; + case 16 : + if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_separate(tif,samplesperpixel,nx,ny); + else _load_tiff_separate(tif,samplesperpixel,nx,ny); + break; + case 32 : + if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_separate(tif,samplesperpixel,nx,ny); + else if (sampleformat==SAMPLEFORMAT_INT) _load_tiff_separate(tif,samplesperpixel,nx,ny); + else _load_tiff_separate(tif,samplesperpixel,nx,ny); + break; + case 64 : + if (sampleformat==SAMPLEFORMAT_UINT) _load_tiff_separate(tif,samplesperpixel,nx,ny); + else if (sampleformat==SAMPLEFORMAT_INT) _load_tiff_separate(tif,samplesperpixel,nx,ny); + else _load_tiff_separate(tif,samplesperpixel,nx,ny); + break; + } + } + } + return *this; + } +#endif + + //! Load image from a MINC2 file. + /** + \param filename Filename, as a C-string. + **/ + // (Original code by Haz-Edine Assemlal). + CImg& load_minc2(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_minc2(): Specified filename is (null).", + cimg_instance); +#ifndef cimg_use_minc2 + return load_other(filename); +#else + minc::minc_1_reader rdr; + rdr.open(filename); + assign(rdr.ndim(1)?rdr.ndim(1):1, + rdr.ndim(2)?rdr.ndim(2):1, + rdr.ndim(3)?rdr.ndim(3):1, + rdr.ndim(4)?rdr.ndim(4):1); + if (typeid(T)==typeid(unsigned char)) + rdr.setup_read_byte(); + else if (typeid(T)==typeid(int)) + rdr.setup_read_int(); + else if (typeid(T)==typeid(double)) + rdr.setup_read_double(); + else + rdr.setup_read_float(); + minc::load_standard_volume(rdr, this->_data); + return *this; +#endif + } + + //! Load image from a MINC2 file \newinstance. + static CImg get_load_minc2(const char *const filename) { + return CImg().load_analyze(filename); + } + + //! Load image from an ANALYZE7.5/NIFTI file. + /** + \param filename Filename, as a C-string. + \param[out] voxel_size Pointer to the three voxel sizes read from the file. + **/ + CImg& load_analyze(const char *const filename, float *const voxel_size=0) { + return _load_analyze(0,filename,voxel_size); + } + + //! Load image from an ANALYZE7.5/NIFTI file \newinstance. + static CImg get_load_analyze(const char *const filename, float *const voxel_size=0) { + return CImg().load_analyze(filename,voxel_size); + } + + //! Load image from an ANALYZE7.5/NIFTI file \overloading. + CImg& load_analyze(std::FILE *const file, float *const voxel_size=0) { + return _load_analyze(file,0,voxel_size); + } + + //! Load image from an ANALYZE7.5/NIFTI file \newinstance. + static CImg get_load_analyze(std::FILE *const file, float *const voxel_size=0) { + return CImg().load_analyze(file,voxel_size); + } + + CImg& _load_analyze(std::FILE *const file, const char *const filename, float *const voxel_size=0) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_analyze(): Specified filename is (null).", + cimg_instance); + + std::FILE *nfile_header = 0, *nfile = 0; + if (!file) { + CImg body(1024); + const char *const ext = cimg::split_filename(filename,body); + if (!cimg::strcasecmp(ext,"hdr")) { // File is an Analyze header file. + nfile_header = cimg::fopen(filename,"rb"); + cimg_sprintf(body._data + std::strlen(body),".img"); + nfile = cimg::fopen(body,"rb"); + } else if (!cimg::strcasecmp(ext,"img")) { // File is an Analyze data file. + nfile = cimg::fopen(filename,"rb"); + cimg_sprintf(body._data + std::strlen(body),".hdr"); + nfile_header = cimg::fopen(body,"rb"); + } else nfile_header = nfile = cimg::fopen(filename,"rb"); // File is a Niftii file. + } else nfile_header = nfile = file; // File is a Niftii file. + if (!nfile || !nfile_header) + throw CImgIOException(_cimg_instance + "load_analyze(): Invalid Analyze7.5 or NIFTI header in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + + // Read header. + bool endian = false; + unsigned int header_size; + cimg::fread(&header_size,1,nfile_header); + if (!header_size) + throw CImgIOException(_cimg_instance + "load_analyze(): Invalid zero-size header in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + if (header_size>=4096) { endian = true; cimg::invert_endianness(header_size); } + + unsigned char *const header = new unsigned char[header_size]; + cimg::fread(header + 4,header_size - 4,nfile_header); + if (!file && nfile_header!=nfile) cimg::fclose(nfile_header); + if (endian) { + cimg::invert_endianness((short*)(header + 40),5); + cimg::invert_endianness((short*)(header + 70),1); + cimg::invert_endianness((short*)(header + 72),1); + cimg::invert_endianness((float*)(header + 76),4); + cimg::invert_endianness((float*)(header + 108),1); + cimg::invert_endianness((float*)(header + 112),1); + } + + if (nfile_header==nfile) { + const unsigned int vox_offset = (unsigned int)*(float*)(header + 108); + std::fseek(nfile,vox_offset,SEEK_SET); + } + + unsigned short *dim = (unsigned short*)(header + 40), dimx = 1, dimy = 1, dimz = 1, dimv = 1; + if (!dim[0]) + cimg::warn(_cimg_instance + "load_analyze(): File '%s' defines an image with zero dimensions.", + cimg_instance, + filename?filename:"(FILE*)"); + + if (dim[0]>4) + cimg::warn(_cimg_instance + "load_analyze(): File '%s' defines an image with %u dimensions, reading only the 4 first.", + cimg_instance, + filename?filename:"(FILE*)",dim[0]); + + if (dim[0]>=1) dimx = dim[1]; + if (dim[0]>=2) dimy = dim[2]; + if (dim[0]>=3) dimz = dim[3]; + if (dim[0]>=4) dimv = dim[4]; + float scalefactor = *(float*)(header + 112); if (scalefactor==0) scalefactor = 1; + const unsigned short datatype = *(unsigned short*)(header + 70); + if (voxel_size) { + const float *vsize = (float*)(header + 76); + voxel_size[0] = vsize[1]; voxel_size[1] = vsize[2]; voxel_size[2] = vsize[3]; + } + delete[] header; + + // Read pixel data. + assign(dimx,dimy,dimz,dimv); + const size_t pdim = (size_t)dimx*dimy*dimz*dimv; + switch (datatype) { + case 2 : { + unsigned char *const buffer = new unsigned char[pdim]; + cimg::fread(buffer,pdim,nfile); + cimg_foroff(*this,off) _data[off] = (T)(buffer[off]*scalefactor); + delete[] buffer; + } break; + case 4 : { + short *const buffer = new short[pdim]; + cimg::fread(buffer,pdim,nfile); + if (endian) cimg::invert_endianness(buffer,pdim); + cimg_foroff(*this,off) _data[off] = (T)(buffer[off]*scalefactor); + delete[] buffer; + } break; + case 8 : { + int *const buffer = new int[pdim]; + cimg::fread(buffer,pdim,nfile); + if (endian) cimg::invert_endianness(buffer,pdim); + cimg_foroff(*this,off) _data[off] = (T)(buffer[off]*scalefactor); + delete[] buffer; + } break; + case 16 : { + float *const buffer = new float[pdim]; + cimg::fread(buffer,pdim,nfile); + if (endian) cimg::invert_endianness(buffer,pdim); + cimg_foroff(*this,off) _data[off] = (T)(buffer[off]*scalefactor); + delete[] buffer; + } break; + case 64 : { + double *const buffer = new double[pdim]; + cimg::fread(buffer,pdim,nfile); + if (endian) cimg::invert_endianness(buffer,pdim); + cimg_foroff(*this,off) _data[off] = (T)(buffer[off]*scalefactor); + delete[] buffer; + } break; + default : + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_analyze(): Unable to load datatype %d in file '%s'", + cimg_instance, + datatype,filename?filename:"(FILE*)"); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image from a .cimg[z] file. + /** + \param filename Filename, as a C-string. + \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Appending alignment. + **/ + CImg& load_cimg(const char *const filename, const char axis='z', const float align=0) { + CImgList list; + list.load_cimg(filename); + if (list._width==1) return list[0].move_to(*this); + return assign(list.get_append(axis,align)); + } + + //! Load image from a .cimg[z] file \newinstance + static CImg get_load_cimg(const char *const filename, const char axis='z', const float align=0) { + return CImg().load_cimg(filename,axis,align); + } + + //! Load image from a .cimg[z] file \overloading. + CImg& load_cimg(std::FILE *const file, const char axis='z', const float align=0) { + CImgList list; + list.load_cimg(file); + if (list._width==1) return list[0].move_to(*this); + return assign(list.get_append(axis,align)); + } + + //! Load image from a .cimg[z] file \newinstance + static CImg get_load_cimg(std::FILE *const file, const char axis='z', const float align=0) { + return CImg().load_cimg(file,axis,align); + } + + //! Load sub-images of a .cimg file. + /** + \param filename Filename, as a C-string. + \param n0 Starting frame. + \param n1 Ending frame (~0U for max). + \param x0 X-coordinate of the starting sub-image vertex. + \param y0 Y-coordinate of the starting sub-image vertex. + \param z0 Z-coordinate of the starting sub-image vertex. + \param c0 C-coordinate of the starting sub-image vertex. + \param x1 X-coordinate of the ending sub-image vertex (~0U for max). + \param y1 Y-coordinate of the ending sub-image vertex (~0U for max). + \param z1 Z-coordinate of the ending sub-image vertex (~0U for max). + \param c1 C-coordinate of the ending sub-image vertex (~0U for max). + \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Appending alignment. + **/ + CImg& load_cimg(const char *const filename, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1, + const char axis='z', const float align=0) { + CImgList list; + list.load_cimg(filename,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1); + if (list._width==1) return list[0].move_to(*this); + return assign(list.get_append(axis,align)); + } + + //! Load sub-images of a .cimg file \newinstance. + static CImg get_load_cimg(const char *const filename, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1, + const char axis='z', const float align=0) { + return CImg().load_cimg(filename,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1,axis,align); + } + + //! Load sub-images of a .cimg file \overloading. + CImg& load_cimg(std::FILE *const file, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1, + const char axis='z', const float align=0) { + CImgList list; + list.load_cimg(file,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1); + if (list._width==1) return list[0].move_to(*this); + return assign(list.get_append(axis,align)); + } + + //! Load sub-images of a .cimg file \newinstance. + static CImg get_load_cimg(std::FILE *const file, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1, + const char axis='z', const float align=0) { + return CImg().load_cimg(file,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1,axis,align); + } + + //! Load image from an INRIMAGE-4 file. + /** + \param filename Filename, as a C-string. + \param[out] voxel_size Pointer to the three voxel sizes read from the file. + **/ + CImg& load_inr(const char *const filename, float *const voxel_size=0) { + return _load_inr(0,filename,voxel_size); + } + + //! Load image from an INRIMAGE-4 file \newinstance. + static CImg get_load_inr(const char *const filename, float *const voxel_size=0) { + return CImg().load_inr(filename,voxel_size); + } + + //! Load image from an INRIMAGE-4 file \overloading. + CImg& load_inr(std::FILE *const file, float *const voxel_size=0) { + return _load_inr(file,0,voxel_size); + } + + //! Load image from an INRIMAGE-4 file \newinstance. + static CImg get_load_inr(std::FILE *const file, float *voxel_size=0) { + return CImg().load_inr(file,voxel_size); + } + + static void _load_inr_header(std::FILE *file, int out[8], float *const voxel_size) { + CImg item(1024), tmp1(64), tmp2(64); + *item = *tmp1 = *tmp2 = 0; + out[0] = std::fscanf(file,"%63s",item._data); + out[0] = out[1] = out[2] = out[3] = out[5] = 1; out[4] = out[6] = out[7] = -1; + if (cimg::strncasecmp(item,"#INRIMAGE-4#{",13)!=0) + throw CImgIOException("CImg<%s>::load_inr(): INRIMAGE-4 header not found.", + pixel_type()); + + while (std::fscanf(file," %63[^\n]%*c",item._data)!=EOF && std::strncmp(item,"##}",3)) { + cimg_sscanf(item," XDIM%*[^0-9]%d",out); + cimg_sscanf(item," YDIM%*[^0-9]%d",out + 1); + cimg_sscanf(item," ZDIM%*[^0-9]%d",out + 2); + cimg_sscanf(item," VDIM%*[^0-9]%d",out + 3); + cimg_sscanf(item," PIXSIZE%*[^0-9]%d",out + 6); + if (voxel_size) { + cimg_sscanf(item," VX%*[^0-9.+-]%f",voxel_size); + cimg_sscanf(item," VY%*[^0-9.+-]%f",voxel_size + 1); + cimg_sscanf(item," VZ%*[^0-9.+-]%f",voxel_size + 2); + } + if (cimg_sscanf(item," CPU%*[ =]%s",tmp1._data)) out[7] = cimg::strncasecmp(tmp1,"sun",3)?0:1; + switch (cimg_sscanf(item," TYPE%*[ =]%s %s",tmp1._data,tmp2._data)) { + case 0 : break; + case 2 : out[5] = cimg::strncasecmp(tmp1,"unsigned",8)?1:0; std::strncpy(tmp1,tmp2,tmp1._width - 1); + case 1 : + if (!cimg::strncasecmp(tmp1,"int",3) || !cimg::strncasecmp(tmp1,"fixed",5)) out[4] = 0; + if (!cimg::strncasecmp(tmp1,"float",5) || !cimg::strncasecmp(tmp1,"double",6)) out[4] = 1; + if (!cimg::strncasecmp(tmp1,"packed",6)) out[4] = 2; + if (out[4]>=0) break; + default : + throw CImgIOException("CImg<%s>::load_inr(): Invalid pixel type '%s' defined in header.", + pixel_type(), + tmp2._data); + } + } + if (out[0]<0 || out[1]<0 || out[2]<0 || out[3]<0) + throw CImgIOException("CImg<%s>::load_inr(): Invalid dimensions (%d,%d,%d,%d) defined in header.", + pixel_type(), + out[0],out[1],out[2],out[3]); + if (out[4]<0 || out[5]<0) + throw CImgIOException("CImg<%s>::load_inr(): Incomplete pixel type defined in header.", + pixel_type()); + if (out[6]<0) + throw CImgIOException("CImg<%s>::load_inr(): Incomplete PIXSIZE field defined in header.", + pixel_type()); + if (out[7]<0) + throw CImgIOException("CImg<%s>::load_inr(): Big/Little Endian coding type undefined in header.", + pixel_type()); + } + + CImg& _load_inr(std::FILE *const file, const char *const filename, float *const voxel_size) { +#define _cimg_load_inr_case(Tf,sign,pixsize,Ts) \ + if (!loaded && fopt[6]==pixsize && fopt[4]==Tf && fopt[5]==sign) { \ + Ts *xval, *const val = new Ts[(size_t)fopt[0]*fopt[3]]; \ + cimg_forYZ(*this,y,z) { \ + cimg::fread(val,fopt[0]*fopt[3],nfile); \ + if (fopt[7]!=endian) cimg::invert_endianness(val,fopt[0]*fopt[3]); \ + xval = val; cimg_forX(*this,x) cimg_forC(*this,c) (*this)(x,y,z,c) = (T)*(xval++); \ + } \ + delete[] val; \ + loaded = true; \ + } + + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_inr(): Specified filename is (null).", + cimg_instance); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + int fopt[8], endian = cimg::endianness()?1:0; + bool loaded = false; + if (voxel_size) voxel_size[0] = voxel_size[1] = voxel_size[2] = 1; + _load_inr_header(nfile,fopt,voxel_size); + assign(fopt[0],fopt[1],fopt[2],fopt[3]); + _cimg_load_inr_case(0,0,8,unsigned char); + _cimg_load_inr_case(0,1,8,char); + _cimg_load_inr_case(0,0,16,unsigned short); + _cimg_load_inr_case(0,1,16,short); + _cimg_load_inr_case(0,0,32,unsigned int); + _cimg_load_inr_case(0,1,32,int); + _cimg_load_inr_case(1,0,32,float); + _cimg_load_inr_case(1,1,32,float); + _cimg_load_inr_case(1,0,64,double); + _cimg_load_inr_case(1,1,64,double); + if (!loaded) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_inr(): Unknown pixel type defined in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image from a EXR file. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_exr(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_exr(): Specified filename is (null).", + cimg_instance); +#if defined(cimg_use_openexr) + Imf::RgbaInputFile file(filename); + Imath::Box2i dw = file.dataWindow(); + const int + inwidth = dw.max.x - dw.min.x + 1, + inheight = dw.max.y - dw.min.y + 1; + Imf::Array2D pixels; + pixels.resizeErase(inheight,inwidth); + file.setFrameBuffer(&pixels[0][0] - dw.min.x - dw.min.y*inwidth, 1, inwidth); + file.readPixels(dw.min.y, dw.max.y); + assign(inwidth,inheight,1,4); + T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2), *ptr_a = data(0,0,0,3); + cimg_forXY(*this,x,y) { + *(ptr_r++) = (T)pixels[y][x].r; + *(ptr_g++) = (T)pixels[y][x].g; + *(ptr_b++) = (T)pixels[y][x].b; + *(ptr_a++) = (T)pixels[y][x].a; + } +#elif defined(cimg_use_tinyexr) + float *res; + const char *err = 0; + int width = 0, height = 0; + const int ret = LoadEXR(&res,&width,&height,filename,&err); + if (ret) throw CImgIOException(_cimg_instance + "load_exr(): Unable to load EXR file '%s'.", + cimg_instance,filename); + CImg(out,4,width,height,1,true).get_permute_axes("yzcx").move_to(*this); + std::free(res); +#else + return load_other(filename); +#endif + return *this; + } + + //! Load image from a EXR file \newinstance. + static CImg get_load_exr(const char *const filename) { + return CImg().load_exr(filename); + } + + //! Load image from a PANDORE-5 file. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_pandore(const char *const filename) { + return _load_pandore(0,filename); + } + + //! Load image from a PANDORE-5 file \newinstance. + static CImg get_load_pandore(const char *const filename) { + return CImg().load_pandore(filename); + } + + //! Load image from a PANDORE-5 file \overloading. + CImg& load_pandore(std::FILE *const file) { + return _load_pandore(file,0); + } + + //! Load image from a PANDORE-5 file \newinstance. + static CImg get_load_pandore(std::FILE *const file) { + return CImg().load_pandore(file); + } + + CImg& _load_pandore(std::FILE *const file, const char *const filename) { +#define __cimg_load_pandore_case(nbdim,nwidth,nheight,ndepth,ndim,stype) \ + cimg::fread(dims,nbdim,nfile); \ + if (endian) cimg::invert_endianness(dims,nbdim); \ + assign(nwidth,nheight,ndepth,ndim); \ + const size_t siz = size(); \ + stype *buffer = new stype[siz]; \ + cimg::fread(buffer,siz,nfile); \ + if (endian) cimg::invert_endianness(buffer,siz); \ + T *ptrd = _data; \ + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); \ + buffer-=siz; \ + delete[] buffer + +#define _cimg_load_pandore_case(nbdim,nwidth,nheight,ndepth,dim,stype1,stype2,stype3,ltype) { \ + if (sizeof(stype1)==ltype) { __cimg_load_pandore_case(nbdim,nwidth,nheight,ndepth,dim,stype1); } \ + else if (sizeof(stype2)==ltype) { __cimg_load_pandore_case(nbdim,nwidth,nheight,ndepth,dim,stype2); } \ + else if (sizeof(stype3)==ltype) { __cimg_load_pandore_case(nbdim,nwidth,nheight,ndepth,dim,stype3); } \ + else throw CImgIOException(_cimg_instance \ + "load_pandore(): Unknown pixel datatype in file '%s'.", \ + cimg_instance, \ + filename?filename:"(FILE*)"); } + + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_pandore(): Specified filename is (null).", + cimg_instance); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + CImg header(32); + cimg::fread(header._data,12,nfile); + if (cimg::strncasecmp("PANDORE",header,7)) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_pandore(): PANDORE header not found in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + unsigned int imageid, dims[8] = { 0 }; + int ptbuf[4] = { 0 }; + cimg::fread(&imageid,1,nfile); + const bool endian = imageid>255; + if (endian) cimg::invert_endianness(imageid); + cimg::fread(header._data,20,nfile); + + switch (imageid) { + case 2 : _cimg_load_pandore_case(2,dims[1],1,1,1,unsigned char,unsigned char,unsigned char,1); break; + case 3 : _cimg_load_pandore_case(2,dims[1],1,1,1,long,int,short,4); break; + case 4 : _cimg_load_pandore_case(2,dims[1],1,1,1,double,float,float,4); break; + case 5 : _cimg_load_pandore_case(3,dims[2],dims[1],1,1,unsigned char,unsigned char,unsigned char,1); break; + case 6 : _cimg_load_pandore_case(3,dims[2],dims[1],1,1,long,int,short,4); break; + case 7 : _cimg_load_pandore_case(3,dims[2],dims[1],1,1,double,float,float,4); break; + case 8 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],1,unsigned char,unsigned char,unsigned char,1); break; + case 9 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],1,long,int,short,4); break; + case 10 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],1,double,float,float,4); break; + case 11 : { // Region 1d + cimg::fread(dims,3,nfile); + if (endian) cimg::invert_endianness(dims,3); + assign(dims[1],1,1,1); + const unsigned siz = size(); + if (dims[2]<256) { + unsigned char *buffer = new unsigned char[siz]; + cimg::fread(buffer,siz,nfile); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } else { + if (dims[2]<65536) { + unsigned short *buffer = new unsigned short[siz]; + cimg::fread(buffer,siz,nfile); + if (endian) cimg::invert_endianness(buffer,siz); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } else { + unsigned int *buffer = new unsigned int[siz]; + cimg::fread(buffer,siz,nfile); + if (endian) cimg::invert_endianness(buffer,siz); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } + } + } + break; + case 12 : { // Region 2d + cimg::fread(dims,4,nfile); + if (endian) cimg::invert_endianness(dims,4); + assign(dims[2],dims[1],1,1); + const size_t siz = size(); + if (dims[3]<256) { + unsigned char *buffer = new unsigned char[siz]; + cimg::fread(buffer,siz,nfile); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } else { + if (dims[3]<65536) { + unsigned short *buffer = new unsigned short[siz]; + cimg::fread(buffer,siz,nfile); + if (endian) cimg::invert_endianness(buffer,siz); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } else { + unsigned int *buffer = new unsigned int[siz]; + cimg::fread(buffer,siz,nfile); + if (endian) cimg::invert_endianness(buffer,siz); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } + } + } + break; + case 13 : { // Region 3d + cimg::fread(dims,5,nfile); + if (endian) cimg::invert_endianness(dims,5); + assign(dims[3],dims[2],dims[1],1); + const size_t siz = size(); + if (dims[4]<256) { + unsigned char *buffer = new unsigned char[siz]; + cimg::fread(buffer,siz,nfile); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } else { + if (dims[4]<65536) { + unsigned short *buffer = new unsigned short[siz]; + cimg::fread(buffer,siz,nfile); + if (endian) cimg::invert_endianness(buffer,siz); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } else { + unsigned int *buffer = new unsigned int[siz]; + cimg::fread(buffer,siz,nfile); + if (endian) cimg::invert_endianness(buffer,siz); + T *ptrd = _data; + cimg_foroff(*this,off) *(ptrd++) = (T)*(buffer++); + buffer-=siz; + delete[] buffer; + } + } + } + break; + case 16 : _cimg_load_pandore_case(4,dims[2],dims[1],1,3,unsigned char,unsigned char,unsigned char,1); break; + case 17 : _cimg_load_pandore_case(4,dims[2],dims[1],1,3,long,int,short,4); break; + case 18 : _cimg_load_pandore_case(4,dims[2],dims[1],1,3,double,float,float,4); break; + case 19 : _cimg_load_pandore_case(5,dims[3],dims[2],dims[1],3,unsigned char,unsigned char,unsigned char,1); break; + case 20 : _cimg_load_pandore_case(5,dims[3],dims[2],dims[1],3,long,int,short,4); break; + case 21 : _cimg_load_pandore_case(5,dims[3],dims[2],dims[1],3,double,float,float,4); break; + case 22 : _cimg_load_pandore_case(2,dims[1],1,1,dims[0],unsigned char,unsigned char,unsigned char,1); break; + case 23 : _cimg_load_pandore_case(2,dims[1],1,1,dims[0],long,int,short,4); + case 24 : _cimg_load_pandore_case(2,dims[1],1,1,dims[0],unsigned long,unsigned int,unsigned short,4); break; + case 25 : _cimg_load_pandore_case(2,dims[1],1,1,dims[0],double,float,float,4); break; + case 26 : _cimg_load_pandore_case(3,dims[2],dims[1],1,dims[0],unsigned char,unsigned char,unsigned char,1); break; + case 27 : _cimg_load_pandore_case(3,dims[2],dims[1],1,dims[0],long,int,short,4); break; + case 28 : _cimg_load_pandore_case(3,dims[2],dims[1],1,dims[0],unsigned long,unsigned int,unsigned short,4); break; + case 29 : _cimg_load_pandore_case(3,dims[2],dims[1],1,dims[0],double,float,float,4); break; + case 30 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],dims[0],unsigned char,unsigned char,unsigned char,1); + break; + case 31 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],dims[0],long,int,short,4); break; + case 32 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],dims[0],unsigned long,unsigned int,unsigned short,4); + break; + case 33 : _cimg_load_pandore_case(4,dims[3],dims[2],dims[1],dims[0],double,float,float,4); break; + case 34 : { // Points 1d + cimg::fread(ptbuf,1,nfile); + if (endian) cimg::invert_endianness(ptbuf,1); + assign(1); (*this)(0) = (T)ptbuf[0]; + } break; + case 35 : { // Points 2d + cimg::fread(ptbuf,2,nfile); + if (endian) cimg::invert_endianness(ptbuf,2); + assign(2); (*this)(0) = (T)ptbuf[1]; (*this)(1) = (T)ptbuf[0]; + } break; + case 36 : { // Points 3d + cimg::fread(ptbuf,3,nfile); + if (endian) cimg::invert_endianness(ptbuf,3); + assign(3); (*this)(0) = (T)ptbuf[2]; (*this)(1) = (T)ptbuf[1]; (*this)(2) = (T)ptbuf[0]; + } break; + default : + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_pandore(): Unable to load data with ID_type %u in file '%s'.", + cimg_instance, + imageid,filename?filename:"(FILE*)"); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image from a PAR-REC (Philips) file. + /** + \param filename Filename, as a C-string. + \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Appending alignment. + **/ + CImg& load_parrec(const char *const filename, const char axis='c', const float align=0) { + CImgList list; + list.load_parrec(filename); + if (list._width==1) return list[0].move_to(*this); + return assign(list.get_append(axis,align)); + } + + //! Load image from a PAR-REC (Philips) file \newinstance. + static CImg get_load_parrec(const char *const filename, const char axis='c', const float align=0) { + return CImg().load_parrec(filename,axis,align); + } + + //! Load image from a raw binary file. + /** + \param filename Filename, as a C-string. + \param size_x Width of the image buffer. + \param size_y Height of the image buffer. + \param size_z Depth of the image buffer. + \param size_c Spectrum of the image buffer. + \param is_multiplexed Tells if the image values are multiplexed along the C-axis. + \param invert_endianness Tells if the endianness of the image buffer must be inverted. + \param offset Starting offset of the read in the specified file. + **/ + CImg& load_raw(const char *const filename, + const unsigned int size_x=0, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1, + const bool is_multiplexed=false, const bool invert_endianness=false, + const ulongT offset=0) { + return _load_raw(0,filename,size_x,size_y,size_z,size_c,is_multiplexed,invert_endianness,offset); + } + + //! Load image from a raw binary file \newinstance. + static CImg get_load_raw(const char *const filename, + const unsigned int size_x=0, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1, + const bool is_multiplexed=false, const bool invert_endianness=false, + const ulongT offset=0) { + return CImg().load_raw(filename,size_x,size_y,size_z,size_c,is_multiplexed,invert_endianness,offset); + } + + //! Load image from a raw binary file \overloading. + CImg& load_raw(std::FILE *const file, + const unsigned int size_x=0, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1, + const bool is_multiplexed=false, const bool invert_endianness=false, + const ulongT offset=0) { + return _load_raw(file,0,size_x,size_y,size_z,size_c,is_multiplexed,invert_endianness,offset); + } + + //! Load image from a raw binary file \newinstance. + static CImg get_load_raw(std::FILE *const file, + const unsigned int size_x=0, const unsigned int size_y=1, + const unsigned int size_z=1, const unsigned int size_c=1, + const bool is_multiplexed=false, const bool invert_endianness=false, + const ulongT offset=0) { + return CImg().load_raw(file,size_x,size_y,size_z,size_c,is_multiplexed,invert_endianness,offset); + } + + CImg& _load_raw(std::FILE *const file, const char *const filename, + const unsigned int size_x, const unsigned int size_y, + const unsigned int size_z, const unsigned int size_c, + const bool is_multiplexed, const bool invert_endianness, + const ulongT offset) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_raw(): Specified filename is (null).", + cimg_instance); + if (cimg::is_directory(filename)) + throw CImgArgumentException(_cimg_instance + "load_raw(): Specified filename '%s' is a directory.", + cimg_instance,filename); + + ulongT siz = (ulongT)size_x*size_y*size_z*size_c; + unsigned int + _size_x = size_x, + _size_y = size_y, + _size_z = size_z, + _size_c = size_c; + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + if (!siz) { // Retrieve file size. + const longT fpos = cimg::ftell(nfile); + if (fpos<0) throw CImgArgumentException(_cimg_instance + "load_raw(): Cannot determine size of input file '%s'.", + cimg_instance,filename?filename:"(FILE*)"); + cimg::fseek(nfile,0,SEEK_END); + siz = cimg::ftell(nfile)/sizeof(T); + _size_y = (unsigned int)siz; + _size_x = _size_z = _size_c = 1; + cimg::fseek(nfile,fpos,SEEK_SET); + } + cimg::fseek(nfile,offset,SEEK_SET); + assign(_size_x,_size_y,_size_z,_size_c,0); + if (siz && (!is_multiplexed || size_c==1)) { + cimg::fread(_data,siz,nfile); + if (invert_endianness) cimg::invert_endianness(_data,siz); + } else if (siz) { + CImg buf(1,1,1,_size_c); + cimg_forXYZ(*this,x,y,z) { + cimg::fread(buf._data,_size_c,nfile); + if (invert_endianness) cimg::invert_endianness(buf._data,_size_c); + set_vector_at(buf,x,y,z); + } + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load image sequence from a YUV file. + /** + \param filename Filename, as a C-string. + \param size_x Width of the frames. + \param size_y Height of the frames. + \param first_frame Index of the first frame to read. + \param last_frame Index of the last frame to read. + \param step_frame Step value for frame reading. + \param yuv2rgb Tells if the YUV to RGB transform must be applied. + \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. + **/ + CImg& load_yuv(const char *const filename, + const unsigned int size_x, const unsigned int size_y=1, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z') { + return get_load_yuv(filename,size_x,size_y,first_frame,last_frame,step_frame,yuv2rgb,axis).move_to(*this); + } + + //! Load image sequence from a YUV file \newinstance. + static CImg get_load_yuv(const char *const filename, + const unsigned int size_x, const unsigned int size_y=1, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z') { + return CImgList().load_yuv(filename,size_x,size_y,first_frame,last_frame,step_frame,yuv2rgb).get_append(axis); + } + + //! Load image sequence from a YUV file \overloading. + CImg& load_yuv(std::FILE *const file, + const unsigned int size_x, const unsigned int size_y=1, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z') { + return get_load_yuv(file,size_x,size_y,first_frame,last_frame,step_frame,yuv2rgb,axis).move_to(*this); + } + + //! Load image sequence from a YUV file \newinstance. + static CImg get_load_yuv(std::FILE *const file, + const unsigned int size_x, const unsigned int size_y=1, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, const bool yuv2rgb=true, const char axis='z') { + return CImgList().load_yuv(file,size_x,size_y,first_frame,last_frame,step_frame,yuv2rgb).get_append(axis); + } + + //! Load 3d object from a .OFF file. + /** + \param[out] primitives Primitives data of the 3d object. + \param[out] colors Colors data of the 3d object. + \param filename Filename, as a C-string. + **/ + template + CImg& load_off(CImgList& primitives, CImgList& colors, const char *const filename) { + return _load_off(primitives,colors,0,filename); + } + + //! Load 3d object from a .OFF file \newinstance. + template + static CImg get_load_off(CImgList& primitives, CImgList& colors, const char *const filename) { + return CImg().load_off(primitives,colors,filename); + } + + //! Load 3d object from a .OFF file \overloading. + template + CImg& load_off(CImgList& primitives, CImgList& colors, std::FILE *const file) { + return _load_off(primitives,colors,file,0); + } + + //! Load 3d object from a .OFF file \newinstance. + template + static CImg get_load_off(CImgList& primitives, CImgList& colors, std::FILE *const file) { + return CImg().load_off(primitives,colors,file); + } + + template + CImg& _load_off(CImgList& primitives, CImgList& colors, + std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "load_off(): Specified filename is (null).", + cimg_instance); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"r"); + unsigned int nb_points = 0, nb_primitives = 0, nb_read = 0; + CImg line(256); *line = 0; + int err; + + // Skip comments, and read magic string OFF + do { err = std::fscanf(nfile,"%255[^\n] ",line._data); } while (!err || (err==1 && *line=='#')); + if (cimg::strncasecmp(line,"OFF",3) && cimg::strncasecmp(line,"COFF",4)) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_off(): OFF header not found in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + do { err = std::fscanf(nfile,"%255[^\n] ",line._data); } while (!err || (err==1 && *line=='#')); + if ((err = cimg_sscanf(line,"%u%u%*[^\n] ",&nb_points,&nb_primitives))!=2) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_off(): Invalid number of vertices or primitives specified in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + } + + // Read points data + assign(nb_points,3); + float X = 0, Y = 0, Z = 0; + cimg_forX(*this,l) { + do { err = std::fscanf(nfile,"%255[^\n] ",line._data); } while (!err || (err==1 && *line=='#')); + if ((err = cimg_sscanf(line,"%f%f%f%*[^\n] ",&X,&Y,&Z))!=3) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "load_off(): Failed to read vertex %u/%u in file '%s'.", + cimg_instance, + l + 1,nb_points,filename?filename:"(FILE*)"); + } + (*this)(l,0) = (T)X; (*this)(l,1) = (T)Y; (*this)(l,2) = (T)Z; + } + + // Read primitive data + primitives.assign(); + colors.assign(); + bool stop_flag = false; + while (!stop_flag) { + float c0 = 0.7f, c1 = 0.7f, c2 = 0.7f; + unsigned int prim = 0, i0 = 0, i1 = 0, i2 = 0, i3 = 0, i4 = 0, i5 = 0, i6 = 0, i7 = 0; + *line = 0; + if ((err = std::fscanf(nfile,"%u",&prim))!=1) stop_flag = true; + else { + ++nb_read; + switch (prim) { + case 1 : { + if ((err = std::fscanf(nfile,"%u%255[^\n] ",&i0,line._data))<2) { + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u from file '%s'.", + cimg_instance, + nb_read,nb_primitives,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } else { + err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2); + CImg::vector(i0).move_to(primitives); + CImg::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255)).move_to(colors); + } + } break; + case 2 : { + if ((err = std::fscanf(nfile,"%u%u%255[^\n] ",&i0,&i1,line._data))<2) { + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u from file '%s'.", + cimg_instance, + nb_read,nb_primitives,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } else { + err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2); + CImg::vector(i0,i1).move_to(primitives); + CImg::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255)).move_to(colors); + } + } break; + case 3 : { + if ((err = std::fscanf(nfile,"%u%u%u%255[^\n] ",&i0,&i1,&i2,line._data))<3) { + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u from file '%s'.", + cimg_instance, + nb_read,nb_primitives,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } else { + err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2); + CImg::vector(i0,i2,i1).move_to(primitives); + CImg::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255)).move_to(colors); + } + } break; + case 4 : { + if ((err = std::fscanf(nfile,"%u%u%u%u%255[^\n] ",&i0,&i1,&i2,&i3,line._data))<4) { + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u from file '%s'.", + cimg_instance, + nb_read,nb_primitives,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } else { + err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2); + CImg::vector(i0,i3,i2,i1).move_to(primitives); + CImg::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255)).move_to(colors); + } + } break; + case 5 : { + if ((err = std::fscanf(nfile,"%u%u%u%u%u%255[^\n] ",&i0,&i1,&i2,&i3,&i4,line._data))<5) { + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u from file '%s'.", + cimg_instance, + nb_read,nb_primitives,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } else { + err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2); + CImg::vector(i0,i3,i2,i1).move_to(primitives); + CImg::vector(i0,i4,i3).move_to(primitives); + colors.insert(2,CImg::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255))); + ++nb_primitives; + } + } break; + case 6 : { + if ((err = std::fscanf(nfile,"%u%u%u%u%u%u%255[^\n] ",&i0,&i1,&i2,&i3,&i4,&i5,line._data))<6) { + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u from file '%s'.", + cimg_instance, + nb_read,nb_primitives,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } else { + err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2); + CImg::vector(i0,i3,i2,i1).move_to(primitives); + CImg::vector(i0,i5,i4,i3).move_to(primitives); + colors.insert(2,CImg::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255))); + ++nb_primitives; + } + } break; + case 7 : { + if ((err = std::fscanf(nfile,"%u%u%u%u%u%u%u%255[^\n] ",&i0,&i1,&i2,&i3,&i4,&i5,&i6,line._data))<7) { + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u from file '%s'.", + cimg_instance, + nb_read,nb_primitives,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } else { + err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2); + CImg::vector(i0,i4,i3,i1).move_to(primitives); + CImg::vector(i0,i6,i5,i4).move_to(primitives); + CImg::vector(i3,i2,i1).move_to(primitives); + colors.insert(3,CImg::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255))); + ++(++nb_primitives); + } + } break; + case 8 : { + if ((err = std::fscanf(nfile,"%u%u%u%u%u%u%u%u%255[^\n] ",&i0,&i1,&i2,&i3,&i4,&i5,&i6,&i7,line._data))<7) { + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u from file '%s'.", + cimg_instance, + nb_read,nb_primitives,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } else { + err = cimg_sscanf(line,"%f%f%f",&c0,&c1,&c2); + CImg::vector(i0,i3,i2,i1).move_to(primitives); + CImg::vector(i0,i5,i4,i3).move_to(primitives); + CImg::vector(i0,i7,i6,i5).move_to(primitives); + colors.insert(3,CImg::vector((tc)(c0*255),(tc)(c1*255),(tc)(c2*255))); + ++(++nb_primitives); + } + } break; + default : + cimg::warn(_cimg_instance + "load_off(): Failed to read primitive %u/%u (%u vertices) from file '%s'.", + cimg_instance, + nb_read,nb_primitives,prim,filename?filename:"(FILE*)"); + + err = std::fscanf(nfile,"%*[^\n] "); + } + } + } + if (!file) cimg::fclose(nfile); + if (primitives._width!=nb_primitives) + cimg::warn(_cimg_instance + "load_off(): Only %u/%u primitives read from file '%s'.", + cimg_instance, + primitives._width,nb_primitives,filename?filename:"(FILE*)"); + return *this; + } + + //! Load image sequence from a video file, using OpenCV library. + /** + \param filename Filename, as a C-string. + \param first_frame Index of the first frame to read. + \param last_frame Index of the last frame to read. + \param step_frame Step value for frame reading. + \param axis Alignment axis. + \param align Apending alignment. + **/ + CImg& load_video(const char *const filename, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, + const char axis='z', const float align=0) { + return get_load_video(filename,first_frame,last_frame,step_frame,axis,align).move_to(*this); + } + + //! Load image sequence from a video file, using OpenCV library \newinstance. + static CImg get_load_video(const char *const filename, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, + const char axis='z', const float align=0) { + return CImgList().load_video(filename,first_frame,last_frame,step_frame).get_append(axis,align); + } + + //! Load image sequence using FFMPEG's external tool 'ffmpeg'. + /** + \param filename Filename, as a C-string. + \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Appending alignment. + **/ + CImg& load_ffmpeg_external(const char *const filename, const char axis='z', const float align=0) { + return get_load_ffmpeg_external(filename,axis,align).move_to(*this); + } + + //! Load image sequence using FFMPEG's external tool 'ffmpeg' \newinstance. + static CImg get_load_ffmpeg_external(const char *const filename, const char axis='z', const float align=0) { + return CImgList().load_ffmpeg_external(filename).get_append(axis,align); + } + + //! Load gif file, using Imagemagick or GraphicsMagicks's external tools. + /** + \param filename Filename, as a C-string. + \param axis Appending axis, if file contains multiple images. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Appending alignment. + **/ + CImg& load_gif_external(const char *const filename, + const char axis='z', const float align=0) { + return get_load_gif_external(filename,axis,align).move_to(*this); + } + + //! Load gif file, using ImageMagick or GraphicsMagick's external tool 'convert' \newinstance. + static CImg get_load_gif_external(const char *const filename, + const char axis='z', const float align=0) { + return CImgList().load_gif_external(filename).get_append(axis,align); + } + + //! Load image using GraphicsMagick's external tool 'gm'. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_graphicsmagick_external(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_graphicsmagick_external(): Specified filename is (null).", + cimg_instance); + std::fclose(cimg::fopen(filename,"rb")); // Check if file exists. + CImg command(1024), filename_tmp(256); + std::FILE *file = 0; + const CImg s_filename = CImg::string(filename)._system_strescape(); +#if cimg_OS==1 + cimg_snprintf(command,command._width,"%s convert \"%s\" pnm:-", + cimg::graphicsmagick_path(),s_filename.data()); + file = popen(command,"r"); + if (file) { + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + try { load_pnm(file); } catch (...) { + pclose(file); + cimg::exception_mode(omode); + throw CImgIOException(_cimg_instance + "load_graphicsmagick_external(): Failed to load file '%s' with external command 'gm'.", + cimg_instance, + filename); + } + pclose(file); + return *this; + } +#endif + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.pnm", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + if ((file=std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + cimg_snprintf(command,command._width,"%s convert \"%s\" \"%s\"", + cimg::graphicsmagick_path(),s_filename.data(), + CImg::string(filename_tmp)._system_strescape().data()); + cimg::system(command,cimg::graphicsmagick_path()); + if (!(file = std_fopen(filename_tmp,"rb"))) { + cimg::fclose(cimg::fopen(filename,"r")); + throw CImgIOException(_cimg_instance + "load_graphicsmagick_external(): Failed to load file '%s' with external command 'gm'.", + cimg_instance, + filename); + + } else cimg::fclose(file); + load_pnm(filename_tmp); + std::remove(filename_tmp); + return *this; + } + + //! Load image using GraphicsMagick's external tool 'gm' \newinstance. + static CImg get_load_graphicsmagick_external(const char *const filename) { + return CImg().load_graphicsmagick_external(filename); + } + + //! Load gzipped image file, using external tool 'gunzip'. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_gzip_external(const char *const filename) { + if (!filename) + throw CImgIOException(_cimg_instance + "load_gzip_external(): Specified filename is (null).", + cimg_instance); + std::fclose(cimg::fopen(filename,"rb")); // Check if file exists. + CImg command(1024), filename_tmp(256), body(256); + const char + *const ext = cimg::split_filename(filename,body), + *const ext2 = cimg::split_filename(body,0); + + std::FILE *file = 0; + do { + if (!cimg::strcasecmp(ext,"gz")) { + if (*ext2) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext2); + else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + } else { + if (*ext) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext); + else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + } + if ((file=std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + cimg_snprintf(command,command._width,"%s -c \"%s\" > \"%s\"", + cimg::gunzip_path(), + CImg::string(filename)._system_strescape().data(), + CImg::string(filename_tmp)._system_strescape().data()); + cimg::system(command); + if (!(file = std_fopen(filename_tmp,"rb"))) { + cimg::fclose(cimg::fopen(filename,"r")); + throw CImgIOException(_cimg_instance + "load_gzip_external(): Failed to load file '%s' with external command 'gunzip'.", + cimg_instance, + filename); + + } else cimg::fclose(file); + load(filename_tmp); + std::remove(filename_tmp); + return *this; + } + + //! Load gzipped image file, using external tool 'gunzip' \newinstance. + static CImg get_load_gzip_external(const char *const filename) { + return CImg().load_gzip_external(filename); + } + + //! Load image using ImageMagick's external tool 'convert'. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_imagemagick_external(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_imagemagick_external(): Specified filename is (null).", + cimg_instance); + std::fclose(cimg::fopen(filename,"rb")); // Check if file exists. + CImg command(1024), filename_tmp(256); + std::FILE *file = 0; + const CImg s_filename = CImg::string(filename)._system_strescape(); +#if cimg_OS==1 + cimg_snprintf(command,command._width,"%s%s \"%s\" pnm:-", + cimg::imagemagick_path(), + !cimg::strcasecmp(cimg::split_filename(filename),"pdf")?" -density 400x400":"", + s_filename.data()); + file = popen(command,"r"); + if (file) { + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + try { load_pnm(file); } catch (...) { + pclose(file); + cimg::exception_mode(omode); + throw CImgIOException(_cimg_instance + "load_imagemagick_external(): Failed to load file '%s' with " + "external command 'magick/convert'.", + cimg_instance, + filename); + } + pclose(file); + return *this; + } +#endif + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.pnm", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + if ((file=std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + cimg_snprintf(command,command._width,"%s%s \"%s\" \"%s\"", + cimg::imagemagick_path(), + !cimg::strcasecmp(cimg::split_filename(filename),"pdf")?" -density 400x400":"", + s_filename.data(),CImg::string(filename_tmp)._system_strescape().data()); + cimg::system(command,cimg::imagemagick_path()); + if (!(file = std_fopen(filename_tmp,"rb"))) { + cimg::fclose(cimg::fopen(filename,"r")); + throw CImgIOException(_cimg_instance + "load_imagemagick_external(): Failed to load file '%s' with " + "external command 'magick/convert'.", + cimg_instance, + filename); + + } else cimg::fclose(file); + load_pnm(filename_tmp); + std::remove(filename_tmp); + return *this; + } + + //! Load image using ImageMagick's external tool 'convert' \newinstance. + static CImg get_load_imagemagick_external(const char *const filename) { + return CImg().load_imagemagick_external(filename); + } + + //! Load image from a DICOM file, using XMedcon's external tool 'medcon'. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_medcon_external(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_medcon_external(): Specified filename is (null).", + cimg_instance); + std::fclose(cimg::fopen(filename,"rb")); // Check if file exists. + CImg command(1024), filename_tmp(256), body(256); + cimg::fclose(cimg::fopen(filename,"r")); + std::FILE *file = 0; + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s.hdr",cimg::filenamerand()); + if ((file=std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + cimg_snprintf(command,command._width,"%s -w -c anlz -o \"%s\" -f \"%s\"", + cimg::medcon_path(), + CImg::string(filename_tmp)._system_strescape().data(), + CImg::string(filename)._system_strescape().data()); + cimg::system(command); + cimg::split_filename(filename_tmp,body); + + cimg_snprintf(command,command._width,"%s.hdr",body._data); + file = std_fopen(command,"rb"); + if (!file) { + cimg_snprintf(command,command._width,"m000-%s.hdr",body._data); + file = std_fopen(command,"rb"); + if (!file) { + throw CImgIOException(_cimg_instance + "load_medcon_external(): Failed to load file '%s' with external command 'medcon'.", + cimg_instance, + filename); + } + } + cimg::fclose(file); + load_analyze(command); + std::remove(command); + cimg::split_filename(command,body); + cimg_snprintf(command,command._width,"%s.img",body._data); + std::remove(command); + return *this; + } + + //! Load image from a DICOM file, using XMedcon's external tool 'medcon' \newinstance. + static CImg get_load_medcon_external(const char *const filename) { + return CImg().load_medcon_external(filename); + } + + //! Load image from a RAW Color Camera file, using external tool 'dcraw'. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_dcraw_external(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_dcraw_external(): Specified filename is (null).", + cimg_instance); + std::fclose(cimg::fopen(filename,"rb")); // Check if file exists. + CImg command(1024), filename_tmp(256); + std::FILE *file = 0; + const CImg s_filename = CImg::string(filename)._system_strescape(); +#if cimg_OS==1 + cimg_snprintf(command,command._width,"%s -w -4 -c \"%s\"", + cimg::dcraw_path(),s_filename.data()); + file = popen(command,"r"); + if (file) { + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + try { load_pnm(file); } catch (...) { + pclose(file); + cimg::exception_mode(omode); + throw CImgIOException(_cimg_instance + "load_dcraw_external(): Failed to load file '%s' with external command 'dcraw'.", + cimg_instance, + filename); + } + pclose(file); + return *this; + } +#endif + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.ppm", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + if ((file=std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + cimg_snprintf(command,command._width,"%s -w -4 -c \"%s\" > \"%s\"", + cimg::dcraw_path(),s_filename.data(),CImg::string(filename_tmp)._system_strescape().data()); + cimg::system(command,cimg::dcraw_path()); + if (!(file = std_fopen(filename_tmp,"rb"))) { + cimg::fclose(cimg::fopen(filename,"r")); + throw CImgIOException(_cimg_instance + "load_dcraw_external(): Failed to load file '%s' with external command 'dcraw'.", + cimg_instance, + filename); + + } else cimg::fclose(file); + load_pnm(filename_tmp); + std::remove(filename_tmp); + return *this; + } + + //! Load image from a RAW Color Camera file, using external tool 'dcraw' \newinstance. + static CImg get_load_dcraw_external(const char *const filename) { + return CImg().load_dcraw_external(filename); + } + + //! Load image from a camera stream, using OpenCV. + /** + \param camera_index Index of the camera to capture images from. + \param skip_frames Number of frames to skip before the capture. + \param release_camera Tells if the camera ressource must be released at the end of the method. + \param capture_width Width of the desired image. + \param capture_height Height of the desired image. + **/ + CImg& load_camera(const unsigned int camera_index=0, const unsigned int skip_frames=0, + const bool release_camera=true, const unsigned int capture_width=0, + const unsigned int capture_height=0) { +#ifdef cimg_use_opencv + if (camera_index>99) + throw CImgArgumentException(_cimg_instance + "load_camera(): Invalid request for camera #%u " + "(no more than 100 cameras can be managed simultaneously).", + cimg_instance, + camera_index); + static CvCapture *capture[100] = { 0 }; + static unsigned int capture_w[100], capture_h[100]; + if (release_camera) { + cimg::mutex(9); + if (capture[camera_index]) cvReleaseCapture(&(capture[camera_index])); + capture[camera_index] = 0; + capture_w[camera_index] = capture_h[camera_index] = 0; + cimg::mutex(9,0); + return *this; + } + if (!capture[camera_index]) { + cimg::mutex(9); + capture[camera_index] = cvCreateCameraCapture(camera_index); + capture_w[camera_index] = 0; + capture_h[camera_index] = 0; + cimg::mutex(9,0); + if (!capture[camera_index]) { + throw CImgIOException(_cimg_instance + "load_camera(): Failed to initialize camera #%u.", + cimg_instance, + camera_index); + } + } + cimg::mutex(9); + if (capture_width!=capture_w[camera_index]) { + cvSetCaptureProperty(capture[camera_index],CV_CAP_PROP_FRAME_WIDTH,capture_width); + capture_w[camera_index] = capture_width; + } + if (capture_height!=capture_h[camera_index]) { + cvSetCaptureProperty(capture[camera_index],CV_CAP_PROP_FRAME_HEIGHT,capture_height); + capture_h[camera_index] = capture_height; + } + const IplImage *img = 0; + for (unsigned int i = 0; iwidthStep - 3*img->width); + assign(img->width,img->height,1,3); + const unsigned char* ptrs = (unsigned char*)img->imageData; + T *ptr_r = data(0,0,0,0), *ptr_g = data(0,0,0,1), *ptr_b = data(0,0,0,2); + if (step>0) cimg_forY(*this,y) { + cimg_forX(*this,x) { *(ptr_b++) = (T)*(ptrs++); *(ptr_g++) = (T)*(ptrs++); *(ptr_r++) = (T)*(ptrs++); } + ptrs+=step; + } else for (ulongT siz = (ulongT)img->width*img->height; siz; --siz) { + *(ptr_b++) = (T)*(ptrs++); *(ptr_g++) = (T)*(ptrs++); *(ptr_r++) = (T)*(ptrs++); + } + } + cimg::mutex(9,0); + return *this; +#else + cimg::unused(camera_index,skip_frames,release_camera,capture_width,capture_height); + throw CImgIOException(_cimg_instance + "load_camera(): This function requires the OpenCV library to run " + "(macro 'cimg_use_opencv' must be defined).", + cimg_instance); +#endif + } + + //! Load image from a camera stream, using OpenCV \newinstance. + static CImg get_load_camera(const unsigned int camera_index=0, const unsigned int skip_frames=0, + const bool release_camera=true, + const unsigned int capture_width=0, const unsigned int capture_height=0) { + return CImg().load_camera(camera_index,skip_frames,release_camera,capture_width,capture_height); + } + + //! Load image using various non-native ways. + /** + \param filename Filename, as a C-string. + **/ + CImg& load_other(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimg_instance + "load_other(): Specified filename is (null).", + cimg_instance); + + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + try { load_magick(filename); } + catch (CImgException&) { + try { load_imagemagick_external(filename); } + catch (CImgException&) { + try { load_graphicsmagick_external(filename); } + catch (CImgException&) { + try { load_cimg(filename); } + catch (CImgException&) { + try { + std::fclose(cimg::fopen(filename,"rb")); + } catch (CImgException&) { + cimg::exception_mode(omode); + throw CImgIOException(_cimg_instance + "load_other(): Failed to open file '%s'.", + cimg_instance, + filename); + } + cimg::exception_mode(omode); + throw CImgIOException(_cimg_instance + "load_other(): Failed to recognize format of file '%s'.", + cimg_instance, + filename); + } + } + } + } + cimg::exception_mode(omode); + return *this; + } + + //! Load image using various non-native ways \newinstance. + static CImg get_load_other(const char *const filename) { + return CImg().load_other(filename); + } + + //@} + //--------------------------- + // + //! \name Data Output + //@{ + //--------------------------- + + //! Display information about the image data. + /** + \param title Name for the considered image. + \param display_stats Tells to compute and display image statistics. + **/ + const CImg& print(const char *const title=0, const bool display_stats=true) const { + + int xm = 0, ym = 0, zm = 0, vm = 0, xM = 0, yM = 0, zM = 0, vM = 0; + CImg st; + if (!is_empty() && display_stats) { + st = get_stats(); + xm = (int)st[4]; ym = (int)st[5], zm = (int)st[6], vm = (int)st[7]; + xM = (int)st[8]; yM = (int)st[9], zM = (int)st[10], vM = (int)st[11]; + } + + const ulongT siz = size(), msiz = siz*sizeof(T), siz1 = siz - 1, + mdisp = msiz<8*1024?0U:msiz<8*1024*1024?1U:2U, width1 = _width - 1; + + CImg _title(64); + if (!title) cimg_snprintf(_title,_title._width,"CImg<%s>",pixel_type()); + + std::fprintf(cimg::output(),"%s%s%s%s: %sthis%s = %p, %ssize%s = (%u,%u,%u,%u) [%lu %s], %sdata%s = (%s*)%p", + cimg::t_magenta,cimg::t_bold,title?title:_title._data,cimg::t_normal, + cimg::t_bold,cimg::t_normal,(void*)this, + cimg::t_bold,cimg::t_normal,_width,_height,_depth,_spectrum, + (unsigned long)(mdisp==0?msiz:(mdisp==1?(msiz>>10):(msiz>>20))), + mdisp==0?"b":(mdisp==1?"Kio":"Mio"), + cimg::t_bold,cimg::t_normal,pixel_type(),(void*)begin()); + if (_data) + std::fprintf(cimg::output(),"..%p (%s) = [ ",(void*)((char*)end() - 1),_is_shared?"shared":"non-shared"); + else std::fprintf(cimg::output()," (%s) = [ ",_is_shared?"shared":"non-shared"); + + if (!is_empty()) cimg_foroff(*this,off) { + std::fprintf(cimg::output(),"%g",(double)_data[off]); + if (off!=siz1) std::fprintf(cimg::output(),"%s",off%_width==width1?" ; ":" "); + if (off==7 && siz>16) { off = siz1 - 8; std::fprintf(cimg::output(),"... "); } + } + if (!is_empty() && display_stats) + std::fprintf(cimg::output(), + " ], %smin%s = %g, %smax%s = %g, %smean%s = %g, %sstd%s = %g, %scoords_min%s = (%u,%u,%u,%u), " + "%scoords_max%s = (%u,%u,%u,%u).\n", + cimg::t_bold,cimg::t_normal,st[0], + cimg::t_bold,cimg::t_normal,st[1], + cimg::t_bold,cimg::t_normal,st[2], + cimg::t_bold,cimg::t_normal,std::sqrt(st[3]), + cimg::t_bold,cimg::t_normal,xm,ym,zm,vm, + cimg::t_bold,cimg::t_normal,xM,yM,zM,vM); + else std::fprintf(cimg::output(),"%s].\n",is_empty()?"":" "); + std::fflush(cimg::output()); + return *this; + } + + //! Display image into a CImgDisplay window. + /** + \param disp Display window. + **/ + const CImg& display(CImgDisplay& disp) const { + disp.display(*this); + return *this; + } + + //! Display image into a CImgDisplay window, in an interactive way. + /** + \param disp Display window. + \param display_info Tells if image information are displayed on the standard output. + \param[in,out] XYZ Contains the XYZ coordinates at start / exit of the function. + \param exit_on_anykey Exit function when any key is pressed. + **/ + const CImg& display(CImgDisplay &disp, const bool display_info, unsigned int *const XYZ=0, + const bool exit_on_anykey=false) const { + return _display(disp,0,display_info,XYZ,exit_on_anykey,false); + } + + //! Display image into an interactive window. + /** + \param title Window title + \param display_info Tells if image information are displayed on the standard output. + \param[in,out] XYZ Contains the XYZ coordinates at start / exit of the function. + \param exit_on_anykey Exit function when any key is pressed. + **/ + const CImg& display(const char *const title=0, const bool display_info=true, unsigned int *const XYZ=0, + const bool exit_on_anykey=false) const { + CImgDisplay disp; + return _display(disp,title,display_info,XYZ,exit_on_anykey,false); + } + + const CImg& _display(CImgDisplay &disp, const char *const title, const bool display_info, + unsigned int *const XYZ, const bool exit_on_anykey, + const bool exit_on_simpleclick) const { + unsigned int oldw = 0, oldh = 0, _XYZ[3] = { 0 }, key = 0; + int x0 = 0, y0 = 0, z0 = 0, x1 = width() - 1, y1 = height() - 1, z1 = depth() - 1, + old_mouse_x = -1, old_mouse_y = -1; + + if (!disp) { + disp.assign(cimg_fitscreen(_width,_height,_depth),title?title:0,1); + if (!title) disp.set_title("CImg<%s> (%ux%ux%ux%u)",pixel_type(),_width,_height,_depth,_spectrum); + else disp.set_title("%s",title); + } else if (title) disp.set_title("%s",title); + disp.show().flush(); + + const CImg dtitle = CImg::string(disp.title()); + if (display_info) print(dtitle); + + CImg zoom; + for (bool reset_view = true, resize_disp = false, is_first_select = true; !key && !disp.is_closed(); ) { + if (reset_view) { + if (XYZ) { _XYZ[0] = XYZ[0]; _XYZ[1] = XYZ[1]; _XYZ[2] = XYZ[2]; } + else { + _XYZ[0] = (unsigned int)(x0 + x1)/2; + _XYZ[1] = (unsigned int)(y0 + y1)/2; + _XYZ[2] = (unsigned int)(z0 + z1)/2; + } + x0 = 0; y0 = 0; z0 = 0; x1 = width() - 1; y1 = height() - 1; z1 = depth() - 1; + oldw = disp._width; oldh = disp._height; + reset_view = false; + } + if (!x0 && !y0 && !z0 && x1==width() - 1 && y1==height() - 1 && z1==depth() - 1) { + if (is_empty()) zoom.assign(1,1,1,1,(T)0); else zoom.assign(); + } else zoom = get_crop(x0,y0,z0,x1,y1,z1); + + const CImg& visu = zoom?zoom:*this; + const unsigned int + dx = 1U + x1 - x0, dy = 1U + y1 - y0, dz = 1U + z1 - z0, + tw = dx + (dz>1?dz:0U), th = dy + (dz>1?dz:0U); + if (!is_empty() && !disp.is_fullscreen() && resize_disp) { + const unsigned int + ttw = tw*disp.width()/oldw, tth = th*disp.height()/oldh, + dM = std::max(ttw,tth), diM = (unsigned int)std::max(disp.width(),disp.height()), + imgw = std::max(16U,ttw*diM/dM), imgh = std::max(16U,tth*diM/dM); + disp.set_fullscreen(false).resize(cimg_fitscreen(imgw,imgh,1),false); + resize_disp = false; + } + oldw = tw; oldh = th; + + bool + go_up = false, go_down = false, go_left = false, go_right = false, + go_inc = false, go_dec = false, go_in = false, go_out = false, + go_in_center = false; + + disp.set_title("%s",dtitle._data); + if (_width>1 && visu._width==1) disp.set_title("%s | x=%u",disp._title,x0); + if (_height>1 && visu._height==1) disp.set_title("%s | y=%u",disp._title,y0); + if (_depth>1 && visu._depth==1) disp.set_title("%s | z=%u",disp._title,z0); + + if (!is_first_select) { + _XYZ[0] = (unsigned int)(x1 - x0)/2; + _XYZ[1] = (unsigned int)(y1 - y0)/2; + _XYZ[2] = (unsigned int)(z1 - z0)/2; + } + + disp._mouse_x = old_mouse_x; disp._mouse_y = old_mouse_y; + const CImg selection = visu._select(disp,0,2,_XYZ,x0,y0,z0,true,is_first_select,_depth>1); + old_mouse_x = disp._mouse_x; old_mouse_y = disp._mouse_y; + is_first_select = false; + + if (disp.wheel()) { + if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + go_down = !(go_up = disp.wheel()>0); + } else if (disp.is_keySHIFTLEFT() || disp.is_keySHIFTRIGHT()) { + go_left = !(go_right = disp.wheel()>0); + } + else if (disp.is_keyALT() || disp.is_keyALTGR() || _depth==1) { + go_out = !(go_in = disp.wheel()>0); go_in_center = false; + } + disp.set_wheel(); + } + + const int + sx0 = selection(0), sy0 = selection(1), sz0 = selection(2), + sx1 = selection(3), sy1 = selection(4), sz1 = selection(5); + if (sx0>=0 && sy0>=0 && sz0>=0 && sx1>=0 && sy1>=0 && sz1>=0) { + x1 = x0 + sx1; y1 = y0 + sy1; z1 = z0 + sz1; + x0+=sx0; y0+=sy0; z0+=sz0; + if (sx0==sx1 && sy0==sy1 && sz0==sz1) { + if (exit_on_simpleclick && (!zoom || is_empty())) break; else reset_view = true; + } + resize_disp = true; + } else switch (key = disp.key()) { +#if cimg_OS!=2 + case cimg::keyCTRLRIGHT : case cimg::keySHIFTRIGHT : +#endif + case 0 : case cimg::keyCTRLLEFT : case cimg::keyPAD5 : case cimg::keySHIFTLEFT : +#if cimg_OS!=2 + case cimg::keyALTGR : +#endif + case cimg::keyALT : key = 0; break; + case cimg::keyP : if (visu._depth>1 && (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT())) { + // Special mode: play stack of frames + const unsigned int + w1 = visu._width*disp.width()/(visu._width + (visu._depth>1?visu._depth:0)), + h1 = visu._height*disp.height()/(visu._height + (visu._depth>1?visu._depth:0)); + float frame_timing = 5; + bool is_stopped = false; + disp.set_key(key,false).set_wheel().resize(cimg_fitscreen(w1,h1,1),false); key = 0; + for (unsigned int timer = 0; !key && !disp.is_closed() && !disp.button(); ) { + if (disp.is_resized()) disp.resize(false); + if (!timer) { + visu.get_slice((int)_XYZ[2]).display(disp.set_title("%s | z=%d",dtitle.data(),_XYZ[2])); + (++_XYZ[2])%=visu._depth; + } + if (!is_stopped) { if (++timer>(unsigned int)frame_timing) timer = 0; } else timer = ~0U; + if (disp.wheel()) { frame_timing-=disp.wheel()/3.0f; disp.set_wheel(); } + switch (key = disp.key()) { +#if cimg_OS!=2 + case cimg::keyCTRLRIGHT : +#endif + case cimg::keyCTRLLEFT : key = 0; break; + case cimg::keyPAGEUP : frame_timing-=0.3f; key = 0; break; + case cimg::keyPAGEDOWN : frame_timing+=0.3f; key = 0; break; + case cimg::keySPACE : is_stopped = !is_stopped; disp.set_key(key,false); key = 0; break; + case cimg::keyARROWLEFT : case cimg::keyARROWUP : is_stopped = true; timer = 0; key = 0; break; + case cimg::keyARROWRIGHT : case cimg::keyARROWDOWN : is_stopped = true; + (_XYZ[2]+=visu._depth - 2)%=visu._depth; timer = 0; key = 0; break; + case cimg::keyD : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,false), + CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,true),false); + disp.set_key(key,false); key = 0; + } break; + case cimg::keyC : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(cimg_fitscreen(2*disp.width()/3,2*disp.height()/3,1),false).set_key(key,false); key = 0; + } break; + case cimg::keyR : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(cimg_fitscreen(_width,_height,_depth),false).set_key(key,false); key = 0; + } break; + case cimg::keyF : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.resize(disp.screen_width(),disp.screen_height(),false). + toggle_fullscreen().set_key(key,false); key = 0; + } break; + } + frame_timing = frame_timing<1?1:(frame_timing>39?39:frame_timing); + disp.wait(20); + } + const unsigned int + w2 = (visu._width + (visu._depth>1?visu._depth:0))*disp.width()/visu._width, + h2 = (visu._height + (visu._depth>1?visu._depth:0))*disp.height()/visu._height; + disp.resize(cimg_fitscreen(w2,h2,1),false).set_title(dtitle.data()).set_key().set_button().set_wheel(); + key = 0; + } break; + case cimg::keyHOME : reset_view = resize_disp = true; key = 0; break; + case cimg::keyPADADD : go_in = true; go_in_center = true; key = 0; break; + case cimg::keyPADSUB : go_out = true; key = 0; break; + case cimg::keyARROWLEFT : case cimg::keyPAD4: go_left = true; key = 0; break; + case cimg::keyARROWRIGHT : case cimg::keyPAD6: go_right = true; key = 0; break; + case cimg::keyARROWUP : case cimg::keyPAD8: go_up = true; key = 0; break; + case cimg::keyARROWDOWN : case cimg::keyPAD2: go_down = true; key = 0; break; + case cimg::keyPAD7 : go_up = go_left = true; key = 0; break; + case cimg::keyPAD9 : go_up = go_right = true; key = 0; break; + case cimg::keyPAD1 : go_down = go_left = true; key = 0; break; + case cimg::keyPAD3 : go_down = go_right = true; key = 0; break; + case cimg::keyPAGEUP : go_inc = true; key = 0; break; + case cimg::keyPAGEDOWN : go_dec = true; key = 0; break; + } + if (go_in) { + const int + mx = go_in_center?disp.width()/2:disp.mouse_x(), + my = go_in_center?disp.height()/2:disp.mouse_y(), + mX = mx*(width() + (depth()>1?depth():0))/disp.width(), + mY = my*(height() + (depth()>1?depth():0))/disp.height(); + int X = (int)_XYZ[0], Y = (int)_XYZ[1], Z = (int)_XYZ[2]; + if (mX=height()) { + X = x0 + mX*(1 + x1 - x0)/width(); Z = z0 + (mY - height())*(1 + z1 - z0)/depth(); Y = (int)_XYZ[1]; + } + if (mX>=width() && mY4) { x0 = X - 3*(X - x0)/4; x1 = X + 3*(x1 - X)/4; } + if (y1 - y0>4) { y0 = Y - 3*(Y - y0)/4; y1 = Y + 3*(y1 - Y)/4; } + if (z1 - z0>4) { z0 = Z - 3*(Z - z0)/4; z1 = Z + 3*(z1 - Z)/4; } + } + if (go_out) { + const int + delta_x = (x1 - x0)/8, delta_y = (y1 - y0)/8, delta_z = (z1 - z0)/8, + ndelta_x = delta_x?delta_x:(_width>1), + ndelta_y = delta_y?delta_y:(_height>1), + ndelta_z = delta_z?delta_z:(_depth>1); + x0-=ndelta_x; y0-=ndelta_y; z0-=ndelta_z; + x1+=ndelta_x; y1+=ndelta_y; z1+=ndelta_z; + if (x0<0) { x1-=x0; x0 = 0; if (x1>=width()) x1 = width() - 1; } + if (y0<0) { y1-=y0; y0 = 0; if (y1>=height()) y1 = height() - 1; } + if (z0<0) { z1-=z0; z0 = 0; if (z1>=depth()) z1 = depth() - 1; } + if (x1>=width()) { x0-=(x1 - width() + 1); x1 = width() - 1; if (x0<0) x0 = 0; } + if (y1>=height()) { y0-=(y1 - height() + 1); y1 = height() - 1; if (y0<0) y0 = 0; } + if (z1>=depth()) { z0-=(z1 - depth() + 1); z1 = depth() - 1; if (z0<0) z0 = 0; } + const float + ratio = (float)(x1-x0)/(y1-y0), + ratiow = (float)disp._width/disp._height, + sub = std::min(cimg::abs(ratio - ratiow),cimg::abs(1/ratio-1/ratiow)); + if (sub>0.01) resize_disp = true; + } + if (go_left) { + const int delta = (x1 - x0)/4, ndelta = delta?delta:(_width>1); + if (x0 - ndelta>=0) { x0-=ndelta; x1-=ndelta; } + else { x1-=x0; x0 = 0; } + } + if (go_right) { + const int delta = (x1 - x0)/4, ndelta = delta?delta:(_width>1); + if (x1+ndelta1); + if (y0 - ndelta>=0) { y0-=ndelta; y1-=ndelta; } + else { y1-=y0; y0 = 0; } + } + if (go_down) { + const int delta = (y1 - y0)/4, ndelta = delta?delta:(_height>1); + if (y1+ndelta1); + if (z0 - ndelta>=0) { z0-=ndelta; z1-=ndelta; } + else { z1-=z0; z0 = 0; } + } + if (go_dec) { + const int delta = (z1 - z0)/4, ndelta = delta?delta:(_depth>1); + if (z1+ndelta + const CImg& display_object3d(CImgDisplay& disp, + const CImg& vertices, + const CImgList& primitives, + const CImgList& colors, + const to& opacities, + const bool centering=true, + const int render_static=4, const int render_motion=1, + const bool is_double_sided=true, const float focale=700, + const float light_x=0, const float light_y=0, const float light_z=-5e8f, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const bool display_axes=true, float *const pose_matrix=0, + const bool exit_on_anykey=false) const { + return _display_object3d(disp,0,vertices,primitives,colors,opacities,centering,render_static, + render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + + //! Display object 3d in an interactive window \simplification. + template + const CImg& display_object3d(const char *const title, + const CImg& vertices, + const CImgList& primitives, + const CImgList& colors, + const to& opacities, + const bool centering=true, + const int render_static=4, const int render_motion=1, + const bool is_double_sided=true, const float focale=700, + const float light_x=0, const float light_y=0, const float light_z=-5e8f, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const bool display_axes=true, float *const pose_matrix=0, + const bool exit_on_anykey=false) const { + CImgDisplay disp; + return _display_object3d(disp,title,vertices,primitives,colors,opacities,centering,render_static, + render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + + //! Display object 3d in an interactive window \simplification. + template + const CImg& display_object3d(CImgDisplay &disp, + const CImg& vertices, + const CImgList& primitives, + const CImgList& colors, + const bool centering=true, + const int render_static=4, const int render_motion=1, + const bool is_double_sided=true, const float focale=700, + const float light_x=0, const float light_y=0, const float light_z=-5e8f, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const bool display_axes=true, float *const pose_matrix=0, + const bool exit_on_anykey=false) const { + return display_object3d(disp,vertices,primitives,colors,CImgList(),centering, + render_static,render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + + //! Display object 3d in an interactive window \simplification. + template + const CImg& display_object3d(const char *const title, + const CImg& vertices, + const CImgList& primitives, + const CImgList& colors, + const bool centering=true, + const int render_static=4, const int render_motion=1, + const bool is_double_sided=true, const float focale=700, + const float light_x=0, const float light_y=0, const float light_z=-5e8f, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const bool display_axes=true, float *const pose_matrix=0, + const bool exit_on_anykey=false) const { + return display_object3d(title,vertices,primitives,colors,CImgList(),centering, + render_static,render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + + //! Display object 3d in an interactive window \simplification. + template + const CImg& display_object3d(CImgDisplay &disp, + const CImg& vertices, + const CImgList& primitives, + const bool centering=true, + const int render_static=4, const int render_motion=1, + const bool is_double_sided=true, const float focale=700, + const float light_x=0, const float light_y=0, const float light_z=-5e8f, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const bool display_axes=true, float *const pose_matrix=0, + const bool exit_on_anykey=false) const { + return display_object3d(disp,vertices,primitives,CImgList(),centering, + render_static,render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + + + //! Display object 3d in an interactive window \simplification. + template + const CImg& display_object3d(const char *const title, + const CImg& vertices, + const CImgList& primitives, + const bool centering=true, + const int render_static=4, const int render_motion=1, + const bool is_double_sided=true, const float focale=700, + const float light_x=0, const float light_y=0, const float light_z=-5e8f, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const bool display_axes=true, float *const pose_matrix=0, + const bool exit_on_anykey=false) const { + return display_object3d(title,vertices,primitives,CImgList(),centering, + render_static,render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + + //! Display object 3d in an interactive window \simplification. + template + const CImg& display_object3d(CImgDisplay &disp, + const CImg& vertices, + const bool centering=true, + const int render_static=4, const int render_motion=1, + const bool is_double_sided=true, const float focale=700, + const float light_x=0, const float light_y=0, const float light_z=-5e8f, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const bool display_axes=true, float *const pose_matrix=0, + const bool exit_on_anykey=false) const { + return display_object3d(disp,vertices,CImgList(),centering, + render_static,render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + + //! Display object 3d in an interactive window \simplification. + template + const CImg& display_object3d(const char *const title, + const CImg& vertices, + const bool centering=true, + const int render_static=4, const int render_motion=1, + const bool is_double_sided=true, const float focale=700, + const float light_x=0, const float light_y=0, const float light_z=-5e8f, + const float specular_lightness=0.2f, const float specular_shininess=0.1f, + const bool display_axes=true, float *const pose_matrix=0, + const bool exit_on_anykey=false) const { + return display_object3d(title,vertices,CImgList(),centering, + render_static,render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + + template + const CImg& _display_object3d(CImgDisplay& disp, const char *const title, + const CImg& vertices, + const CImgList& primitives, + const CImgList& colors, + const to& opacities, + const bool centering, + const int render_static, const int render_motion, + const bool is_double_sided, const float focale, + const float light_x, const float light_y, const float light_z, + const float specular_lightness, const float specular_shininess, + const bool display_axes, float *const pose_matrix, + const bool exit_on_anykey) const { + typedef typename cimg::superset::type tpfloat; + + // Check input arguments + if (is_empty()) { + if (disp) return CImg(disp.width(),disp.height(),1,(colors && colors[0].size()==1)?1:3,0). + _display_object3d(disp,title,vertices,primitives,colors,opacities,centering, + render_static,render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + else return CImg(1,2,1,1,64,128).resize(cimg_fitscreen(CImgDisplay::screen_width()/2, + CImgDisplay::screen_height()/2,1), + 1,(colors && colors[0].size()==1)?1:3,3). + _display_object3d(disp,title,vertices,primitives,colors,opacities,centering, + render_static,render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } else { if (disp) disp.resize(*this,false); } + CImg error_message(1024); + if (!vertices.is_object3d(primitives,colors,opacities,true,error_message)) + throw CImgArgumentException(_cimg_instance + "display_object3d(): Invalid specified 3d object (%u,%u) (%s).", + cimg_instance,vertices._width,primitives._width,error_message.data()); + if (vertices._width && !primitives) { + CImgList nprimitives(vertices._width,1,1,1,1); + cimglist_for(nprimitives,l) nprimitives(l,0) = (tf)l; + return _display_object3d(disp,title,vertices,nprimitives,colors,opacities,centering, + render_static,render_motion,is_double_sided,focale, + light_x,light_y,light_z,specular_lightness,specular_shininess, + display_axes,pose_matrix,exit_on_anykey); + } + if (!disp) { + disp.assign(cimg_fitscreen(_width,_height,_depth),title?title:0,3); + if (!title) disp.set_title("CImg<%s> (%u vertices, %u primitives)", + pixel_type(),vertices._width,primitives._width); + } else if (title) disp.set_title("%s",title); + + // Init 3d objects and compute object statistics + CImg + pose, + rotated_vertices(vertices._width,3), + bbox_vertices, rotated_bbox_vertices, + axes_vertices, rotated_axes_vertices, + bbox_opacities, axes_opacities; + CImgList bbox_primitives, axes_primitives; + CImgList reverse_primitives; + CImgList bbox_colors, bbox_colors2, axes_colors; + unsigned int ns_width = 0, ns_height = 0; + int _is_double_sided = (int)is_double_sided; + bool ndisplay_axes = display_axes; + const CImg + background_color(1,1,1,_spectrum,0), + foreground_color(1,1,1,_spectrum,255); + float + Xoff = 0, Yoff = 0, Zoff = 0, sprite_scale = 1, + xm = 0, xM = vertices?vertices.get_shared_row(0).max_min(xm):0, + ym = 0, yM = vertices?vertices.get_shared_row(1).max_min(ym):0, + zm = 0, zM = vertices?vertices.get_shared_row(2).max_min(zm):0; + const float delta = cimg::max(xM - xm,yM - ym,zM - zm); + + rotated_bbox_vertices = bbox_vertices.assign(8,3,1,1, + xm,xM,xM,xm,xm,xM,xM,xm, + ym,ym,yM,yM,ym,ym,yM,yM, + zm,zm,zm,zm,zM,zM,zM,zM); + bbox_primitives.assign(6,1,4,1,1, 0,3,2,1, 4,5,6,7, 1,2,6,5, 0,4,7,3, 0,1,5,4, 2,3,7,6); + bbox_colors.assign(6,_spectrum,1,1,1,background_color[0]); + bbox_colors2.assign(6,_spectrum,1,1,1,foreground_color[0]); + bbox_opacities.assign(bbox_colors._width,1,1,1,0.3f); + + rotated_axes_vertices = axes_vertices.assign(7,3,1,1, + 0,20,0,0,22,-6,-6, + 0,0,20,0,-6,22,-6, + 0,0,0,20,0,0,22); + axes_opacities.assign(3,1,1,1,1); + axes_colors.assign(3,_spectrum,1,1,1,foreground_color[0]); + axes_primitives.assign(3,1,2,1,1, 0,1, 0,2, 0,3); + + // Begin user interaction loop + CImg visu0(*this), visu; + CImg zbuffer(visu0.width(),visu0.height(),1,1,0); + bool init_pose = true, clicked = false, redraw = true; + unsigned int key = 0; + int + x0 = 0, y0 = 0, x1 = 0, y1 = 0, + nrender_static = render_static, + nrender_motion = render_motion; + disp.show().flush(); + + while (!disp.is_closed() && !key) { + + // Init object pose + if (init_pose) { + const float + ratio = delta>0?(2.0f*std::min(disp.width(),disp.height())/(3.0f*delta)):1, + dx = (xM + xm)/2, dy = (yM + ym)/2, dz = (zM + zm)/2; + if (centering) + CImg(4,3,1,1, ratio,0.,0.,-ratio*dx, 0.,ratio,0.,-ratio*dy, 0.,0.,ratio,-ratio*dz).move_to(pose); + else CImg(4,3,1,1, 1,0,0,0, 0,1,0,0, 0,0,1,0).move_to(pose); + if (pose_matrix) { + CImg pose0(pose_matrix,4,3,1,1,false); + pose0.resize(4,4,1,1,0); pose.resize(4,4,1,1,0); + pose0(3,3) = pose(3,3) = 1; + (pose0*pose).get_crop(0,0,3,2).move_to(pose); + Xoff = pose_matrix[12]; Yoff = pose_matrix[13]; Zoff = pose_matrix[14]; sprite_scale = pose_matrix[15]; + } else { Xoff = Yoff = Zoff = 0; sprite_scale = 1; } + init_pose = false; + redraw = true; + } + + // Rotate and draw 3d object + if (redraw) { + const float + r00 = pose(0,0), r10 = pose(1,0), r20 = pose(2,0), r30 = pose(3,0), + r01 = pose(0,1), r11 = pose(1,1), r21 = pose(2,1), r31 = pose(3,1), + r02 = pose(0,2), r12 = pose(1,2), r22 = pose(2,2), r32 = pose(3,2); + if ((clicked && nrender_motion>=0) || (!clicked && nrender_static>=0)) + cimg_forX(vertices,l) { + const float x = (float)vertices(l,0), y = (float)vertices(l,1), z = (float)vertices(l,2); + rotated_vertices(l,0) = r00*x + r10*y + r20*z + r30; + rotated_vertices(l,1) = r01*x + r11*y + r21*z + r31; + rotated_vertices(l,2) = r02*x + r12*y + r22*z + r32; + } + else cimg_forX(bbox_vertices,l) { + const float x = bbox_vertices(l,0), y = bbox_vertices(l,1), z = bbox_vertices(l,2); + rotated_bbox_vertices(l,0) = r00*x + r10*y + r20*z + r30; + rotated_bbox_vertices(l,1) = r01*x + r11*y + r21*z + r31; + rotated_bbox_vertices(l,2) = r02*x + r12*y + r22*z + r32; + } + + // Draw objects + const bool render_with_zbuffer = !clicked && nrender_static>0; + visu = visu0; + if ((clicked && nrender_motion<0) || (!clicked && nrender_static<0)) + visu.draw_object3d(Xoff + visu._width/2.0f,Yoff + visu._height/2.0f,Zoff, + rotated_bbox_vertices,bbox_primitives,bbox_colors,bbox_opacities,2,false,focale). + draw_object3d(Xoff + visu._width/2.0f,Yoff + visu._height/2.0f,Zoff, + rotated_bbox_vertices,bbox_primitives,bbox_colors2,1,false,focale); + else visu._draw_object3d((void*)0,render_with_zbuffer?zbuffer.fill(0):CImg::empty(), + Xoff + visu._width/2.0f,Yoff + visu._height/2.0f,Zoff, + rotated_vertices,reverse_primitives?reverse_primitives:primitives, + colors,opacities,clicked?nrender_motion:nrender_static,_is_double_sided==1,focale, + width()/2.0f + light_x,height()/2.0f + light_y,light_z + Zoff, + specular_lightness,specular_shininess,sprite_scale); + // Draw axes + if (ndisplay_axes) { + const float + n = 1e-8f + cimg::hypot(r00,r01,r02), + _r00 = r00/n, _r10 = r10/n, _r20 = r20/n, + _r01 = r01/n, _r11 = r11/n, _r21 = r21/n, + _r02 = r01/n, _r12 = r12/n, _r22 = r22/n, + Xaxes = 25, Yaxes = visu._height - 38.0f; + cimg_forX(axes_vertices,l) { + const float + x = axes_vertices(l,0), + y = axes_vertices(l,1), + z = axes_vertices(l,2); + rotated_axes_vertices(l,0) = _r00*x + _r10*y + _r20*z; + rotated_axes_vertices(l,1) = _r01*x + _r11*y + _r21*z; + rotated_axes_vertices(l,2) = _r02*x + _r12*y + _r22*z; + } + axes_opacities(0,0) = (rotated_axes_vertices(1,2)>0)?0.5f:1.0f; + axes_opacities(1,0) = (rotated_axes_vertices(2,2)>0)?0.5f:1.0f; + axes_opacities(2,0) = (rotated_axes_vertices(3,2)>0)?0.5f:1.0f; + visu.draw_object3d(Xaxes,Yaxes,0,rotated_axes_vertices,axes_primitives, + axes_colors,axes_opacities,1,false,focale). + draw_text((int)(Xaxes + rotated_axes_vertices(4,0)), + (int)(Yaxes + rotated_axes_vertices(4,1)), + "X",axes_colors[0]._data,0,axes_opacities(0,0),13). + draw_text((int)(Xaxes + rotated_axes_vertices(5,0)), + (int)(Yaxes + rotated_axes_vertices(5,1)), + "Y",axes_colors[1]._data,0,axes_opacities(1,0),13). + draw_text((int)(Xaxes + rotated_axes_vertices(6,0)), + (int)(Yaxes + rotated_axes_vertices(6,1)), + "Z",axes_colors[2]._data,0,axes_opacities(2,0),13); + } + visu.display(disp); + if (!clicked || nrender_motion==nrender_static) redraw = false; + } + + // Handle user interaction + disp.wait(); + if ((disp.button() || disp.wheel()) && disp.mouse_x()>=0 && disp.mouse_y()>=0) { + redraw = true; + if (!clicked) { x0 = x1 = disp.mouse_x(); y0 = y1 = disp.mouse_y(); if (!disp.wheel()) clicked = true; } + else { x1 = disp.mouse_x(); y1 = disp.mouse_y(); } + if (disp.button()&1) { + const float + R = 0.45f*std::min(disp.width(),disp.height()), + R2 = R*R, + u0 = (float)(x0 - disp.width()/2), + v0 = (float)(y0 - disp.height()/2), + u1 = (float)(x1 - disp.width()/2), + v1 = (float)(y1 - disp.height()/2), + n0 = cimg::hypot(u0,v0), + n1 = cimg::hypot(u1,v1), + nu0 = n0>R?(u0*R/n0):u0, + nv0 = n0>R?(v0*R/n0):v0, + nw0 = (float)std::sqrt(std::max(0.0f,R2 - nu0*nu0 - nv0*nv0)), + nu1 = n1>R?(u1*R/n1):u1, + nv1 = n1>R?(v1*R/n1):v1, + nw1 = (float)std::sqrt(std::max(0.0f,R2 - nu1*nu1 - nv1*nv1)), + u = nv0*nw1 - nw0*nv1, + v = nw0*nu1 - nu0*nw1, + w = nv0*nu1 - nu0*nv1, + n = cimg::hypot(u,v,w), + alpha = (float)std::asin(n/R2)*180/cimg::PI; + (CImg::rotation_matrix(u,v,w,-alpha)*pose).move_to(pose); + x0 = x1; y0 = y1; + } + if (disp.button()&2) { + if (focale>0) Zoff-=(y0 - y1)*focale/400; + else { const float s = std::exp((y0 - y1)/400.0f); pose*=s; sprite_scale*=s; } + x0 = x1; y0 = y1; + } + if (disp.wheel()) { + if (focale>0) Zoff-=disp.wheel()*focale/20; + else { const float s = std::exp(disp.wheel()/20.0f); pose*=s; sprite_scale*=s; } + disp.set_wheel(); + } + if (disp.button()&4) { Xoff+=(x1 - x0); Yoff+=(y1 - y0); x0 = x1; y0 = y1; } + if ((disp.button()&1) && (disp.button()&2)) { + init_pose = true; disp.set_button(); x0 = x1; y0 = y1; + pose = CImg(4,3,1,1, 1,0,0,0, 0,1,0,0, 0,0,1,0); + } + } else if (clicked) { x0 = x1; y0 = y1; clicked = false; redraw = true; } + + CImg filename(32); + switch (key = disp.key()) { +#if cimg_OS!=2 + case cimg::keyCTRLRIGHT : +#endif + case 0 : case cimg::keyCTRLLEFT : key = 0; break; + case cimg::keyD: if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,false), + CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,true),false). + _is_resized = true; + disp.set_key(key,false); key = 0; + } break; + case cimg::keyC : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(cimg_fitscreen(2*disp.width()/3,2*disp.height()/3,1),false)._is_resized = true; + disp.set_key(key,false); key = 0; + } break; + case cimg::keyR : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false).resize(cimg_fitscreen(_width,_height,_depth),false)._is_resized = true; + disp.set_key(key,false); key = 0; + } break; + case cimg::keyF : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + if (!ns_width || !ns_height || + ns_width>(unsigned int)disp.screen_width() || ns_height>(unsigned int)disp.screen_height()) { + ns_width = disp.screen_width()*3U/4; + ns_height = disp.screen_height()*3U/4; + } + if (disp.is_fullscreen()) disp.resize(ns_width,ns_height,false); + else { + ns_width = disp._width; ns_height = disp._height; + disp.resize(disp.screen_width(),disp.screen_height(),false); + } + disp.toggle_fullscreen()._is_resized = true; + disp.set_key(key,false); key = 0; + } break; + case cimg::keyT : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + // Switch single/double-sided primitives. + if (--_is_double_sided==-2) _is_double_sided = 1; + if (_is_double_sided>=0) reverse_primitives.assign(); + else primitives.get_reverse_object3d().move_to(reverse_primitives); + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyZ : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Enable/disable Z-buffer + if (zbuffer) zbuffer.assign(); + else zbuffer.assign(visu0.width(),visu0.height(),1,1,0); + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyA : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Show/hide 3d axes. + ndisplay_axes = !ndisplay_axes; + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyF1 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to points. + nrender_motion = (nrender_static==0 && nrender_motion!=0)?0:-1; nrender_static = 0; + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyF2 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to lines. + nrender_motion = (nrender_static==1 && nrender_motion!=1)?1:-1; nrender_static = 1; + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyF3 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to flat. + nrender_motion = (nrender_static==2 && nrender_motion!=2)?2:-1; nrender_static = 2; + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyF4 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to flat-shaded. + nrender_motion = (nrender_static==3 && nrender_motion!=3)?3:-1; nrender_static = 3; + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyF5 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + // Set rendering mode to gouraud-shaded. + nrender_motion = (nrender_static==4 && nrender_motion!=4)?4:-1; nrender_static = 4; + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyF6 : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Set rendering mode to phong-shaded. + nrender_motion = (nrender_static==5 && nrender_motion!=5)?5:-1; nrender_static = 5; + disp.set_key(key,false); key = 0; redraw = true; + } break; + case cimg::keyS : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save snapshot + static unsigned int snap_number = 0; + std::FILE *file; + do { + cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.bmp",snap_number++); + if ((file=std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+visu).draw_text(0,0," Saving snapshot... ", + foreground_color._data,background_color._data,0.7f,13).display(disp); + visu.save(filename); + (+visu).draw_text(0,0," Snapshot '%s' saved. ", + foreground_color._data,background_color._data,0.7f,13,filename._data).display(disp); + disp.set_key(key,false); key = 0; + } break; + case cimg::keyG : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save object as a .off file + static unsigned int snap_number = 0; + std::FILE *file; + do { + cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.off",snap_number++); + if ((file=std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+visu).draw_text(0,0," Saving object... ", + foreground_color._data,background_color._data,0.7f,13).display(disp); + vertices.save_off(reverse_primitives?reverse_primitives:primitives,colors,filename); + (+visu).draw_text(0,0," Object '%s' saved. ", + foreground_color._data,background_color._data,0.7f,13,filename._data).display(disp); + disp.set_key(key,false); key = 0; + } break; + case cimg::keyO : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save object as a .cimg file + static unsigned int snap_number = 0; + std::FILE *file; + do { +#ifdef cimg_use_zlib + cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.cimgz",snap_number++); +#else + cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.cimg",snap_number++); +#endif + if ((file=std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+visu).draw_text(0,0," Saving object... ", + foreground_color._data,background_color._data,0.7f,13).display(disp); + vertices.get_object3dtoCImg3d(reverse_primitives?reverse_primitives:primitives,colors,opacities). + save(filename); + (+visu).draw_text(0,0," Object '%s' saved. ", + foreground_color._data,background_color._data,0.7f,13,filename._data).display(disp); + disp.set_key(key,false); key = 0; + } break; +#ifdef cimg_use_board + case cimg::keyP : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save object as a .EPS file + static unsigned int snap_number = 0; + std::FILE *file; + do { + cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.eps",snap_number++); + if ((file=std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+visu).draw_text(0,0," Saving EPS snapshot... ", + foreground_color._data,background_color._data,0.7f,13).display(disp); + LibBoard::Board board; + (+visu)._draw_object3d(&board,zbuffer.fill(0), + Xoff + visu._width/2.0f,Yoff + visu._height/2.0f,Zoff, + rotated_vertices,reverse_primitives?reverse_primitives:primitives, + colors,opacities,clicked?nrender_motion:nrender_static, + _is_double_sided==1,focale, + visu.width()/2.0f + light_x,visu.height()/2.0f + light_y,light_z + Zoff, + specular_lightness,specular_shininess, + sprite_scale); + board.saveEPS(filename); + (+visu).draw_text(0,0," Object '%s' saved. ", + foreground_color._data,background_color._data,0.7f,13,filename._data).display(disp); + disp.set_key(key,false); key = 0; + } break; + case cimg::keyV : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { // Save object as a .SVG file + static unsigned int snap_number = 0; + std::FILE *file; + do { + cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.svg",snap_number++); + if ((file=std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+visu).draw_text(0,0," Saving SVG snapshot... ", + foreground_color._data,background_color._data,0.7f,13).display(disp); + LibBoard::Board board; + (+visu)._draw_object3d(&board,zbuffer.fill(0), + Xoff + visu._width/2.0f,Yoff + visu._height/2.0f,Zoff, + rotated_vertices,reverse_primitives?reverse_primitives:primitives, + colors,opacities,clicked?nrender_motion:nrender_static, + _is_double_sided==1,focale, + visu.width()/2.0f + light_x,visu.height()/2.0f + light_y,light_z + Zoff, + specular_lightness,specular_shininess, + sprite_scale); + board.saveSVG(filename); + (+visu).draw_text(0,0," Object '%s' saved. ", + foreground_color._data,background_color._data,0.7f,13,filename._data).display(disp); + disp.set_key(key,false); key = 0; + } break; +#endif + } + if (disp.is_resized()) { + disp.resize(false); visu0 = get_resize(disp,1); + if (zbuffer) zbuffer.assign(disp.width(),disp.height()); + redraw = true; + } + if (!exit_on_anykey && key && key!=cimg::keyESC && + (key!=cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) { + key = 0; + } + } + if (pose_matrix) { + std::memcpy(pose_matrix,pose._data,12*sizeof(float)); + pose_matrix[12] = Xoff; pose_matrix[13] = Yoff; pose_matrix[14] = Zoff; pose_matrix[15] = sprite_scale; + } + disp.set_button().set_key(key); + return *this; + } + + //! Display 1d graph in an interactive window. + /** + \param disp Display window. + \param plot_type Plot type. Can be { 0=points | 1=segments | 2=splines | 3=bars }. + \param vertex_type Vertex type. + \param labelx Title for the horizontal axis, as a C-string. + \param xmin Minimum value along the X-axis. + \param xmax Maximum value along the X-axis. + \param labely Title for the vertical axis, as a C-string. + \param ymin Minimum value along the X-axis. + \param ymax Maximum value along the X-axis. + \param exit_on_anykey Exit function when any key is pressed. + **/ + const CImg& display_graph(CImgDisplay &disp, + const unsigned int plot_type=1, const unsigned int vertex_type=1, + const char *const labelx=0, const double xmin=0, const double xmax=0, + const char *const labely=0, const double ymin=0, const double ymax=0, + const bool exit_on_anykey=false) const { + return _display_graph(disp,0,plot_type,vertex_type,labelx,xmin,xmax,labely,ymin,ymax,exit_on_anykey); + } + + //! Display 1d graph in an interactive window \overloading. + const CImg& display_graph(const char *const title=0, + const unsigned int plot_type=1, const unsigned int vertex_type=1, + const char *const labelx=0, const double xmin=0, const double xmax=0, + const char *const labely=0, const double ymin=0, const double ymax=0, + const bool exit_on_anykey=false) const { + CImgDisplay disp; + return _display_graph(disp,title,plot_type,vertex_type,labelx,xmin,xmax,labely,ymin,ymax,exit_on_anykey); + } + + const CImg& _display_graph(CImgDisplay &disp, const char *const title=0, + const unsigned int plot_type=1, const unsigned int vertex_type=1, + const char *const labelx=0, const double xmin=0, const double xmax=0, + const char *const labely=0, const double ymin=0, const double ymax=0, + const bool exit_on_anykey=false) const { + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "display_graph(): Empty instance.", + cimg_instance); + if (!disp) disp.assign(cimg_fitscreen(CImgDisplay::screen_width()/2,CImgDisplay::screen_height()/2,1),0,0). + set_title(title?"%s":"CImg<%s>",title?title:pixel_type()); + const ulongT siz = (ulongT)_width*_height*_depth, siz1 = std::max((ulongT)1,siz - 1); + const unsigned int old_normalization = disp.normalization(); + disp.show().flush()._normalization = 0; + + double y0 = ymin, y1 = ymax, nxmin = xmin, nxmax = xmax; + if (nxmin==nxmax) { nxmin = 0; nxmax = siz1; } + int x0 = 0, x1 = width()*height()*depth() - 1, key = 0; + + for (bool reset_view = true; !key && !disp.is_closed(); ) { + if (reset_view) { x0 = 0; x1 = width()*height()*depth() - 1; y0 = ymin; y1 = ymax; reset_view = false; } + CImg zoom(x1 - x0 + 1,1,1,spectrum()); + cimg_forC(*this,c) zoom.get_shared_channel(c) = CImg(data(x0,0,0,c),x1 - x0 + 1,1,1,1,true); + if (y0==y1) { y0 = zoom.min_max(y1); const double dy = y1 - y0; y0-=dy/20; y1+=dy/20; } + if (y0==y1) { --y0; ++y1; } + + const CImg selection = zoom.get_select_graph(disp,plot_type,vertex_type, + labelx, + nxmin + x0*(nxmax - nxmin)/siz1, + nxmin + x1*(nxmax - nxmin)/siz1, + labely,y0,y1,true); + const int mouse_x = disp.mouse_x(), mouse_y = disp.mouse_y(); + if (selection[0]>=0) { + if (selection[2]<0) reset_view = true; + else { + x1 = x0 + selection[2]; x0+=selection[0]; + if (selection[1]>=0 && selection[3]>=0) { + y0 = y1 - selection[3]*(y1 - y0)/(disp.height() - 32); + y1-=selection[1]*(y1 - y0)/(disp.height() - 32); + } + } + } else { + bool go_in = false, go_out = false, go_left = false, go_right = false, go_up = false, go_down = false; + switch (key = (int)disp.key()) { + case cimg::keyHOME : reset_view = true; key = 0; disp.set_key(); break; + case cimg::keyPADADD : go_in = true; go_out = false; key = 0; disp.set_key(); break; + case cimg::keyPADSUB : go_out = true; go_in = false; key = 0; disp.set_key(); break; + case cimg::keyARROWLEFT : case cimg::keyPAD4 : go_left = true; go_right = false; key = 0; disp.set_key(); + break; + case cimg::keyARROWRIGHT : case cimg::keyPAD6 : go_right = true; go_left = false; key = 0; disp.set_key(); + break; + case cimg::keyARROWUP : case cimg::keyPAD8 : go_up = true; go_down = false; key = 0; disp.set_key(); break; + case cimg::keyARROWDOWN : case cimg::keyPAD2 : go_down = true; go_up = false; key = 0; disp.set_key(); break; + case cimg::keyPAD7 : go_left = true; go_up = true; key = 0; disp.set_key(); break; + case cimg::keyPAD9 : go_right = true; go_up = true; key = 0; disp.set_key(); break; + case cimg::keyPAD1 : go_left = true; go_down = true; key = 0; disp.set_key(); break; + case cimg::keyPAD3 : go_right = true; go_down = true; key = 0; disp.set_key(); break; + } + if (disp.wheel()) { + if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) go_up = !(go_down = disp.wheel()<0); + else if (disp.is_keySHIFTLEFT() || disp.is_keySHIFTRIGHT()) go_left = !(go_right = disp.wheel()>0); + else go_out = !(go_in = disp.wheel()>0); + key = 0; + } + + if (go_in) { + const int + xsiz = x1 - x0, + mx = (mouse_x - 16)*xsiz/(disp.width() - 32), + cx = x0 + cimg::cut(mx,0,xsiz); + if (x1 - x0>4) { + x0 = cx - 7*(cx - x0)/8; x1 = cx + 7*(x1 - cx)/8; + if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + const double + ysiz = y1 - y0, + my = (mouse_y - 16)*ysiz/(disp.height() - 32), + cy = y1 - cimg::cut(my,0.0,ysiz); + y0 = cy - 7*(cy - y0)/8; y1 = cy + 7*(y1 - cy)/8; + } else y0 = y1 = 0; + } + } + if (go_out) { + if (x0>0 || x1<(int)siz1) { + const int delta_x = (x1 - x0)/8, ndelta_x = delta_x?delta_x:(siz>1); + const double ndelta_y = (y1 - y0)/8; + x0-=ndelta_x; x1+=ndelta_x; + y0-=ndelta_y; y1+=ndelta_y; + if (x0<0) { x1-=x0; x0 = 0; if (x1>=(int)siz) x1 = (int)siz1; } + if (x1>=(int)siz) { x0-=(x1 - siz1); x1 = (int)siz1; if (x0<0) x0 = 0; } + } + } + if (go_left) { + const int delta = (x1 - x0)/5, ndelta = delta?delta:1; + if (x0 - ndelta>=0) { x0-=ndelta; x1-=ndelta; } + else { x1-=x0; x0 = 0; } + go_left = false; + } + if (go_right) { + const int delta = (x1 - x0)/5, ndelta = delta?delta:1; + if (x1 + ndelta<(int)siz) { x0+=ndelta; x1+=ndelta; } + else { x0+=(siz1 - x1); x1 = (int)siz1; } + go_right = false; + } + if (go_up) { + const double delta = (y1 - y0)/10, ndelta = delta?delta:1; + y0+=ndelta; y1+=ndelta; + go_up = false; + } + if (go_down) { + const double delta = (y1 - y0)/10, ndelta = delta?delta:1; + y0-=ndelta; y1-=ndelta; + go_down = false; + } + } + if (!exit_on_anykey && key && key!=(int)cimg::keyESC && + (key!=(int)cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) { + disp.set_key(key,false); + key = 0; + } + } + disp._normalization = old_normalization; + return *this; + } + + //! Save image as a file. + /** + \param filename Filename, as a C-string. + \param number When positive, represents an index added to the filename. Otherwise, no number is added. + \param digits Number of digits used for adding the number to the filename. + \note + - The used file format is defined by the file extension in the filename \p filename. + - Parameter \p number can be used to add a 6-digit number to the filename before saving. + + **/ + const CImg& save(const char *const filename, const int number=-1, const unsigned int digits=6) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save(): Specified filename is (null).", + cimg_instance); + // Do not test for empty instances, since .cimg format is able to manage empty instances. + const bool is_stdout = *filename=='-' && (!filename[1] || filename[1]=='.'); + const char *const ext = cimg::split_filename(filename); + CImg nfilename(1024); + const char *const fn = is_stdout?filename:(number>=0)?cimg::number_filename(filename,number,digits,nfilename): + filename; + +#ifdef cimg_save_plugin + cimg_save_plugin(fn); +#endif +#ifdef cimg_save_plugin1 + cimg_save_plugin1(fn); +#endif +#ifdef cimg_save_plugin2 + cimg_save_plugin2(fn); +#endif +#ifdef cimg_save_plugin3 + cimg_save_plugin3(fn); +#endif +#ifdef cimg_save_plugin4 + cimg_save_plugin4(fn); +#endif +#ifdef cimg_save_plugin5 + cimg_save_plugin5(fn); +#endif +#ifdef cimg_save_plugin6 + cimg_save_plugin6(fn); +#endif +#ifdef cimg_save_plugin7 + cimg_save_plugin7(fn); +#endif +#ifdef cimg_save_plugin8 + cimg_save_plugin8(fn); +#endif + // Ascii formats + if (!cimg::strcasecmp(ext,"asc")) return save_ascii(fn); + else if (!cimg::strcasecmp(ext,"dlm") || + !cimg::strcasecmp(ext,"txt")) return save_dlm(fn); + else if (!cimg::strcasecmp(ext,"cpp") || + !cimg::strcasecmp(ext,"hpp") || + !cimg::strcasecmp(ext,"h") || + !cimg::strcasecmp(ext,"c")) return save_cpp(fn); + + // 2d binary formats + else if (!cimg::strcasecmp(ext,"bmp")) return save_bmp(fn); + else if (!cimg::strcasecmp(ext,"jpg") || + !cimg::strcasecmp(ext,"jpeg") || + !cimg::strcasecmp(ext,"jpe") || + !cimg::strcasecmp(ext,"jfif") || + !cimg::strcasecmp(ext,"jif")) return save_jpeg(fn); + else if (!cimg::strcasecmp(ext,"rgb")) return save_rgb(fn); + else if (!cimg::strcasecmp(ext,"rgba")) return save_rgba(fn); + else if (!cimg::strcasecmp(ext,"png")) return save_png(fn); + else if (!cimg::strcasecmp(ext,"pgm") || + !cimg::strcasecmp(ext,"ppm") || + !cimg::strcasecmp(ext,"pnm")) return save_pnm(fn); + else if (!cimg::strcasecmp(ext,"pnk")) return save_pnk(fn); + else if (!cimg::strcasecmp(ext,"pfm")) return save_pfm(fn); + else if (!cimg::strcasecmp(ext,"exr")) return save_exr(fn); + else if (!cimg::strcasecmp(ext,"tif") || + !cimg::strcasecmp(ext,"tiff")) return save_tiff(fn); + + // 3d binary formats + else if (!cimg::strcasecmp(ext,"cimgz")) return save_cimg(fn,true); + else if (!cimg::strcasecmp(ext,"cimg") || !*ext) return save_cimg(fn,false); + else if (!cimg::strcasecmp(ext,"dcm")) return save_medcon_external(fn); + else if (!cimg::strcasecmp(ext,"hdr") || + !cimg::strcasecmp(ext,"nii")) return save_analyze(fn); + else if (!cimg::strcasecmp(ext,"inr")) return save_inr(fn); + else if (!cimg::strcasecmp(ext,"mnc")) return save_minc2(fn); + else if (!cimg::strcasecmp(ext,"pan")) return save_pandore(fn); + else if (!cimg::strcasecmp(ext,"raw")) return save_raw(fn); + + // Archive files + else if (!cimg::strcasecmp(ext,"gz")) return save_gzip_external(fn); + + // Image sequences + else if (!cimg::strcasecmp(ext,"yuv")) return save_yuv(fn,true); + else if (!cimg::strcasecmp(ext,"avi") || + !cimg::strcasecmp(ext,"mov") || + !cimg::strcasecmp(ext,"asf") || + !cimg::strcasecmp(ext,"divx") || + !cimg::strcasecmp(ext,"flv") || + !cimg::strcasecmp(ext,"mpg") || + !cimg::strcasecmp(ext,"m1v") || + !cimg::strcasecmp(ext,"m2v") || + !cimg::strcasecmp(ext,"m4v") || + !cimg::strcasecmp(ext,"mjp") || + !cimg::strcasecmp(ext,"mp4") || + !cimg::strcasecmp(ext,"mkv") || + !cimg::strcasecmp(ext,"mpe") || + !cimg::strcasecmp(ext,"movie") || + !cimg::strcasecmp(ext,"ogm") || + !cimg::strcasecmp(ext,"ogg") || + !cimg::strcasecmp(ext,"ogv") || + !cimg::strcasecmp(ext,"qt") || + !cimg::strcasecmp(ext,"rm") || + !cimg::strcasecmp(ext,"vob") || + !cimg::strcasecmp(ext,"wmv") || + !cimg::strcasecmp(ext,"xvid") || + !cimg::strcasecmp(ext,"mpeg")) return save_video(fn); + return save_other(fn); + } + + //! Save image as an ascii file. + /** + \param filename Filename, as a C-string. + **/ + const CImg& save_ascii(const char *const filename) const { + return _save_ascii(0,filename); + } + + //! Save image as an ascii file \overloading. + const CImg& save_ascii(std::FILE *const file) const { + return _save_ascii(file,0); + } + + const CImg& _save_ascii(std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_ascii(): Specified filename is (null).", + cimg_instance); + std::FILE *const nfile = file?file:cimg::fopen(filename,"w"); + std::fprintf(nfile,"%u %u %u %u\n",_width,_height,_depth,_spectrum); + const T* ptrs = _data; + cimg_forYZC(*this,y,z,c) { + cimg_forX(*this,x) std::fprintf(nfile,"%.17g ",(double)*(ptrs++)); + std::fputc('\n',nfile); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as a .cpp source file. + /** + \param filename Filename, as a C-string. + **/ + const CImg& save_cpp(const char *const filename) const { + return _save_cpp(0,filename); + } + + //! Save image as a .cpp source file \overloading. + const CImg& save_cpp(std::FILE *const file) const { + return _save_cpp(file,0); + } + + const CImg& _save_cpp(std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_cpp(): Specified filename is (null).", + cimg_instance); + std::FILE *const nfile = file?file:cimg::fopen(filename,"w"); + CImg varname(1024); *varname = 0; + if (filename) cimg_sscanf(cimg::basename(filename),"%1023[a-zA-Z0-9_]",varname._data); + if (!*varname) cimg_snprintf(varname,varname._width,"unnamed"); + std::fprintf(nfile, + "/* Define image '%s' of size %ux%ux%ux%u and type '%s' */\n" + "%s data_%s[] = { %s\n ", + varname._data,_width,_height,_depth,_spectrum,pixel_type(),pixel_type(),varname._data, + is_empty()?"};":""); + if (!is_empty()) for (ulongT off = 0, siz = size() - 1; off<=siz; ++off) { + std::fprintf(nfile,cimg::type::format(),cimg::type::format((*this)[off])); + if (off==siz) std::fprintf(nfile," };\n"); + else if (!((off + 1)%16)) std::fprintf(nfile,",\n "); + else std::fprintf(nfile,", "); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as a DLM file. + /** + \param filename Filename, as a C-string. + **/ + const CImg& save_dlm(const char *const filename) const { + return _save_dlm(0,filename); + } + + //! Save image as a DLM file \overloading. + const CImg& save_dlm(std::FILE *const file) const { + return _save_dlm(file,0); + } + + const CImg& _save_dlm(std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_dlm(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + if (_depth>1) + cimg::warn(_cimg_instance + "save_dlm(): Instance is volumetric, values along Z will be unrolled in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + if (_spectrum>1) + cimg::warn(_cimg_instance + "save_dlm(): Instance is multispectral, values along C will be unrolled in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"w"); + const T* ptrs = _data; + cimg_forYZC(*this,y,z,c) { + cimg_forX(*this,x) std::fprintf(nfile,"%.17g%s",(double)*(ptrs++),(x==width() - 1)?"":","); + std::fputc('\n',nfile); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as a BMP file. + /** + \param filename Filename, as a C-string. + **/ + const CImg& save_bmp(const char *const filename) const { + return _save_bmp(0,filename); + } + + //! Save image as a BMP file \overloading. + const CImg& save_bmp(std::FILE *const file) const { + return _save_bmp(file,0); + } + + const CImg& _save_bmp(std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_bmp(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + if (_depth>1) + cimg::warn(_cimg_instance + "save_bmp(): Instance is volumetric, only the first slice will be saved in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + if (_spectrum>3) + cimg::warn(_cimg_instance + "save_bmp(): Instance is multispectral, only the three first channels will be saved in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + CImg header(54,1,1,1,0); + unsigned char align_buf[4] = { 0 }; + const unsigned int + align = (4 - (3*_width)%4)%4, + buf_size = (3*_width + align)*height(), + file_size = 54 + buf_size; + header[0] = 'B'; header[1] = 'M'; + header[0x02] = file_size&0xFF; + header[0x03] = (file_size>>8)&0xFF; + header[0x04] = (file_size>>16)&0xFF; + header[0x05] = (file_size>>24)&0xFF; + header[0x0A] = 0x36; + header[0x0E] = 0x28; + header[0x12] = _width&0xFF; + header[0x13] = (_width>>8)&0xFF; + header[0x14] = (_width>>16)&0xFF; + header[0x15] = (_width>>24)&0xFF; + header[0x16] = _height&0xFF; + header[0x17] = (_height>>8)&0xFF; + header[0x18] = (_height>>16)&0xFF; + header[0x19] = (_height>>24)&0xFF; + header[0x1A] = 1; + header[0x1B] = 0; + header[0x1C] = 24; + header[0x1D] = 0; + header[0x22] = buf_size&0xFF; + header[0x23] = (buf_size>>8)&0xFF; + header[0x24] = (buf_size>>16)&0xFF; + header[0x25] = (buf_size>>24)&0xFF; + header[0x27] = 0x1; + header[0x2B] = 0x1; + cimg::fwrite(header._data,54,nfile); + + const T + *ptr_r = data(0,_height - 1,0,0), + *ptr_g = (_spectrum>=2)?data(0,_height - 1,0,1):0, + *ptr_b = (_spectrum>=3)?data(0,_height - 1,0,2):0; + + switch (_spectrum) { + case 1 : { + cimg_forY(*this,y) { + cimg_forX(*this,x) { + const unsigned char val = (unsigned char)*(ptr_r++); + std::fputc(val,nfile); std::fputc(val,nfile); std::fputc(val,nfile); + } + cimg::fwrite(align_buf,align,nfile); + ptr_r-=2*_width; + } + } break; + case 2 : { + cimg_forY(*this,y) { + cimg_forX(*this,x) { + std::fputc(0,nfile); + std::fputc((unsigned char)(*(ptr_g++)),nfile); + std::fputc((unsigned char)(*(ptr_r++)),nfile); + } + cimg::fwrite(align_buf,align,nfile); + ptr_r-=2*_width; ptr_g-=2*_width; + } + } break; + default : { + cimg_forY(*this,y) { + cimg_forX(*this,x) { + std::fputc((unsigned char)(*(ptr_b++)),nfile); + std::fputc((unsigned char)(*(ptr_g++)),nfile); + std::fputc((unsigned char)(*(ptr_r++)),nfile); + } + cimg::fwrite(align_buf,align,nfile); + ptr_r-=2*_width; ptr_g-=2*_width; ptr_b-=2*_width; + } + } + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as a JPEG file. + /** + \param filename Filename, as a C-string. + \param quality Image quality (in %) + **/ + const CImg& save_jpeg(const char *const filename, const unsigned int quality=100) const { + return _save_jpeg(0,filename,quality); + } + + //! Save image as a JPEG file \overloading. + const CImg& save_jpeg(std::FILE *const file, const unsigned int quality=100) const { + return _save_jpeg(file,0,quality); + } + + const CImg& _save_jpeg(std::FILE *const file, const char *const filename, const unsigned int quality) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_jpeg(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + if (_depth>1) + cimg::warn(_cimg_instance + "save_jpeg(): Instance is volumetric, only the first slice will be saved in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + +#ifndef cimg_use_jpeg + if (!file) return save_other(filename,quality); + else throw CImgIOException(_cimg_instance + "save_jpeg(): Unable to save data in '(*FILE)' unless libjpeg is enabled.", + cimg_instance); +#else + unsigned int dimbuf = 0; + J_COLOR_SPACE colortype = JCS_RGB; + + switch (_spectrum) { + case 1 : dimbuf = 1; colortype = JCS_GRAYSCALE; break; + case 2 : dimbuf = 3; colortype = JCS_RGB; break; + case 3 : dimbuf = 3; colortype = JCS_RGB; break; + default : dimbuf = 4; colortype = JCS_CMYK; break; + } + + // Call libjpeg functions + struct jpeg_compress_struct cinfo; + struct jpeg_error_mgr jerr; + cinfo.err = jpeg_std_error(&jerr); + jpeg_create_compress(&cinfo); + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + jpeg_stdio_dest(&cinfo,nfile); + cinfo.image_width = _width; + cinfo.image_height = _height; + cinfo.input_components = dimbuf; + cinfo.in_color_space = colortype; + jpeg_set_defaults(&cinfo); + jpeg_set_quality(&cinfo,quality<100?quality:100,TRUE); + jpeg_start_compress(&cinfo,TRUE); + + JSAMPROW row_pointer[1]; + CImg buffer(_width*dimbuf); + + while (cinfo.next_scanline& save_magick(const char *const filename, const unsigned int bytes_per_pixel=0) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_magick(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + +#ifdef cimg_use_magick + double stmin, stmax = (double)max_min(stmin); + if (_depth>1) + cimg::warn(_cimg_instance + "save_magick(): Instance is volumetric, only the first slice will be saved in file '%s'.", + cimg_instance, + filename); + + if (_spectrum>3) + cimg::warn(_cimg_instance + "save_magick(): Instance is multispectral, only the three first channels will be " + "saved in file '%s'.", + cimg_instance, + filename); + + if (stmin<0 || (bytes_per_pixel==1 && stmax>=256) || stmax>=65536) + cimg::warn(_cimg_instance + "save_magick(): Instance has pixel values in [%g,%g], probable type overflow in file '%s'.", + cimg_instance, + filename,stmin,stmax); + + Magick::Image image(Magick::Geometry(_width,_height),"black"); + image.type(Magick::TrueColorType); + image.depth(bytes_per_pixel?(8*bytes_per_pixel):(stmax>=256?16:8)); + const T + *ptr_r = data(0,0,0,0), + *ptr_g = _spectrum>1?data(0,0,0,1):0, + *ptr_b = _spectrum>2?data(0,0,0,2):0; + Magick::PixelPacket *pixels = image.getPixels(0,0,_width,_height); + switch (_spectrum) { + case 1 : // Scalar images + for (ulongT off = (ulongT)_width*_height; off; --off) { + pixels->red = pixels->green = pixels->blue = (Magick::Quantum)*(ptr_r++); + ++pixels; + } + break; + case 2 : // RG images + for (ulongT off = (ulongT)_width*_height; off; --off) { + pixels->red = (Magick::Quantum)*(ptr_r++); + pixels->green = (Magick::Quantum)*(ptr_g++); + pixels->blue = 0; ++pixels; + } + break; + default : // RGB images + for (ulongT off = (ulongT)_width*_height; off; --off) { + pixels->red = (Magick::Quantum)*(ptr_r++); + pixels->green = (Magick::Quantum)*(ptr_g++); + pixels->blue = (Magick::Quantum)*(ptr_b++); + ++pixels; + } + } + image.syncPixels(); + image.write(filename); + return *this; +#else + cimg::unused(bytes_per_pixel); + throw CImgIOException(_cimg_instance + "save_magick(): Unable to save file '%s' unless libMagick++ is enabled.", + cimg_instance, + filename); +#endif + } + + //! Save image as a PNG file. + /** + \param filename Filename, as a C-string. + \param bytes_per_pixel Force the number of bytes per pixels for the saving, when possible. + **/ + const CImg& save_png(const char *const filename, const unsigned int bytes_per_pixel=0) const { + return _save_png(0,filename,bytes_per_pixel); + } + + //! Save image as a PNG file \overloading. + const CImg& save_png(std::FILE *const file, const unsigned int bytes_per_pixel=0) const { + return _save_png(file,0,bytes_per_pixel); + } + + const CImg& _save_png(std::FILE *const file, const char *const filename, + const unsigned int bytes_per_pixel=0) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_png(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + +#ifndef cimg_use_png + cimg::unused(bytes_per_pixel); + if (!file) return save_other(filename); + else throw CImgIOException(_cimg_instance + "save_png(): Unable to save data in '(*FILE)' unless libpng is enabled.", + cimg_instance); +#else + +#if defined __GNUC__ + const char *volatile nfilename = filename; // Use 'volatile' to avoid (wrong) g++ warning. + std::FILE *volatile nfile = file?file:cimg::fopen(nfilename,"wb"); + volatile double stmin, stmax = (double)max_min(stmin); +#else + const char *nfilename = filename; + std::FILE *nfile = file?file:cimg::fopen(nfilename,"wb"); + double stmin, stmax = (double)max_min(stmin); +#endif + + if (_depth>1) + cimg::warn(_cimg_instance + "save_png(): Instance is volumetric, only the first slice will be saved in file '%s'.", + cimg_instance, + filename); + + if (_spectrum>4) + cimg::warn(_cimg_instance + "save_png(): Instance is multispectral, only the three first channels will be saved in file '%s'.", + cimg_instance, + filename); + + if (stmin<0 || (bytes_per_pixel==1 && stmax>=256) || stmax>=65536) + cimg::warn(_cimg_instance + "save_png(): Instance has pixel values in [%g,%g], probable type overflow in file '%s'.", + cimg_instance, + filename,stmin,stmax); + + // Setup PNG structures for write + png_voidp user_error_ptr = 0; + png_error_ptr user_error_fn = 0, user_warning_fn = 0; + png_structp png_ptr = png_create_write_struct(PNG_LIBPNG_VER_STRING,user_error_ptr, user_error_fn, + user_warning_fn); + if (!png_ptr){ + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "save_png(): Failed to initialize 'png_ptr' structure when saving file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + png_infop info_ptr = png_create_info_struct(png_ptr); + if (!info_ptr) { + png_destroy_write_struct(&png_ptr,(png_infopp)0); + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "save_png(): Failed to initialize 'info_ptr' structure when saving file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + if (setjmp(png_jmpbuf(png_ptr))) { + png_destroy_write_struct(&png_ptr, &info_ptr); + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "save_png(): Encountered unknown fatal error in libpng when saving file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + png_init_io(png_ptr, nfile); + + const int bit_depth = bytes_per_pixel?(bytes_per_pixel*8):(stmax>=256?16:8); + + int color_type; + switch (spectrum()) { + case 1 : color_type = PNG_COLOR_TYPE_GRAY; break; + case 2 : color_type = PNG_COLOR_TYPE_GRAY_ALPHA; break; + case 3 : color_type = PNG_COLOR_TYPE_RGB; break; + default : color_type = PNG_COLOR_TYPE_RGB_ALPHA; + } + const int interlace_type = PNG_INTERLACE_NONE; + const int compression_type = PNG_COMPRESSION_TYPE_DEFAULT; + const int filter_method = PNG_FILTER_TYPE_DEFAULT; + png_set_IHDR(png_ptr,info_ptr,_width,_height,bit_depth,color_type,interlace_type,compression_type,filter_method); + png_write_info(png_ptr,info_ptr); + const int byte_depth = bit_depth>>3; + const int numChan = spectrum()>4?4:spectrum(); + const int pixel_bit_depth_flag = numChan * (bit_depth - 1); + + // Allocate Memory for Image Save and Fill pixel data + png_bytep *const imgData = new png_byte*[_height]; + for (unsigned int row = 0; row<_height; ++row) imgData[row] = new png_byte[byte_depth*numChan*_width]; + const T *pC0 = data(0,0,0,0); + switch (pixel_bit_depth_flag) { + case 7 : { // Gray 8-bit + cimg_forY(*this,y) { + unsigned char *ptrd = imgData[y]; + cimg_forX(*this,x) *(ptrd++) = (unsigned char)*(pC0++); + } + } break; + case 14 : { // Gray w/ Alpha 8-bit + const T *pC1 = data(0,0,0,1); + cimg_forY(*this,y) { + unsigned char *ptrd = imgData[y]; + cimg_forX(*this,x) { + *(ptrd++) = (unsigned char)*(pC0++); + *(ptrd++) = (unsigned char)*(pC1++); + } + } + } break; + case 21 : { // RGB 8-bit + const T *pC1 = data(0,0,0,1), *pC2 = data(0,0,0,2); + cimg_forY(*this,y) { + unsigned char *ptrd = imgData[y]; + cimg_forX(*this,x) { + *(ptrd++) = (unsigned char)*(pC0++); + *(ptrd++) = (unsigned char)*(pC1++); + *(ptrd++) = (unsigned char)*(pC2++); + } + } + } break; + case 28 : { // RGB x/ Alpha 8-bit + const T *pC1 = data(0,0,0,1), *pC2 = data(0,0,0,2), *pC3 = data(0,0,0,3); + cimg_forY(*this,y){ + unsigned char *ptrd = imgData[y]; + cimg_forX(*this,x){ + *(ptrd++) = (unsigned char)*(pC0++); + *(ptrd++) = (unsigned char)*(pC1++); + *(ptrd++) = (unsigned char)*(pC2++); + *(ptrd++) = (unsigned char)*(pC3++); + } + } + } break; + case 15 : { // Gray 16-bit + cimg_forY(*this,y){ + unsigned short *ptrd = (unsigned short*)(imgData[y]); + cimg_forX(*this,x) *(ptrd++) = (unsigned short)*(pC0++); + if (!cimg::endianness()) cimg::invert_endianness((unsigned short*)imgData[y],_width); + } + } break; + case 30 : { // Gray w/ Alpha 16-bit + const T *pC1 = data(0,0,0,1); + cimg_forY(*this,y){ + unsigned short *ptrd = (unsigned short*)(imgData[y]); + cimg_forX(*this,x) { + *(ptrd++) = (unsigned short)*(pC0++); + *(ptrd++) = (unsigned short)*(pC1++); + } + if (!cimg::endianness()) cimg::invert_endianness((unsigned short*)imgData[y],2*_width); + } + } break; + case 45 : { // RGB 16-bit + const T *pC1 = data(0,0,0,1), *pC2 = data(0,0,0,2); + cimg_forY(*this,y) { + unsigned short *ptrd = (unsigned short*)(imgData[y]); + cimg_forX(*this,x) { + *(ptrd++) = (unsigned short)*(pC0++); + *(ptrd++) = (unsigned short)*(pC1++); + *(ptrd++) = (unsigned short)*(pC2++); + } + if (!cimg::endianness()) cimg::invert_endianness((unsigned short*)imgData[y],3*_width); + } + } break; + case 60 : { // RGB w/ Alpha 16-bit + const T *pC1 = data(0,0,0,1), *pC2 = data(0,0,0,2), *pC3 = data(0,0,0,3); + cimg_forY(*this,y) { + unsigned short *ptrd = (unsigned short*)(imgData[y]); + cimg_forX(*this,x) { + *(ptrd++) = (unsigned short)*(pC0++); + *(ptrd++) = (unsigned short)*(pC1++); + *(ptrd++) = (unsigned short)*(pC2++); + *(ptrd++) = (unsigned short)*(pC3++); + } + if (!cimg::endianness()) cimg::invert_endianness((unsigned short*)imgData[y],4*_width); + } + } break; + default : + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimg_instance + "save_png(): Encountered unknown fatal error in libpng when saving file '%s'.", + cimg_instance, + nfilename?nfilename:"(FILE*)"); + } + png_write_image(png_ptr,imgData); + png_write_end(png_ptr,info_ptr); + png_destroy_write_struct(&png_ptr, &info_ptr); + + // Deallocate Image Write Memory + cimg_forY(*this,n) delete[] imgData[n]; + delete[] imgData; + + if (!file) cimg::fclose(nfile); + return *this; +#endif + } + + //! Save image as a PNM file. + /** + \param filename Filename, as a C-string. + \param bytes_per_pixel Force the number of bytes per pixels for the saving. + **/ + const CImg& save_pnm(const char *const filename, const unsigned int bytes_per_pixel=0) const { + return _save_pnm(0,filename,bytes_per_pixel); + } + + //! Save image as a PNM file \overloading. + const CImg& save_pnm(std::FILE *const file, const unsigned int bytes_per_pixel=0) const { + return _save_pnm(file,0,bytes_per_pixel); + } + + const CImg& _save_pnm(std::FILE *const file, const char *const filename, + const unsigned int bytes_per_pixel=0) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_pnm(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + + double stmin, stmax = (double)max_min(stmin); + if (_depth>1) + cimg::warn(_cimg_instance + "save_pnm(): Instance is volumetric, only the first slice will be saved in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + if (_spectrum>3) + cimg::warn(_cimg_instance + "save_pnm(): Instance is multispectral, only the three first channels will be saved in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + if (stmin<0 || (bytes_per_pixel==1 && stmax>=256) || stmax>=65536) + cimg::warn(_cimg_instance + "save_pnm(): Instance has pixel values in [%g,%g], probable type overflow in file '%s'.", + cimg_instance, + stmin,stmax,filename?filename:"(FILE*)"); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + const T + *ptr_r = data(0,0,0,0), + *ptr_g = (_spectrum>=2)?data(0,0,0,1):0, + *ptr_b = (_spectrum>=3)?data(0,0,0,2):0; + const ulongT buf_size = std::min((ulongT)(1024*1024),(ulongT)(_width*_height*(_spectrum==1?1UL:3UL))); + + std::fprintf(nfile,"P%c\n%u %u\n%u\n", + (_spectrum==1?'5':'6'),_width,_height,stmax<256?255:(stmax<4096?4095:65535)); + + switch (_spectrum) { + case 1 : { // Scalar image + if (bytes_per_pixel==1 || (!bytes_per_pixel && stmax<256)) { // Binary PGM 8 bits + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size); + unsigned char *ptrd = buf._data; + for (ulongT i = N; i>0; --i) *(ptrd++) = (unsigned char)*(ptr_r++); + cimg::fwrite(buf._data,N,nfile); + to_write-=N; + } + } else { // Binary PGM 16 bits + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size); + unsigned short *ptrd = buf._data; + for (ulongT i = N; i>0; --i) *(ptrd++) = (unsigned short)*(ptr_r++); + if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size); + cimg::fwrite(buf._data,N,nfile); + to_write-=N; + } + } + } break; + case 2 : { // RG image + if (bytes_per_pixel==1 || (!bytes_per_pixel && stmax<256)) { // Binary PPM 8 bits + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size/3); + unsigned char *ptrd = buf._data; + for (ulongT i = N; i>0; --i) { + *(ptrd++) = (unsigned char)*(ptr_r++); + *(ptrd++) = (unsigned char)*(ptr_g++); + *(ptrd++) = 0; + } + cimg::fwrite(buf._data,3*N,nfile); + to_write-=N; + } + } else { // Binary PPM 16 bits + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size/3); + unsigned short *ptrd = buf._data; + for (ulongT i = N; i>0; --i) { + *(ptrd++) = (unsigned short)*(ptr_r++); + *(ptrd++) = (unsigned short)*(ptr_g++); + *(ptrd++) = 0; + } + if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size); + cimg::fwrite(buf._data,3*N,nfile); + to_write-=N; + } + } + } break; + default : { // RGB image + if (bytes_per_pixel==1 || (!bytes_per_pixel && stmax<256)) { // Binary PPM 8 bits + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size/3); + unsigned char *ptrd = buf._data; + for (ulongT i = N; i>0; --i) { + *(ptrd++) = (unsigned char)*(ptr_r++); + *(ptrd++) = (unsigned char)*(ptr_g++); + *(ptrd++) = (unsigned char)*(ptr_b++); + } + cimg::fwrite(buf._data,3*N,nfile); + to_write-=N; + } + } else { // Binary PPM 16 bits + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size/3); + unsigned short *ptrd = buf._data; + for (ulongT i = N; i>0; --i) { + *(ptrd++) = (unsigned short)*(ptr_r++); + *(ptrd++) = (unsigned short)*(ptr_g++); + *(ptrd++) = (unsigned short)*(ptr_b++); + } + if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size); + cimg::fwrite(buf._data,3*N,nfile); + to_write-=N; + } + } + } + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as a PNK file. + /** + \param filename Filename, as a C-string. + **/ + const CImg& save_pnk(const char *const filename) const { + return _save_pnk(0,filename); + } + + //! Save image as a PNK file \overloading. + const CImg& save_pnk(std::FILE *const file) const { + return _save_pnk(file,0); + } + + const CImg& _save_pnk(std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_pnk(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + if (_spectrum>1) + cimg::warn(_cimg_instance + "save_pnk(): Instance is multispectral, only the first channel will be saved in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + + const ulongT buf_size = std::min((ulongT)1024*1024,(ulongT)_width*_height*_depth); + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + const T *ptr = data(0,0,0,0); + + if (!cimg::type::is_float() && sizeof(T)==1 && _depth<2) // Can be saved as regular PNM file. + _save_pnm(file,filename,0); + else if (!cimg::type::is_float() && sizeof(T)==1) { // Save as extended P5 file: Binary byte-valued 3d. + std::fprintf(nfile,"P5\n%u %u %u\n255\n",_width,_height,_depth); + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height()*depth(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size); + unsigned char *ptrd = buf._data; + for (ulongT i = N; i>0; --i) *(ptrd++) = (unsigned char)*(ptr++); + cimg::fwrite(buf._data,N,nfile); + to_write-=N; + } + } else if (!cimg::type::is_float()) { // Save as P8: Binary int32-valued 3d. + if (_depth>1) std::fprintf(nfile,"P8\n%u %u %u\n%d\n",_width,_height,_depth,(int)max()); + else std::fprintf(nfile,"P8\n%u %u\n%d\n",_width,_height,(int)max()); + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height()*depth(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size); + int *ptrd = buf._data; + for (ulongT i = N; i>0; --i) *(ptrd++) = (int)*(ptr++); + cimg::fwrite(buf._data,N,nfile); + to_write-=N; + } + } else { // Save as P9: Binary float-valued 3d. + if (_depth>1) std::fprintf(nfile,"P9\n%u %u %u\n%g\n",_width,_height,_depth,(double)max()); + else std::fprintf(nfile,"P9\n%u %u\n%g\n",_width,_height,(double)max()); + CImg buf((unsigned int)buf_size); + for (longT to_write = (longT)width()*height()*depth(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,buf_size); + float *ptrd = buf._data; + for (ulongT i = N; i>0; --i) *(ptrd++) = (float)*(ptr++); + cimg::fwrite(buf._data,N,nfile); + to_write-=N; + } + } + + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as a PFM file. + /** + \param filename Filename, as a C-string. + **/ + const CImg& save_pfm(const char *const filename) const { + get_mirror('y')._save_pfm(0,filename); + return *this; + } + + //! Save image as a PFM file \overloading. + const CImg& save_pfm(std::FILE *const file) const { + get_mirror('y')._save_pfm(file,0); + return *this; + } + + const CImg& _save_pfm(std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_pfm(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + if (_depth>1) + cimg::warn(_cimg_instance + "save_pfm(): Instance is volumetric, only the first slice will be saved in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + if (_spectrum>3) + cimg::warn(_cimg_instance + "save_pfm(): image instance is multispectral, only the three first channels will be saved " + "in file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + const T + *ptr_r = data(0,0,0,0), + *ptr_g = (_spectrum>=2)?data(0,0,0,1):0, + *ptr_b = (_spectrum>=3)?data(0,0,0,2):0; + const unsigned int buf_size = std::min(1024*1024U,_width*_height*(_spectrum==1?1:3)); + + std::fprintf(nfile,"P%c\n%u %u\n1.0\n", + (_spectrum==1?'f':'F'),_width,_height); + + switch (_spectrum) { + case 1 : { // Scalar image + CImg buf(buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const ulongT N = std::min((ulongT)to_write,(ulongT)buf_size); + float *ptrd = buf._data; + for (ulongT i = N; i>0; --i) *(ptrd++) = (float)*(ptr_r++); + if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size); + cimg::fwrite(buf._data,N,nfile); + to_write-=N; + } + } break; + case 2 : { // RG image + CImg buf(buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const unsigned int N = std::min((unsigned int)to_write,buf_size/3); + float *ptrd = buf._data; + for (ulongT i = N; i>0; --i) { + *(ptrd++) = (float)*(ptr_r++); + *(ptrd++) = (float)*(ptr_g++); + *(ptrd++) = 0; + } + if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size); + cimg::fwrite(buf._data,3*N,nfile); + to_write-=N; + } + } break; + default : { // RGB image + CImg buf(buf_size); + for (longT to_write = (longT)width()*height(); to_write>0; ) { + const unsigned int N = std::min((unsigned int)to_write,buf_size/3); + float *ptrd = buf._data; + for (ulongT i = N; i>0; --i) { + *(ptrd++) = (float)*(ptr_r++); + *(ptrd++) = (float)*(ptr_g++); + *(ptrd++) = (float)*(ptr_b++); + } + if (!cimg::endianness()) cimg::invert_endianness(buf._data,buf_size); + cimg::fwrite(buf._data,3*N,nfile); + to_write-=N; + } + } + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as a RGB file. + /** + \param filename Filename, as a C-string. + **/ + const CImg& save_rgb(const char *const filename) const { + return _save_rgb(0,filename); + } + + //! Save image as a RGB file \overloading. + const CImg& save_rgb(std::FILE *const file) const { + return _save_rgb(file,0); + } + + const CImg& _save_rgb(std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_rgb(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + if (_spectrum!=3) + cimg::warn(_cimg_instance + "save_rgb(): image instance has not exactly 3 channels, for file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + const ulongT wh = (ulongT)_width*_height; + unsigned char *const buffer = new unsigned char[3*wh], *nbuffer = buffer; + const T + *ptr1 = data(0,0,0,0), + *ptr2 = _spectrum>1?data(0,0,0,1):0, + *ptr3 = _spectrum>2?data(0,0,0,2):0; + switch (_spectrum) { + case 1 : { // Scalar image + for (ulongT k = 0; k& save_rgba(const char *const filename) const { + return _save_rgba(0,filename); + } + + //! Save image as a RGBA file \overloading. + const CImg& save_rgba(std::FILE *const file) const { + return _save_rgba(file,0); + } + + const CImg& _save_rgba(std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_rgba(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + if (_spectrum!=4) + cimg::warn(_cimg_instance + "save_rgba(): image instance has not exactly 4 channels, for file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + const ulongT wh = (ulongT)_width*_height; + unsigned char *const buffer = new unsigned char[4*wh], *nbuffer = buffer; + const T + *ptr1 = data(0,0,0,0), + *ptr2 = _spectrum>1?data(0,0,0,1):0, + *ptr3 = _spectrum>2?data(0,0,0,2):0, + *ptr4 = _spectrum>3?data(0,0,0,3):0; + switch (_spectrum) { + case 1 : { // Scalar images + for (ulongT k = 0; k{ 0=None | 1=LZW | 2=JPEG }. + \param voxel_size Voxel size, to be stored in the filename. + \param description Description, to be stored in the filename. + \param use_bigtiff Allow to save big tiff files (>4Gb). + \note + - libtiff support is enabled by defining the precompilation + directive \c cimg_use_tif. + - When libtiff is enabled, 2D and 3D (multipage) several + channel per pixel are supported for + char,uchar,short,ushort,float and \c double pixel types. + - If \c cimg_use_tif is not defined at compile time the + function uses CImg&save_other(const char*). + **/ + const CImg& save_tiff(const char *const filename, const unsigned int compression_type=0, + const float *const voxel_size=0, const char *const description=0, + const bool use_bigtiff=true) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_tiff(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + +#ifdef cimg_use_tiff + const bool + _use_bigtiff = use_bigtiff && sizeof(ulongT)>=8 && size()*sizeof(T)>=1UL<<31; // No bigtiff for small images. + TIFF *tif = TIFFOpen(filename,_use_bigtiff?"w8":"w4"); + if (tif) { + cimg_forZ(*this,z) _save_tiff(tif,z,z,compression_type,voxel_size,description); + TIFFClose(tif); + } else throw CImgIOException(_cimg_instance + "save_tiff(): Failed to open file '%s' for writing.", + cimg_instance, + filename); + return *this; +#else + cimg::unused(compression_type,voxel_size,description,use_bigtiff); + return save_other(filename); +#endif + } + +#ifdef cimg_use_tiff + +#define _cimg_save_tiff(types,typed,compression_type) if (!std::strcmp(types,pixel_type())) { \ + const typed foo = (typed)0; return _save_tiff(tif,directory,z,foo,compression_type,voxel_size,description); } + + // [internal] Save a plane into a tiff file + template + const CImg& _save_tiff(TIFF *tif, const unsigned int directory, const unsigned int z, const t& pixel_t, + const unsigned int compression_type, const float *const voxel_size, + const char *const description) const { + if (is_empty() || !tif || pixel_t) return *this; + const char *const filename = TIFFFileName(tif); + uint32 rowsperstrip = (uint32)-1; + uint16 spp = _spectrum, bpp = sizeof(t)*8, photometric; + if (spp==3 || spp==4) photometric = PHOTOMETRIC_RGB; + else photometric = PHOTOMETRIC_MINISBLACK; + TIFFSetDirectory(tif,directory); + TIFFSetField(tif,TIFFTAG_IMAGEWIDTH,_width); + TIFFSetField(tif,TIFFTAG_IMAGELENGTH,_height); + if (voxel_size) { + const float vx = voxel_size[0], vy = voxel_size[1], vz = voxel_size[2]; + TIFFSetField(tif,TIFFTAG_RESOLUTIONUNIT,RESUNIT_NONE); + TIFFSetField(tif,TIFFTAG_XRESOLUTION,1.0f/vx); + TIFFSetField(tif,TIFFTAG_YRESOLUTION,1.0f/vy); + CImg s_description(256); + cimg_snprintf(s_description,s_description._width,"VX=%g VY=%g VZ=%g spacing=%g",vx,vy,vz,vz); + TIFFSetField(tif,TIFFTAG_IMAGEDESCRIPTION,s_description.data()); + } + if (description) TIFFSetField(tif,TIFFTAG_IMAGEDESCRIPTION,description); + TIFFSetField(tif,TIFFTAG_ORIENTATION,ORIENTATION_TOPLEFT); + TIFFSetField(tif,TIFFTAG_SAMPLESPERPIXEL,spp); + if (cimg::type::is_float()) TIFFSetField(tif,TIFFTAG_SAMPLEFORMAT,3); + else if (cimg::type::min()==0) TIFFSetField(tif,TIFFTAG_SAMPLEFORMAT,1); + else TIFFSetField(tif,TIFFTAG_SAMPLEFORMAT,2); + double valm, valM = max_min(valm); + TIFFSetField(tif,TIFFTAG_SMINSAMPLEVALUE,valm); + TIFFSetField(tif,TIFFTAG_SMAXSAMPLEVALUE,valM); + TIFFSetField(tif,TIFFTAG_BITSPERSAMPLE,bpp); + TIFFSetField(tif,TIFFTAG_PLANARCONFIG,PLANARCONFIG_CONTIG); + TIFFSetField(tif,TIFFTAG_PHOTOMETRIC,photometric); + TIFFSetField(tif,TIFFTAG_COMPRESSION,compression_type==2?COMPRESSION_JPEG: + compression_type==1?COMPRESSION_LZW:COMPRESSION_NONE); + rowsperstrip = TIFFDefaultStripSize(tif,rowsperstrip); + TIFFSetField(tif,TIFFTAG_ROWSPERSTRIP,rowsperstrip); + TIFFSetField(tif,TIFFTAG_FILLORDER,FILLORDER_MSB2LSB); + TIFFSetField(tif,TIFFTAG_SOFTWARE,"CImg"); + + t *const buf = (t*)_TIFFmalloc(TIFFStripSize(tif)); + if (buf) { + for (unsigned int row = 0; row<_height; row+=rowsperstrip) { + uint32 nrow = (row + rowsperstrip>_height?_height - row:rowsperstrip); + tstrip_t strip = TIFFComputeStrip(tif,row,0); + tsize_t i = 0; + for (unsigned int rr = 0; rr& _save_tiff(TIFF *tif, const unsigned int directory, const unsigned int z, + const unsigned int compression_type, const float *const voxel_size, + const char *const description) const { + _cimg_save_tiff("bool",unsigned char,compression_type); + _cimg_save_tiff("unsigned char",unsigned char,compression_type); + _cimg_save_tiff("char",char,compression_type); + _cimg_save_tiff("unsigned short",unsigned short,compression_type); + _cimg_save_tiff("short",short,compression_type); + _cimg_save_tiff("unsigned int",unsigned int,compression_type); + _cimg_save_tiff("int",int,compression_type); + _cimg_save_tiff("unsigned int64",unsigned int,compression_type); + _cimg_save_tiff("int64",int,compression_type); + _cimg_save_tiff("float",float,compression_type); + _cimg_save_tiff("double",float,compression_type); + const char *const filename = TIFFFileName(tif); + throw CImgInstanceException(_cimg_instance + "save_tiff(): Unsupported pixel type '%s' for file '%s'.", + cimg_instance, + pixel_type(),filename?filename:"(FILE*)"); + return *this; + } +#endif + + //! Save image as a MINC2 file. + /** + \param filename Filename, as a C-string. + \param imitate_file If non-zero, reference filename, as a C-string, to borrow header from. + **/ + const CImg& save_minc2(const char *const filename, + const char *const imitate_file=0) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_minc2(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + +#ifndef cimg_use_minc2 + cimg::unused(imitate_file); + return save_other(filename); +#else + minc::minc_1_writer wtr; + if (imitate_file) + wtr.open(filename, imitate_file); + else { + minc::minc_info di; + if (width()) di.push_back(minc::dim_info(width(),width()*0.5,-1,minc::dim_info::DIM_X)); + if (height()) di.push_back(minc::dim_info(height(),height()*0.5,-1,minc::dim_info::DIM_Y)); + if (depth()) di.push_back(minc::dim_info(depth(),depth()*0.5,-1,minc::dim_info::DIM_Z)); + if (spectrum()) di.push_back(minc::dim_info(spectrum(),spectrum()*0.5,-1,minc::dim_info::DIM_TIME)); + wtr.open(filename,di,1,NC_FLOAT,0); + } + if (typeid(T)==typeid(unsigned char)) + wtr.setup_write_byte(); + else if (typeid(T)==typeid(int)) + wtr.setup_write_int(); + else if (typeid(T)==typeid(double)) + wtr.setup_write_double(); + else + wtr.setup_write_float(); + minc::save_standard_volume(wtr, this->_data); + return *this; +#endif + } + + //! Save image as an ANALYZE7.5 or NIFTI file. + /** + \param filename Filename, as a C-string. + \param voxel_size Pointer to 3 consecutive values that tell about the voxel sizes along the X,Y and Z dimensions. + **/ + const CImg& save_analyze(const char *const filename, const float *const voxel_size=0) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_analyze(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + + std::FILE *file; + CImg hname(1024), iname(1024); + const char *const ext = cimg::split_filename(filename); + short datatype = -1; + if (!*ext) { + cimg_snprintf(hname,hname._width,"%s.hdr",filename); + cimg_snprintf(iname,iname._width,"%s.img",filename); + } + if (!cimg::strncasecmp(ext,"hdr",3)) { + std::strcpy(hname,filename); + std::strncpy(iname,filename,iname._width - 1); + cimg_sprintf(iname._data + std::strlen(iname) - 3,"img"); + } + if (!cimg::strncasecmp(ext,"img",3)) { + std::strcpy(hname,filename); + std::strncpy(iname,filename,iname._width - 1); + cimg_sprintf(hname._data + std::strlen(iname) - 3,"hdr"); + } + if (!cimg::strncasecmp(ext,"nii",3)) { + std::strncpy(hname,filename,hname._width - 1); *iname = 0; + } + + CImg header(*iname?348:352,1,1,1,0); + int *const iheader = (int*)header._data; + *iheader = 348; + std::strcpy(header._data + 4,"CImg"); + std::strcpy(header._data + 14," "); + ((short*)&(header[36]))[0] = 4096; + ((char*)&(header[38]))[0] = 114; + ((short*)&(header[40]))[0] = 4; + ((short*)&(header[40]))[1] = (short)_width; + ((short*)&(header[40]))[2] = (short)_height; + ((short*)&(header[40]))[3] = (short)_depth; + ((short*)&(header[40]))[4] = (short)_spectrum; + if (!cimg::strcasecmp(pixel_type(),"bool")) datatype = 2; + if (!cimg::strcasecmp(pixel_type(),"unsigned char")) datatype = 2; + if (!cimg::strcasecmp(pixel_type(),"char")) datatype = 2; + if (!cimg::strcasecmp(pixel_type(),"unsigned short")) datatype = 4; + if (!cimg::strcasecmp(pixel_type(),"short")) datatype = 4; + if (!cimg::strcasecmp(pixel_type(),"unsigned int")) datatype = 8; + if (!cimg::strcasecmp(pixel_type(),"int")) datatype = 8; + if (!cimg::strcasecmp(pixel_type(),"unsigned int64")) datatype = 8; + if (!cimg::strcasecmp(pixel_type(),"int64")) datatype = 8; + if (!cimg::strcasecmp(pixel_type(),"float")) datatype = 16; + if (!cimg::strcasecmp(pixel_type(),"double")) datatype = 64; + if (datatype<0) + throw CImgIOException(_cimg_instance + "save_analyze(): Unsupported pixel type '%s' for file '%s'.", + cimg_instance, + pixel_type(),filename); + + ((short*)&(header[70]))[0] = datatype; + ((short*)&(header[72]))[0] = sizeof(T); + ((float*)&(header[108]))[0] = (float)(*iname?0:header.width()); + ((float*)&(header[112]))[0] = 1; + ((float*)&(header[76]))[0] = 0; + if (voxel_size) { + ((float*)&(header[76]))[1] = voxel_size[0]; + ((float*)&(header[76]))[2] = voxel_size[1]; + ((float*)&(header[76]))[3] = voxel_size[2]; + } else ((float*)&(header[76]))[1] = ((float*)&(header[76]))[2] = ((float*)&(header[76]))[3] = 1; + file = cimg::fopen(hname,"wb"); + cimg::fwrite(header._data,header.width(),file); + if (*iname) { cimg::fclose(file); file = cimg::fopen(iname,"wb"); } + cimg::fwrite(_data,size(),file); + cimg::fclose(file); + return *this; + } + + //! Save image as a .cimg file. + /** + \param filename Filename, as a C-string. + \param is_compressed Tells if the file contains compressed image data. + **/ + const CImg& save_cimg(const char *const filename, const bool is_compressed=false) const { + CImgList(*this,true).save_cimg(filename,is_compressed); + return *this; + } + + //! Save image as a .cimg file \overloading. + const CImg& save_cimg(std::FILE *const file, const bool is_compressed=false) const { + CImgList(*this,true).save_cimg(file,is_compressed); + return *this; + } + + //! Save image as a sub-image into an existing .cimg file. + /** + \param filename Filename, as a C-string. + \param n0 Index of the image inside the file. + \param x0 X-coordinate of the sub-image location. + \param y0 Y-coordinate of the sub-image location. + \param z0 Z-coordinate of the sub-image location. + \param c0 C-coordinate of the sub-image location. + **/ + const CImg& save_cimg(const char *const filename, + const unsigned int n0, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0) const { + CImgList(*this,true).save_cimg(filename,n0,x0,y0,z0,c0); + return *this; + } + + //! Save image as a sub-image into an existing .cimg file \overloading. + const CImg& save_cimg(std::FILE *const file, + const unsigned int n0, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0) const { + CImgList(*this,true).save_cimg(file,n0,x0,y0,z0,c0); + return *this; + } + + //! Save blank image as a .cimg file. + /** + \param filename Filename, as a C-string. + \param dx Width of the image. + \param dy Height of the image. + \param dz Depth of the image. + \param dc Number of channels of the image. + \note + - All pixel values of the saved image are set to \c 0. + - Use this method to save large images without having to instanciate and allocate them. + **/ + static void save_empty_cimg(const char *const filename, + const unsigned int dx, const unsigned int dy=1, + const unsigned int dz=1, const unsigned int dc=1) { + return CImgList::save_empty_cimg(filename,1,dx,dy,dz,dc); + } + + //! Save blank image as a .cimg file \overloading. + /** + Same as save_empty_cimg(const char *,unsigned int,unsigned int,unsigned int,unsigned int) + with a file stream argument instead of a filename string. + **/ + static void save_empty_cimg(std::FILE *const file, + const unsigned int dx, const unsigned int dy=1, + const unsigned int dz=1, const unsigned int dc=1) { + return CImgList::save_empty_cimg(file,1,dx,dy,dz,dc); + } + + //! Save image as an INRIMAGE-4 file. + /** + \param filename Filename, as a C-string. + \param voxel_size Pointer to 3 values specifying the voxel sizes along the X,Y and Z dimensions. + **/ + const CImg& save_inr(const char *const filename, const float *const voxel_size=0) const { + return _save_inr(0,filename,voxel_size); + } + + //! Save image as an INRIMAGE-4 file \overloading. + const CImg& save_inr(std::FILE *const file, const float *const voxel_size=0) const { + return _save_inr(file,0,voxel_size); + } + + const CImg& _save_inr(std::FILE *const file, const char *const filename, const float *const voxel_size) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_inr(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + + int inrpixsize = -1; + const char *inrtype = "unsigned fixed\nPIXSIZE=8 bits\nSCALE=2**0"; + if (!cimg::strcasecmp(pixel_type(),"unsigned char")) { + inrtype = "unsigned fixed\nPIXSIZE=8 bits\nSCALE=2**0"; inrpixsize = 1; + } + if (!cimg::strcasecmp(pixel_type(),"char")) { + inrtype = "fixed\nPIXSIZE=8 bits\nSCALE=2**0"; inrpixsize = 1; + } + if (!cimg::strcasecmp(pixel_type(),"unsigned short")) { + inrtype = "unsigned fixed\nPIXSIZE=16 bits\nSCALE=2**0";inrpixsize = 2; + } + if (!cimg::strcasecmp(pixel_type(),"short")) { + inrtype = "fixed\nPIXSIZE=16 bits\nSCALE=2**0"; inrpixsize = 2; + } + if (!cimg::strcasecmp(pixel_type(),"unsigned int")) { + inrtype = "unsigned fixed\nPIXSIZE=32 bits\nSCALE=2**0";inrpixsize = 4; + } + if (!cimg::strcasecmp(pixel_type(),"int")) { + inrtype = "fixed\nPIXSIZE=32 bits\nSCALE=2**0"; inrpixsize = 4; + } + if (!cimg::strcasecmp(pixel_type(),"float")) { + inrtype = "float\nPIXSIZE=32 bits"; inrpixsize = 4; + } + if (!cimg::strcasecmp(pixel_type(),"double")) { + inrtype = "float\nPIXSIZE=64 bits"; inrpixsize = 8; + } + if (inrpixsize<=0) + throw CImgIOException(_cimg_instance + "save_inr(): Unsupported pixel type '%s' for file '%s'", + cimg_instance, + pixel_type(),filename?filename:"(FILE*)"); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + CImg header(257); + int err = cimg_snprintf(header,header._width,"#INRIMAGE-4#{\nXDIM=%u\nYDIM=%u\nZDIM=%u\nVDIM=%u\n", + _width,_height,_depth,_spectrum); + if (voxel_size) err+=cimg_sprintf(header._data + err,"VX=%g\nVY=%g\nVZ=%g\n", + voxel_size[0],voxel_size[1],voxel_size[2]); + err+=cimg_sprintf(header._data + err,"TYPE=%s\nCPU=%s\n",inrtype,cimg::endianness()?"sun":"decm"); + std::memset(header._data + err,'\n',252 - err); + std::memcpy(header._data + 252,"##}\n",4); + cimg::fwrite(header._data,256,nfile); + cimg_forXYZ(*this,x,y,z) cimg_forC(*this,c) cimg::fwrite(&((*this)(x,y,z,c)),1,nfile); + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as an OpenEXR file. + /** + \param filename Filename, as a C-string. + \note The OpenEXR file format is described here. + **/ + const CImg& save_exr(const char *const filename) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_exr(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + if (_depth>1) + cimg::warn(_cimg_instance + "save_exr(): Instance is volumetric, only the first slice will be saved in file '%s'.", + cimg_instance, + filename); + +#ifndef cimg_use_openexr + return save_other(filename); +#else + Imf::Rgba *const ptrd0 = new Imf::Rgba[(size_t)_width*_height], *ptrd = ptrd0, rgba; + switch (_spectrum) { + case 1 : { // Grayscale image. + for (const T *ptr_r = data(), *const ptr_e = ptr_r + (ulongT)_width*_height; ptr_rPandore file specifications + for more information). + **/ + const CImg& save_pandore(const char *const filename, const unsigned int colorspace=0) const { + return _save_pandore(0,filename,colorspace); + } + + //! Save image as a Pandore-5 file \overloading. + /** + Same as save_pandore(const char *,unsigned int) const + with a file stream argument instead of a filename string. + **/ + const CImg& save_pandore(std::FILE *const file, const unsigned int colorspace=0) const { + return _save_pandore(file,0,colorspace); + } + + unsigned int _save_pandore_header_length(unsigned int id, unsigned int *dims, const unsigned int colorspace) const { + unsigned int nbdims = 0; + if (id==2 || id==3 || id==4) { + dims[0] = 1; dims[1] = _width; nbdims = 2; + } + if (id==5 || id==6 || id==7) { + dims[0] = 1; dims[1] = _height; dims[2] = _width; nbdims=3; + } + if (id==8 || id==9 || id==10) { + dims[0] = _spectrum; dims[1] = _depth; dims[2] = _height; dims[3] = _width; nbdims = 4; + } + if (id==16 || id==17 || id==18) { + dims[0] = 3; dims[1] = _height; dims[2] = _width; dims[3] = colorspace; nbdims = 4; + } + if (id==19 || id==20 || id==21) { + dims[0] = 3; dims[1] = _depth; dims[2] = _height; dims[3] = _width; dims[4] = colorspace; nbdims = 5; + } + if (id==22 || id==23 || id==25) { + dims[0] = _spectrum; dims[1] = _width; nbdims = 2; + } + if (id==26 || id==27 || id==29) { + dims[0] = _spectrum; dims[1] = _height; dims[2] = _width; nbdims=3; + } + if (id==30 || id==31 || id==33) { + dims[0] = _spectrum; dims[1] = _depth; dims[2] = _height; dims[3] = _width; nbdims = 4; + } + return nbdims; + } + + const CImg& _save_pandore(std::FILE *const file, const char *const filename, + const unsigned int colorspace) const { + +#define __cimg_save_pandore_case(dtype) \ + dtype *buffer = new dtype[size()]; \ + const T *ptrs = _data; \ + cimg_foroff(*this,off) *(buffer++) = (dtype)(*(ptrs++)); \ + buffer-=size(); \ + cimg::fwrite(buffer,size(),nfile); \ + delete[] buffer + +#define _cimg_save_pandore_case(sy,sz,sv,stype,id) \ + if (!saved && (sy?(sy==_height):true) && (sz?(sz==_depth):true) && \ + (sv?(sv==_spectrum):true) && !std::strcmp(stype,pixel_type())) { \ + unsigned int *iheader = (unsigned int*)(header + 12); \ + nbdims = _save_pandore_header_length((*iheader=id),dims,colorspace); \ + cimg::fwrite(header,36,nfile); \ + if (sizeof(unsigned long)==4) { CImg ndims(5); \ + for (int d = 0; d<5; ++d) ndims[d] = (unsigned long)dims[d]; cimg::fwrite(ndims._data,nbdims,nfile); } \ + else if (sizeof(unsigned int)==4) { CImg ndims(5); \ + for (int d = 0; d<5; ++d) ndims[d] = (unsigned int)dims[d]; cimg::fwrite(ndims._data,nbdims,nfile); } \ + else if (sizeof(unsigned short)==4) { CImg ndims(5); \ + for (int d = 0; d<5; ++d) ndims[d] = (unsigned short)dims[d]; cimg::fwrite(ndims._data,nbdims,nfile); } \ + else throw CImgIOException(_cimg_instance \ + "save_pandore(): Unsupported datatype for file '%s'.",\ + cimg_instance, \ + filename?filename:"(FILE*)"); \ + if (id==2 || id==5 || id==8 || id==16 || id==19 || id==22 || id==26 || id==30) { \ + __cimg_save_pandore_case(unsigned char); \ + } else if (id==3 || id==6 || id==9 || id==17 || id==20 || id==23 || id==27 || id==31) { \ + if (sizeof(unsigned long)==4) { __cimg_save_pandore_case(unsigned long); } \ + else if (sizeof(unsigned int)==4) { __cimg_save_pandore_case(unsigned int); } \ + else if (sizeof(unsigned short)==4) { __cimg_save_pandore_case(unsigned short); } \ + else throw CImgIOException(_cimg_instance \ + "save_pandore(): Unsupported datatype for file '%s'.",\ + cimg_instance, \ + filename?filename:"(FILE*)"); \ + } else if (id==4 || id==7 || id==10 || id==18 || id==21 || id==25 || id==29 || id==33) { \ + if (sizeof(double)==4) { __cimg_save_pandore_case(double); } \ + else if (sizeof(float)==4) { __cimg_save_pandore_case(float); } \ + else throw CImgIOException(_cimg_instance \ + "save_pandore(): Unsupported datatype for file '%s'.",\ + cimg_instance, \ + filename?filename:"(FILE*)"); \ + } \ + saved = true; \ + } + + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_pandore(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + unsigned char header[36] = { 'P','A','N','D','O','R','E','0','4',0,0,0, + 0,0,0,0,'C','I','m','g',0,0,0,0,0, + 'N','o',' ','d','a','t','e',0,0,0,0 }; + unsigned int nbdims, dims[5] = { 0 }; + bool saved = false; + _cimg_save_pandore_case(1,1,1,"unsigned char",2); + _cimg_save_pandore_case(1,1,1,"char",3); + _cimg_save_pandore_case(1,1,1,"unsigned short",3); + _cimg_save_pandore_case(1,1,1,"short",3); + _cimg_save_pandore_case(1,1,1,"unsigned int",3); + _cimg_save_pandore_case(1,1,1,"int",3); + _cimg_save_pandore_case(1,1,1,"unsigned int64",3); + _cimg_save_pandore_case(1,1,1,"int64",3); + _cimg_save_pandore_case(1,1,1,"float",4); + _cimg_save_pandore_case(1,1,1,"double",4); + + _cimg_save_pandore_case(0,1,1,"unsigned char",5); + _cimg_save_pandore_case(0,1,1,"char",6); + _cimg_save_pandore_case(0,1,1,"unsigned short",6); + _cimg_save_pandore_case(0,1,1,"short",6); + _cimg_save_pandore_case(0,1,1,"unsigned int",6); + _cimg_save_pandore_case(0,1,1,"int",6); + _cimg_save_pandore_case(0,1,1,"unsigned int64",6); + _cimg_save_pandore_case(0,1,1,"int64",6); + _cimg_save_pandore_case(0,1,1,"float",7); + _cimg_save_pandore_case(0,1,1,"double",7); + + _cimg_save_pandore_case(0,0,1,"unsigned char",8); + _cimg_save_pandore_case(0,0,1,"char",9); + _cimg_save_pandore_case(0,0,1,"unsigned short",9); + _cimg_save_pandore_case(0,0,1,"short",9); + _cimg_save_pandore_case(0,0,1,"unsigned int",9); + _cimg_save_pandore_case(0,0,1,"int",9); + _cimg_save_pandore_case(0,0,1,"unsigned int64",9); + _cimg_save_pandore_case(0,0,1,"int64",9); + _cimg_save_pandore_case(0,0,1,"float",10); + _cimg_save_pandore_case(0,0,1,"double",10); + + _cimg_save_pandore_case(0,1,3,"unsigned char",16); + _cimg_save_pandore_case(0,1,3,"char",17); + _cimg_save_pandore_case(0,1,3,"unsigned short",17); + _cimg_save_pandore_case(0,1,3,"short",17); + _cimg_save_pandore_case(0,1,3,"unsigned int",17); + _cimg_save_pandore_case(0,1,3,"int",17); + _cimg_save_pandore_case(0,1,3,"unsigned int64",17); + _cimg_save_pandore_case(0,1,3,"int64",17); + _cimg_save_pandore_case(0,1,3,"float",18); + _cimg_save_pandore_case(0,1,3,"double",18); + + _cimg_save_pandore_case(0,0,3,"unsigned char",19); + _cimg_save_pandore_case(0,0,3,"char",20); + _cimg_save_pandore_case(0,0,3,"unsigned short",20); + _cimg_save_pandore_case(0,0,3,"short",20); + _cimg_save_pandore_case(0,0,3,"unsigned int",20); + _cimg_save_pandore_case(0,0,3,"int",20); + _cimg_save_pandore_case(0,0,3,"unsigned int64",20); + _cimg_save_pandore_case(0,0,3,"int64",20); + _cimg_save_pandore_case(0,0,3,"float",21); + _cimg_save_pandore_case(0,0,3,"double",21); + + _cimg_save_pandore_case(1,1,0,"unsigned char",22); + _cimg_save_pandore_case(1,1,0,"char",23); + _cimg_save_pandore_case(1,1,0,"unsigned short",23); + _cimg_save_pandore_case(1,1,0,"short",23); + _cimg_save_pandore_case(1,1,0,"unsigned int",23); + _cimg_save_pandore_case(1,1,0,"int",23); + _cimg_save_pandore_case(1,1,0,"unsigned int64",23); + _cimg_save_pandore_case(1,1,0,"int64",23); + _cimg_save_pandore_case(1,1,0,"float",25); + _cimg_save_pandore_case(1,1,0,"double",25); + + _cimg_save_pandore_case(0,1,0,"unsigned char",26); + _cimg_save_pandore_case(0,1,0,"char",27); + _cimg_save_pandore_case(0,1,0,"unsigned short",27); + _cimg_save_pandore_case(0,1,0,"short",27); + _cimg_save_pandore_case(0,1,0,"unsigned int",27); + _cimg_save_pandore_case(0,1,0,"int",27); + _cimg_save_pandore_case(0,1,0,"unsigned int64",27); + _cimg_save_pandore_case(0,1,0,"int64",27); + _cimg_save_pandore_case(0,1,0,"float",29); + _cimg_save_pandore_case(0,1,0,"double",29); + + _cimg_save_pandore_case(0,0,0,"unsigned char",30); + _cimg_save_pandore_case(0,0,0,"char",31); + _cimg_save_pandore_case(0,0,0,"unsigned short",31); + _cimg_save_pandore_case(0,0,0,"short",31); + _cimg_save_pandore_case(0,0,0,"unsigned int",31); + _cimg_save_pandore_case(0,0,0,"int",31); + _cimg_save_pandore_case(0,0,0,"unsigned int64",31); + _cimg_save_pandore_case(0,0,0,"int64",31); + _cimg_save_pandore_case(0,0,0,"float",33); + _cimg_save_pandore_case(0,0,0,"double",33); + + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as a raw data file. + /** + \param filename Filename, as a C-string. + \param is_multiplexed Tells if the image channels are stored in a multiplexed way (\c true) or not (\c false). + \note The .raw format does not store the image dimensions in the output file, + so you have to keep track of them somewhere to be able to read the file correctly afterwards. + **/ + const CImg& save_raw(const char *const filename, const bool is_multiplexed=false) const { + return _save_raw(0,filename,is_multiplexed); + } + + //! Save image as a raw data file \overloading. + /** + Same as save_raw(const char *,bool) const + with a file stream argument instead of a filename string. + **/ + const CImg& save_raw(std::FILE *const file, const bool is_multiplexed=false) const { + return _save_raw(file,0,is_multiplexed); + } + + const CImg& _save_raw(std::FILE *const file, const char *const filename, const bool is_multiplexed) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_raw(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + if (!is_multiplexed) cimg::fwrite(_data,size(),nfile); + else { + CImg buf(_spectrum); + cimg_forXYZ(*this,x,y,z) { + cimg_forC(*this,c) buf[c] = (*this)(x,y,z,c); + cimg::fwrite(buf._data,_spectrum,nfile); + } + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save image as a .yuv video file. + /** + \param filename Filename, as a C-string. + \param is_rgb Tells if pixel values of the instance image are RGB-coded (\c true) or YUV-coded (\c false). + \note Each slice of the instance image is considered to be a single frame of the output video file. + **/ + const CImg& save_yuv(const char *const filename, const bool is_rgb=true) const { + get_split('z').save_yuv(filename,is_rgb); + return *this; + } + + //! Save image as a .yuv video file \overloading. + /** + Same as save_yuv(const char*,bool) const + with a file stream argument instead of a filename string. + **/ + const CImg& save_yuv(std::FILE *const file, const bool is_rgb=true) const { + get_split('z').save_yuv(file,is_rgb); + return *this; + } + + //! Save 3d object as an Object File Format (.off) file. + /** + \param filename Filename, as a C-string. + \param primitives List of 3d object primitives. + \param colors List of 3d object colors. + \note + - Instance image contains the vertices data of the 3d object. + - Textured, transparent or sphere-shaped primitives cannot be managed by the .off file format. + Such primitives will be lost or simplified during file saving. + - The .off file format is described here. + **/ + template + const CImg& save_off(const CImgList& primitives, const CImgList& colors, + const char *const filename) const { + return _save_off(primitives,colors,0,filename); + } + + //! Save 3d object as an Object File Format (.off) file \overloading. + /** + Same as save_off(const CImgList&,const CImgList&,const char*) const + with a file stream argument instead of a filename string. + **/ + template + const CImg& save_off(const CImgList& primitives, const CImgList& colors, + std::FILE *const file) const { + return _save_off(primitives,colors,file,0); + } + + template + const CImg& _save_off(const CImgList& primitives, const CImgList& colors, + std::FILE *const file, const char *const filename) const { + if (!file && !filename) + throw CImgArgumentException(_cimg_instance + "save_off(): Specified filename is (null).", + cimg_instance); + if (is_empty()) + throw CImgInstanceException(_cimg_instance + "save_off(): Empty instance, for file '%s'.", + cimg_instance, + filename?filename:"(FILE*)"); + + CImgList opacities; + CImg error_message(1024); + if (!is_object3d(primitives,colors,opacities,true,error_message)) + throw CImgInstanceException(_cimg_instance + "save_off(): Invalid specified 3d object, for file '%s' (%s).", + cimg_instance, + filename?filename:"(FILE*)",error_message.data()); + + const CImg default_color(1,3,1,1,200); + std::FILE *const nfile = file?file:cimg::fopen(filename,"w"); + unsigned int supported_primitives = 0; + cimglist_for(primitives,l) if (primitives[l].size()!=5) ++supported_primitives; + std::fprintf(nfile,"OFF\n%u %u %u\n",_width,supported_primitives,3*primitives._width); + cimg_forX(*this,i) std::fprintf(nfile,"%f %f %f\n", + (float)((*this)(i,0)),(float)((*this)(i,1)),(float)((*this)(i,2))); + cimglist_for(primitives,l) { + const CImg& color = l1?color[1]:r)/255.0f, b = (csiz>2?color[2]:g)/255.0f; + switch (psiz) { + case 1 : std::fprintf(nfile,"1 %u %f %f %f\n", + (unsigned int)primitives(l,0),r,g,b); break; + case 2 : std::fprintf(nfile,"2 %u %u %f %f %f\n", + (unsigned int)primitives(l,0),(unsigned int)primitives(l,1),r,g,b); break; + case 3 : std::fprintf(nfile,"3 %u %u %u %f %f %f\n", + (unsigned int)primitives(l,0),(unsigned int)primitives(l,2), + (unsigned int)primitives(l,1),r,g,b); break; + case 4 : std::fprintf(nfile,"4 %u %u %u %u %f %f %f\n", + (unsigned int)primitives(l,0),(unsigned int)primitives(l,3), + (unsigned int)primitives(l,2),(unsigned int)primitives(l,1),r,g,b); break; + case 5 : std::fprintf(nfile,"2 %u %u %f %f %f\n", + (unsigned int)primitives(l,0),(unsigned int)primitives(l,1),r,g,b); break; + case 6 : { + const unsigned int xt = (unsigned int)primitives(l,2), yt = (unsigned int)primitives(l,3); + const float + rt = color.atXY(xt,yt,0)/255.0f, + gt = (csiz>1?color.atXY(xt,yt,1):r)/255.0f, + bt = (csiz>2?color.atXY(xt,yt,2):g)/255.0f; + std::fprintf(nfile,"2 %u %u %f %f %f\n", + (unsigned int)primitives(l,0),(unsigned int)primitives(l,1),rt,gt,bt); + } break; + case 9 : { + const unsigned int xt = (unsigned int)primitives(l,3), yt = (unsigned int)primitives(l,4); + const float + rt = color.atXY(xt,yt,0)/255.0f, + gt = (csiz>1?color.atXY(xt,yt,1):r)/255.0f, + bt = (csiz>2?color.atXY(xt,yt,2):g)/255.0f; + std::fprintf(nfile,"3 %u %u %u %f %f %f\n", + (unsigned int)primitives(l,0),(unsigned int)primitives(l,2), + (unsigned int)primitives(l,1),rt,gt,bt); + } break; + case 12 : { + const unsigned int xt = (unsigned int)primitives(l,4), yt = (unsigned int)primitives(l,5); + const float + rt = color.atXY(xt,yt,0)/255.0f, + gt = (csiz>1?color.atXY(xt,yt,1):r)/255.0f, + bt = (csiz>2?color.atXY(xt,yt,2):g)/255.0f; + std::fprintf(nfile,"4 %u %u %u %u %f %f %f\n", + (unsigned int)primitives(l,0),(unsigned int)primitives(l,3), + (unsigned int)primitives(l,2),(unsigned int)primitives(l,1),rt,gt,bt); + } break; + } + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save volumetric image as a video, using the OpenCV library. + /** + \param filename Filename to write data to. + \param fps Number of frames per second. + \param codec Type of compression (See http://www.fourcc.org/codecs.php to see available codecs). + \param keep_open Tells if the video writer associated to the specified filename + must be kept open or not (to allow frames to be added in the same file afterwards). + **/ + const CImg& save_video(const char *const filename, const unsigned int fps=25, + const char *codec=0, const bool keep_open=false) const { + if (is_empty()) { CImgList().save_video(filename,fps,codec,keep_open); return *this; } + CImgList list; + get_split('z').move_to(list); + list.save_video(filename,fps,codec,keep_open); + return *this; + } + + //! Save volumetric image as a video, using ffmpeg external binary. + /** + \param filename Filename, as a C-string. + \param fps Video framerate. + \param codec Video codec, as a C-string. + \param bitrate Video bitrate. + \note + - Each slice of the instance image is considered to be a single frame of the output video file. + - This method uses \c ffmpeg, an external executable binary provided by + FFmpeg. + It must be installed for the method to succeed. + **/ + const CImg& save_ffmpeg_external(const char *const filename, const unsigned int fps=25, + const char *const codec=0, const unsigned int bitrate=2048) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_ffmpeg_external(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + + CImgList list; + get_split('z').move_to(list); + list.save_ffmpeg_external(filename,fps,codec,bitrate); + return *this; + } + + //! Save image using gzip external binary. + /** + \param filename Filename, as a C-string. + \note This method uses \c gzip, an external executable binary provided by + gzip. + It must be installed for the method to succeed. + **/ + const CImg& save_gzip_external(const char *const filename) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_gzip_external(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + + CImg command(1024), filename_tmp(256), body(256); + const char + *ext = cimg::split_filename(filename,body), + *ext2 = cimg::split_filename(body,0); + std::FILE *file; + do { + if (!cimg::strcasecmp(ext,"gz")) { + if (*ext2) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext2); + else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.cimg", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + } else { + if (*ext) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext); + else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.cimg", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + } + if ((file=std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + save(filename_tmp); + cimg_snprintf(command,command._width,"%s -c \"%s\" > \"%s\"", + cimg::gzip_path(), + CImg::string(filename_tmp)._system_strescape().data(), + CImg::string(filename)._system_strescape().data()); + cimg::system(command); + file = std_fopen(filename,"rb"); + if (!file) + throw CImgIOException(_cimg_instance + "save_gzip_external(): Failed to save file '%s' with external command 'gzip'.", + cimg_instance, + filename); + + else cimg::fclose(file); + std::remove(filename_tmp); + return *this; + } + + //! Save image using GraphicsMagick's external binary. + /** + \param filename Filename, as a C-string. + \param quality Image quality (expressed in percent), when the file format supports it. + \note This method uses \c gm, an external executable binary provided by + GraphicsMagick. + It must be installed for the method to succeed. + **/ + const CImg& save_graphicsmagick_external(const char *const filename, const unsigned int quality=100) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_graphicsmagick_external(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + if (_depth>1) + cimg::warn(_cimg_instance + "save_other(): File '%s', saving a volumetric image with an external call to " + "GraphicsMagick only writes the first image slice.", + cimg_instance,filename); + +#ifdef cimg_use_png +#define _cimg_sge_ext1 "png" +#define _cimg_sge_ext2 "png" +#else +#define _cimg_sge_ext1 "pgm" +#define _cimg_sge_ext2 "ppm" +#endif + CImg command(1024), filename_tmp(256); + std::FILE *file; + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(), + _spectrum==1?_cimg_sge_ext1:_cimg_sge_ext2); + if ((file=std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); +#ifdef cimg_use_png + save_png(filename_tmp); +#else + save_pnm(filename_tmp); +#endif + cimg_snprintf(command,command._width,"%s convert -quality %u \"%s\" \"%s\"", + cimg::graphicsmagick_path(),quality, + CImg::string(filename_tmp)._system_strescape().data(), + CImg::string(filename)._system_strescape().data()); + cimg::system(command); + file = std_fopen(filename,"rb"); + if (!file) + throw CImgIOException(_cimg_instance + "save_graphicsmagick_external(): Failed to save file '%s' with external command 'gm'.", + cimg_instance, + filename); + + if (file) cimg::fclose(file); + std::remove(filename_tmp); + return *this; + } + + //! Save image using ImageMagick's external binary. + /** + \param filename Filename, as a C-string. + \param quality Image quality (expressed in percent), when the file format supports it. + \note This method uses \c convert, an external executable binary provided by + ImageMagick. + It must be installed for the method to succeed. + **/ + const CImg& save_imagemagick_external(const char *const filename, const unsigned int quality=100) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_imagemagick_external(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + if (_depth>1) + cimg::warn(_cimg_instance + "save_other(): File '%s', saving a volumetric image with an external call to " + "ImageMagick only writes the first image slice.", + cimg_instance,filename); +#ifdef cimg_use_png +#define _cimg_sie_ext1 "png" +#define _cimg_sie_ext2 "png" +#else +#define _cimg_sie_ext1 "pgm" +#define _cimg_sie_ext2 "ppm" +#endif + CImg command(1024), filename_tmp(256); + std::FILE *file; + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s",cimg::temporary_path(), + cimg_file_separator,cimg::filenamerand(),_spectrum==1?_cimg_sie_ext1:_cimg_sie_ext2); + if ((file=std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); +#ifdef cimg_use_png + save_png(filename_tmp); +#else + save_pnm(filename_tmp); +#endif + cimg_snprintf(command,command._width,"%s -quality %u \"%s\" \"%s\"", + cimg::imagemagick_path(),quality, + CImg::string(filename_tmp)._system_strescape().data(), + CImg::string(filename)._system_strescape().data()); + cimg::system(command); + file = std_fopen(filename,"rb"); + if (!file) + throw CImgIOException(_cimg_instance + "save_imagemagick_external(): Failed to save file '%s' with " + "external command 'magick/convert'.", + cimg_instance, + filename); + + if (file) cimg::fclose(file); + std::remove(filename_tmp); + return *this; + } + + //! Save image as a Dicom file. + /** + \param filename Filename, as a C-string. + \note This method uses \c medcon, an external executable binary provided by + (X)Medcon. + It must be installed for the method to succeed. + **/ + const CImg& save_medcon_external(const char *const filename) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_medcon_external(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + + CImg command(1024), filename_tmp(256), body(256); + std::FILE *file; + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s.hdr",cimg::filenamerand()); + if ((file=std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + save_analyze(filename_tmp); + cimg_snprintf(command,command._width,"%s -w -c dicom -o \"%s\" -f \"%s\"", + cimg::medcon_path(), + CImg::string(filename)._system_strescape().data(), + CImg::string(filename_tmp)._system_strescape().data()); + cimg::system(command); + std::remove(filename_tmp); + cimg::split_filename(filename_tmp,body); + cimg_snprintf(filename_tmp,filename_tmp._width,"%s.img",body._data); + std::remove(filename_tmp); + + file = std_fopen(filename,"rb"); + if (!file) { + cimg_snprintf(command,command._width,"m000-%s",filename); + file = std_fopen(command,"rb"); + if (!file) { + cimg::fclose(cimg::fopen(filename,"r")); + throw CImgIOException(_cimg_instance + "save_medcon_external(): Failed to save file '%s' with external command 'medcon'.", + cimg_instance, + filename); + } + } + cimg::fclose(file); + std::rename(command,filename); + return *this; + } + + // Save image for non natively supported formats. + /** + \param filename Filename, as a C-string. + \param quality Image quality (expressed in percent), when the file format supports it. + \note + - The filename extension tells about the desired file format. + - This method tries to save the instance image as a file, using external tools from + ImageMagick or + GraphicsMagick. + At least one of these tool must be installed for the method to succeed. + - It is recommended to use the generic method save(const char*, int) const instead, + as it can handle some file formats natively. + **/ + const CImg& save_other(const char *const filename, const unsigned int quality=100) const { + if (!filename) + throw CImgArgumentException(_cimg_instance + "save_other(): Specified filename is (null).", + cimg_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + if (_depth>1) + cimg::warn(_cimg_instance + "save_other(): File '%s', saving a volumetric image with an external call to " + "ImageMagick or GraphicsMagick only writes the first image slice.", + cimg_instance,filename); + + const unsigned int omode = cimg::exception_mode(); + bool is_saved = true; + cimg::exception_mode(0); + try { save_magick(filename); } + catch (CImgException&) { + try { save_imagemagick_external(filename,quality); } + catch (CImgException&) { + try { save_graphicsmagick_external(filename,quality); } + catch (CImgException&) { + is_saved = false; + } + } + } + cimg::exception_mode(omode); + if (!is_saved) + throw CImgIOException(_cimg_instance + "save_other(): Failed to save file '%s'. Format is not natively supported, " + "and no external commands succeeded.", + cimg_instance, + filename); + return *this; + } + + //! Serialize a CImg instance into a raw CImg buffer. + /** + \param is_compressed tells if zlib compression must be used for serialization + (this requires 'cimg_use_zlib' been enabled). + **/ + CImg get_serialize(const bool is_compressed=false) const { + return CImgList(*this,true).get_serialize(is_compressed); + } + + // [internal] Return a 40x38 color logo of a 'danger' item. + static CImg _logo40x38() { + CImg res(40,38,1,3); + const unsigned char *ptrs = cimg::logo40x38; + T *ptr1 = res.data(0,0,0,0), *ptr2 = res.data(0,0,0,1), *ptr3 = res.data(0,0,0,2); + for (ulongT off = 0; off<(ulongT)res._width*res._height;) { + const unsigned char n = *(ptrs++), r = *(ptrs++), g = *(ptrs++), b = *(ptrs++); + for (unsigned int l = 0; l structure + # + # + # + #------------------------------------------ + */ + //! Represent a list of images CImg. + template + struct CImgList { + unsigned int _width, _allocated_width; + CImg *_data; + + //! Simple iterator type, to loop through each image of a list. + /** + \note + - The \c CImgList::iterator type is defined as a CImg*. + - You may use it like this: + \code + CImgList<> list; // Assuming this image list is not empty. + for (CImgList<>::iterator it = list.begin(); it* iterator; + + //! Simple const iterator type, to loop through each image of a \c const list instance. + /** + \note + - The \c CImgList::const_iterator type is defined to be a const CImg*. + - Similar to CImgList::iterator, but for constant list instances. + **/ + typedef const CImg* const_iterator; + + //! Pixel value type. + /** + Refer to the pixels value type of the images in the list. + \note + - The \c CImgList::value_type type of a \c CImgList is defined to be a \c T. + It is then similar to CImg::value_type. + - \c CImgList::value_type is actually not used in %CImg methods. It has been mainly defined for + compatibility with STL naming conventions. + **/ + typedef T value_type; + + // Define common types related to template type T. + typedef typename cimg::superset::type Tbool; + typedef typename cimg::superset::type Tuchar; + typedef typename cimg::superset::type Tchar; + typedef typename cimg::superset::type Tushort; + typedef typename cimg::superset::type Tshort; + typedef typename cimg::superset::type Tuint; + typedef typename cimg::superset::type Tint; + typedef typename cimg::superset::type Tulong; + typedef typename cimg::superset::type Tlong; + typedef typename cimg::superset::type Tfloat; + typedef typename cimg::superset::type Tdouble; + typedef typename cimg::last::type boolT; + typedef typename cimg::last::type ucharT; + typedef typename cimg::last::type charT; + typedef typename cimg::last::type ushortT; + typedef typename cimg::last::type shortT; + typedef typename cimg::last::type uintT; + typedef typename cimg::last::type intT; + typedef typename cimg::last::type ulongT; + typedef typename cimg::last::type longT; + typedef typename cimg::last::type uint64T; + typedef typename cimg::last::type int64T; + typedef typename cimg::last::type floatT; + typedef typename cimg::last::type doubleT; + + //@} + //--------------------------- + // + //! \name Plugins + //@{ + //--------------------------- +#ifdef cimglist_plugin +#include cimglist_plugin +#endif +#ifdef cimglist_plugin1 +#include cimglist_plugin1 +#endif +#ifdef cimglist_plugin2 +#include cimglist_plugin2 +#endif +#ifdef cimglist_plugin3 +#include cimglist_plugin3 +#endif +#ifdef cimglist_plugin4 +#include cimglist_plugin4 +#endif +#ifdef cimglist_plugin5 +#include cimglist_plugin5 +#endif +#ifdef cimglist_plugin6 +#include cimglist_plugin6 +#endif +#ifdef cimglist_plugin7 +#include cimglist_plugin7 +#endif +#ifdef cimglist_plugin8 +#include cimglist_plugin8 +#endif + + //@} + //-------------------------------------------------------- + // + //! \name Constructors / Destructor / Instance Management + //@{ + //-------------------------------------------------------- + + //! Destructor. + /** + Destroy current list instance. + \note + - Any allocated buffer is deallocated. + - Destroying an empty list does nothing actually. + **/ + ~CImgList() { + delete[] _data; + } + + //! Default constructor. + /** + Construct a new empty list instance. + \note + - An empty list has no pixel data and its dimension width() is set to \c 0, as well as its + image buffer pointer data(). + - An empty list may be reassigned afterwards, with the family of the assign() methods. + In all cases, the type of pixels stays \c T. + **/ + CImgList(): + _width(0),_allocated_width(0),_data(0) {} + + //! Construct list containing empty images. + /** + \param n Number of empty images. + \note Useful when you know by advance the number of images you want to manage, as + it will allocate the right amount of memory for the list, without needs for reallocation + (that may occur when starting from an empty list and inserting several images in it). + **/ + explicit CImgList(const unsigned int n):_width(n) { + if (n) _data = new CImg[_allocated_width = std::max(16U,(unsigned int)cimg::nearest_pow2(n))]; + else { _allocated_width = 0; _data = 0; } + } + + //! Construct list containing images of specified size. + /** + \param n Number of images. + \param width Width of images. + \param height Height of images. + \param depth Depth of images. + \param spectrum Number of channels of images. + \note Pixel values are not initialized and may probably contain garbage. + **/ + CImgList(const unsigned int n, const unsigned int width, const unsigned int height=1, + const unsigned int depth=1, const unsigned int spectrum=1): + _width(0),_allocated_width(0),_data(0) { + assign(n); + cimglist_apply(*this,assign)(width,height,depth,spectrum); + } + + //! Construct list containing images of specified size, and initialize pixel values. + /** + \param n Number of images. + \param width Width of images. + \param height Height of images. + \param depth Depth of images. + \param spectrum Number of channels of images. + \param val Initialization value for images pixels. + **/ + CImgList(const unsigned int n, const unsigned int width, const unsigned int height, + const unsigned int depth, const unsigned int spectrum, const T& val): + _width(0),_allocated_width(0),_data(0) { + assign(n); + cimglist_apply(*this,assign)(width,height,depth,spectrum,val); + } + + //! Construct list containing images of specified size, and initialize pixel values from a sequence of integers. + /** + \param n Number of images. + \param width Width of images. + \param height Height of images. + \param depth Depth of images. + \param spectrum Number of channels of images. + \param val0 First value of the initializing integers sequence. + \param val1 Second value of the initializing integers sequence. + \warning You must specify at least width*height*depth*spectrum values in your argument list, + or you will probably segfault. + **/ + CImgList(const unsigned int n, const unsigned int width, const unsigned int height, + const unsigned int depth, const unsigned int spectrum, const int val0, const int val1, ...): + _width(0),_allocated_width(0),_data(0) { +#define _CImgList_stdarg(t) { \ + assign(n,width,height,depth,spectrum); \ + const ulongT siz = (ulongT)width*height*depth*spectrum, nsiz = siz*n; \ + T *ptrd = _data->_data; \ + va_list ap; \ + va_start(ap,val1); \ + for (ulongT l = 0, s = 0, i = 0; iwidth*height*depth*spectrum values in your argument list, + or you will probably segfault. + **/ + CImgList(const unsigned int n, const unsigned int width, const unsigned int height, + const unsigned int depth, const unsigned int spectrum, const double val0, const double val1, ...): + _width(0),_allocated_width(0),_data(0) { + _CImgList_stdarg(double); + } + + //! Construct list containing copies of an input image. + /** + \param n Number of images. + \param img Input image to copy in the constructed list. + \param is_shared Tells if the elements of the list are shared or non-shared copies of \c img. + **/ + template + CImgList(const unsigned int n, const CImg& img, const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(n); + cimglist_apply(*this,assign)(img,is_shared); + } + + //! Construct list from one image. + /** + \param img Input image to copy in the constructed list. + \param is_shared Tells if the element of the list is a shared or non-shared copy of \c img. + **/ + template + explicit CImgList(const CImg& img, const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(1); + _data[0].assign(img,is_shared); + } + + //! Construct list from two images. + /** + \param img1 First input image to copy in the constructed list. + \param img2 Second input image to copy in the constructed list. + \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. + **/ + template + CImgList(const CImg& img1, const CImg& img2, const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(2); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); + } + + //! Construct list from three images. + /** + \param img1 First input image to copy in the constructed list. + \param img2 Second input image to copy in the constructed list. + \param img3 Third input image to copy in the constructed list. + \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. + **/ + template + CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(3); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + } + + //! Construct list from four images. + /** + \param img1 First input image to copy in the constructed list. + \param img2 Second input image to copy in the constructed list. + \param img3 Third input image to copy in the constructed list. + \param img4 Fourth input image to copy in the constructed list. + \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. + **/ + template + CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(4); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); + } + + //! Construct list from five images. + /** + \param img1 First input image to copy in the constructed list. + \param img2 Second input image to copy in the constructed list. + \param img3 Third input image to copy in the constructed list. + \param img4 Fourth input image to copy in the constructed list. + \param img5 Fifth input image to copy in the constructed list. + \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. + **/ + template + CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const CImg& img5, const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(5); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); + } + + //! Construct list from six images. + /** + \param img1 First input image to copy in the constructed list. + \param img2 Second input image to copy in the constructed list. + \param img3 Third input image to copy in the constructed list. + \param img4 Fourth input image to copy in the constructed list. + \param img5 Fifth input image to copy in the constructed list. + \param img6 Sixth input image to copy in the constructed list. + \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. + **/ + template + CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const CImg& img5, const CImg& img6, const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(6); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared); + } + + //! Construct list from seven images. + /** + \param img1 First input image to copy in the constructed list. + \param img2 Second input image to copy in the constructed list. + \param img3 Third input image to copy in the constructed list. + \param img4 Fourth input image to copy in the constructed list. + \param img5 Fifth input image to copy in the constructed list. + \param img6 Sixth input image to copy in the constructed list. + \param img7 Seventh input image to copy in the constructed list. + \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. + **/ + template + CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const CImg& img5, const CImg& img6, const CImg& img7, const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(7); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared); + _data[6].assign(img7,is_shared); + } + + //! Construct list from eight images. + /** + \param img1 First input image to copy in the constructed list. + \param img2 Second input image to copy in the constructed list. + \param img3 Third input image to copy in the constructed list. + \param img4 Fourth input image to copy in the constructed list. + \param img5 Fifth input image to copy in the constructed list. + \param img6 Sixth input image to copy in the constructed list. + \param img7 Seventh input image to copy in the constructed list. + \param img8 Eighth input image to copy in the constructed list. + \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. + **/ + template + CImgList(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const CImg& img5, const CImg& img6, const CImg& img7, const CImg& img8, + const bool is_shared=false): + _width(0),_allocated_width(0),_data(0) { + assign(8); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared); + _data[6].assign(img7,is_shared); _data[7].assign(img8,is_shared); + } + + //! Construct list copy. + /** + \param list Input list to copy. + \note The shared state of each element of the constructed list is kept the same as in \c list. + **/ + template + CImgList(const CImgList& list):_width(0),_allocated_width(0),_data(0) { + assign(list._width); + cimglist_for(*this,l) _data[l].assign(list[l],false); + } + + //! Construct list copy \specialization. + CImgList(const CImgList& list):_width(0),_allocated_width(0),_data(0) { + assign(list._width); + cimglist_for(*this,l) _data[l].assign(list[l],list[l]._is_shared); + } + + //! Construct list copy, and force the shared state of the list elements. + /** + \param list Input list to copy. + \param is_shared Tells if the elements of the list are shared or non-shared copies of input images. + **/ + template + CImgList(const CImgList& list, const bool is_shared):_width(0),_allocated_width(0),_data(0) { + assign(list._width); + cimglist_for(*this,l) _data[l].assign(list[l],is_shared); + } + + //! Construct list by reading the content of a file. + /** + \param filename Filename, as a C-string. + **/ + explicit CImgList(const char *const filename):_width(0),_allocated_width(0),_data(0) { + assign(filename); + } + + //! Construct list from the content of a display window. + /** + \param disp Display window to get content from. + \note Constructed list contains a single image only. + **/ + explicit CImgList(const CImgDisplay& disp):_width(0),_allocated_width(0),_data(0) { + assign(disp); + } + + //! Return a list with elements being shared copies of images in the list instance. + /** + \note list2 = list1.get_shared() is equivalent to list2.assign(list1,true). + **/ + CImgList get_shared() { + CImgList res(_width); + cimglist_for(*this,l) res[l].assign(_data[l],true); + return res; + } + + //! Return a list with elements being shared copies of images in the list instance \const. + const CImgList get_shared() const { + CImgList res(_width); + cimglist_for(*this,l) res[l].assign(_data[l],true); + return res; + } + + //! Destructor \inplace. + /** + \see CImgList(). + **/ + CImgList& assign() { + delete[] _data; + _width = _allocated_width = 0; + _data = 0; + return *this; + } + + //! Destructor \inplace. + /** + Equivalent to assign(). + \note Only here for compatibility with STL naming conventions. + **/ + CImgList& clear() { + return assign(); + } + + //! Construct list containing empty images \inplace. + /** + \see CImgList(unsigned int). + **/ + CImgList& assign(const unsigned int n) { + if (!n) return assign(); + if (_allocated_width(n<<2)) { + delete[] _data; + _data = new CImg[_allocated_width = std::max(16U,(unsigned int)cimg::nearest_pow2(n))]; + } + _width = n; + return *this; + } + + //! Construct list containing images of specified size \inplace. + /** + \see CImgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int). + **/ + CImgList& assign(const unsigned int n, const unsigned int width, const unsigned int height=1, + const unsigned int depth=1, const unsigned int spectrum=1) { + assign(n); + cimglist_apply(*this,assign)(width,height,depth,spectrum); + return *this; + } + + //! Construct list containing images of specified size, and initialize pixel values \inplace. + /** + \see CImgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, const T). + **/ + CImgList& assign(const unsigned int n, const unsigned int width, const unsigned int height, + const unsigned int depth, const unsigned int spectrum, const T& val) { + assign(n); + cimglist_apply(*this,assign)(width,height,depth,spectrum,val); + return *this; + } + + //! Construct list with images of specified size, and initialize pixel values from a sequence of integers \inplace. + /** + \see CImgList(unsigned int, unsigned int, unsigned int, unsigned int, unsigned int, const int, const int, ...). + **/ + CImgList& assign(const unsigned int n, const unsigned int width, const unsigned int height, + const unsigned int depth, const unsigned int spectrum, const int val0, const int val1, ...) { + _CImgList_stdarg(int); + return *this; + } + + //! Construct list with images of specified size, and initialize pixel values from a sequence of doubles \inplace. + /** + \see CImgList(unsigned int,unsigned int,unsigned int,unsigned int,unsigned int,const double,const double,...). + **/ + CImgList& assign(const unsigned int n, const unsigned int width, const unsigned int height, + const unsigned int depth, const unsigned int spectrum, + const double val0, const double val1, ...) { + _CImgList_stdarg(double); + return *this; + } + + //! Construct list containing copies of an input image \inplace. + /** + \see CImgList(unsigned int, const CImg&, bool). + **/ + template + CImgList& assign(const unsigned int n, const CImg& img, const bool is_shared=false) { + assign(n); + cimglist_apply(*this,assign)(img,is_shared); + return *this; + } + + //! Construct list from one image \inplace. + /** + \see CImgList(const CImg&, bool). + **/ + template + CImgList& assign(const CImg& img, const bool is_shared=false) { + assign(1); + _data[0].assign(img,is_shared); + return *this; + } + + //! Construct list from two images \inplace. + /** + \see CImgList(const CImg&, const CImg&, bool). + **/ + template + CImgList& assign(const CImg& img1, const CImg& img2, const bool is_shared=false) { + assign(2); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); + return *this; + } + + //! Construct list from three images \inplace. + /** + \see CImgList(const CImg&, const CImg&, const CImg&, bool). + **/ + template + CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const bool is_shared=false) { + assign(3); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + return *this; + } + + //! Construct list from four images \inplace. + /** + \see CImgList(const CImg&, const CImg&, const CImg&, const CImg&, bool). + **/ + template + CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const bool is_shared=false) { + assign(4); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); + return *this; + } + + //! Construct list from five images \inplace. + /** + \see CImgList(const CImg&, const CImg&, const CImg&, const CImg&, const CImg&, bool). + **/ + template + CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const CImg& img5, const bool is_shared=false) { + assign(5); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); + return *this; + } + + //! Construct list from six images \inplace. + /** + \see CImgList(const CImg&,const CImg&,const CImg&,const CImg&,const CImg&,const CImg&, bool). + **/ + template + CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const CImg& img5, const CImg& img6, const bool is_shared=false) { + assign(6); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared); + return *this; + } + + //! Construct list from seven images \inplace. + /** + \see CImgList(const CImg&,const CImg&,const CImg&,const CImg&,const CImg&,const CImg&, + const CImg&, bool). + **/ + template + CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const CImg& img5, const CImg& img6, const CImg& img7, const bool is_shared=false) { + assign(7); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared); + _data[6].assign(img7,is_shared); + return *this; + } + + //! Construct list from eight images \inplace. + /** + \see CImgList(const CImg&,const CImg&,const CImg&,const CImg&,const CImg&,const CImg&, + const CImg&, const CImg&, bool). + **/ + template + CImgList& assign(const CImg& img1, const CImg& img2, const CImg& img3, const CImg& img4, + const CImg& img5, const CImg& img6, const CImg& img7, const CImg& img8, + const bool is_shared=false) { + assign(8); + _data[0].assign(img1,is_shared); _data[1].assign(img2,is_shared); _data[2].assign(img3,is_shared); + _data[3].assign(img4,is_shared); _data[4].assign(img5,is_shared); _data[5].assign(img6,is_shared); + _data[6].assign(img7,is_shared); _data[7].assign(img8,is_shared); + return *this; + } + + //! Construct list as a copy of an existing list and force the shared state of the list elements \inplace. + /** + \see CImgList(const CImgList&, bool is_shared). + **/ + template + CImgList& assign(const CImgList& list, const bool is_shared=false) { + cimg::unused(is_shared); + assign(list._width); + cimglist_for(*this,l) _data[l].assign(list[l],false); + return *this; + } + + //! Construct list as a copy of an existing list and force shared state of elements \inplace \specialization. + CImgList& assign(const CImgList& list, const bool is_shared=false) { + if (this==&list) return *this; + CImgList res(list._width); + cimglist_for(res,l) res[l].assign(list[l],is_shared); + return res.move_to(*this); + } + + //! Construct list by reading the content of a file \inplace. + /** + \see CImgList(const char *const). + **/ + CImgList& assign(const char *const filename) { + return load(filename); + } + + //! Construct list from the content of a display window \inplace. + /** + \see CImgList(const CImgDisplay&). + **/ + CImgList& assign(const CImgDisplay &disp) { + return assign(CImg(disp)); + } + + //! Transfer the content of the list instance to another list. + /** + \param list Destination list. + \note When returning, the current list instance is empty and the initial content of \c list is destroyed. + **/ + template + CImgList& move_to(CImgList& list) { + list.assign(_width); + bool is_one_shared_element = false; + cimglist_for(*this,l) is_one_shared_element|=_data[l]._is_shared; + if (is_one_shared_element) cimglist_for(*this,l) list[l].assign(_data[l]); + else cimglist_for(*this,l) _data[l].move_to(list[l]); + assign(); + return list; + } + + //! Transfer the content of the list instance at a specified position in another list. + /** + \param list Destination list. + \param pos Index of the insertion in the list. + \note When returning, the list instance is empty and the initial content of \c list is preserved + (only images indexes may be modified). + **/ + template + CImgList& move_to(CImgList& list, const unsigned int pos) { + if (is_empty()) return list; + const unsigned int npos = pos>list._width?list._width:pos; + list.insert(_width,npos); + bool is_one_shared_element = false; + cimglist_for(*this,l) is_one_shared_element|=_data[l]._is_shared; + if (is_one_shared_element) cimglist_for(*this,l) list[npos + l].assign(_data[l]); + else cimglist_for(*this,l) _data[l].move_to(list[npos + l]); + assign(); + return list; + } + + //! Swap all fields between two list instances. + /** + \param list List to swap fields with. + \note Can be used to exchange the content of two lists in a fast way. + **/ + CImgList& swap(CImgList& list) { + cimg::swap(_width,list._width,_allocated_width,list._allocated_width); + cimg::swap(_data,list._data); + return list; + } + + //! Return a reference to an empty list. + /** + \note Can be used to define default values in a function taking a CImgList as an argument. + \code + void f(const CImgList& list=CImgList::empty()); + \endcode + **/ + static CImgList& empty() { + static CImgList _empty; + return _empty.assign(); + } + + //! Return a reference to an empty list \const. + static const CImgList& const_empty() { + static const CImgList _empty; + return _empty; + } + + //@} + //------------------------------------------ + // + //! \name Overloaded Operators + //@{ + //------------------------------------------ + + //! Return a reference to one image element of the list. + /** + \param pos Indice of the image element. + **/ + CImg& operator()(const unsigned int pos) { +#if cimg_verbosity>=3 + if (pos>=_width) { + cimg::warn(_cimglist_instance + "operator(): Invalid image request, at position [%u].", + cimglist_instance, + pos); + return *_data; + } +#endif + return _data[pos]; + } + + //! Return a reference to one image of the list. + /** + \param pos Indice of the image element. + **/ + const CImg& operator()(const unsigned int pos) const { + return const_cast*>(this)->operator()(pos); + } + + //! Return a reference to one pixel value of one image of the list. + /** + \param pos Indice of the image element. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note list(n,x,y,z,c) is equivalent to list[n](x,y,z,c). + **/ + T& operator()(const unsigned int pos, const unsigned int x, const unsigned int y=0, + const unsigned int z=0, const unsigned int c=0) { + return (*this)[pos](x,y,z,c); + } + + //! Return a reference to one pixel value of one image of the list \const. + const T& operator()(const unsigned int pos, const unsigned int x, const unsigned int y=0, + const unsigned int z=0, const unsigned int c=0) const { + return (*this)[pos](x,y,z,c); + } + + //! Return pointer to the first image of the list. + /** + \note Images in a list are stored as a buffer of \c CImg. + **/ + operator CImg*() { + return _data; + } + + //! Return pointer to the first image of the list \const. + operator const CImg*() const { + return _data; + } + + //! Construct list from one image \inplace. + /** + \param img Input image to copy in the constructed list. + \note list = img; is equivalent to list.assign(img);. + **/ + template + CImgList& operator=(const CImg& img) { + return assign(img); + } + + //! Construct list from another list. + /** + \param list Input list to copy. + \note list1 = list2 is equivalent to list1.assign(list2);. + **/ + template + CImgList& operator=(const CImgList& list) { + return assign(list); + } + + //! Construct list from another list \specialization. + CImgList& operator=(const CImgList& list) { + return assign(list); + } + + //! Construct list by reading the content of a file \inplace. + /** + \see CImgList(const char *const). + **/ + CImgList& operator=(const char *const filename) { + return assign(filename); + } + + //! Construct list from the content of a display window \inplace. + /** + \see CImgList(const CImgDisplay&). + **/ + CImgList& operator=(const CImgDisplay& disp) { + return assign(disp); + } + + //! Return a non-shared copy of a list. + /** + \note +list is equivalent to CImgList(list,false). + It forces the copy to have non-shared elements. + **/ + CImgList operator+() const { + return CImgList(*this,false); + } + + //! Return a copy of the list instance, where image \c img has been inserted at the end. + /** + \param img Image inserted at the end of the instance copy. + \note Define a convenient way to create temporary lists of images, as in the following code: + \code + (img1,img2,img3,img4).display("My four images"); + \endcode + **/ + template + CImgList& operator,(const CImg& img) { + return insert(img); + } + + //! Return a copy of the list instance, where image \c img has been inserted at the end \const. + template + CImgList operator,(const CImg& img) const { + return (+*this).insert(img); + } + + //! Return a copy of the list instance, where all elements of input list \c list have been inserted at the end. + /** + \param list List inserted at the end of the instance copy. + **/ + template + CImgList& operator,(const CImgList& list) { + return insert(list); + } + + //! Return a copy of the list instance, where all elements of input \c list have been inserted at the end \const. + template + CImgList& operator,(const CImgList& list) const { + return (+*this).insert(list); + } + + //! Return image corresponding to the appending of all images of the instance list along specified axis. + /** + \param axis Appending axis. Can be { 'x' | 'y' | 'z' | 'c' }. + \note list>'x' is equivalent to list.get_append('x'). + **/ + CImg operator>(const char axis) const { + return get_append(axis,0); + } + + //! Return list corresponding to the splitting of all images of the instance list along specified axis. + /** + \param axis Axis used for image splitting. + \note list<'x' is equivalent to list.get_split('x'). + **/ + CImgList operator<(const char axis) const { + return get_split(axis); + } + + //@} + //------------------------------------- + // + //! \name Instance Characteristics + //@{ + //------------------------------------- + + //! Return the type of image pixel values as a C string. + /** + Return a \c char* string containing the usual type name of the image pixel values + (i.e. a stringified version of the template parameter \c T). + \note + - The returned string may contain spaces (as in \c "unsigned char"). + - If the pixel type \c T does not correspond to a registered type, the string "unknown" is returned. + **/ + static const char* pixel_type() { + return cimg::type::string(); + } + + //! Return the size of the list, i.e. the number of images contained in it. + /** + \note Similar to size() but returns result as a (signed) integer. + **/ + int width() const { + return (int)_width; + } + + //! Return the size of the list, i.e. the number of images contained in it. + /** + \note Similar to width() but returns result as an unsigned integer. + **/ + unsigned int size() const { + return _width; + } + + //! Return pointer to the first image of the list. + /** + \note Images in a list are stored as a buffer of \c CImg. + **/ + CImg *data() { + return _data; + } + + //! Return pointer to the first image of the list \const. + const CImg *data() const { + return _data; + } + + //! Return pointer to the pos-th image of the list. + /** + \param pos Indice of the image element to access. + \note list.data(n); is equivalent to list.data + n;. + **/ +#if cimg_verbosity>=3 + CImg *data(const unsigned int pos) { + if (pos>=size()) + cimg::warn(_cimglist_instance + "data(): Invalid pointer request, at position [%u].", + cimglist_instance, + pos); + return _data + pos; + } + + const CImg *data(const unsigned int l) const { + return const_cast*>(this)->data(l); + } +#else + CImg *data(const unsigned int l) { + return _data + l; + } + + //! Return pointer to the pos-th image of the list \const. + const CImg *data(const unsigned int l) const { + return _data + l; + } +#endif + + //! Return iterator to the first image of the list. + /** + **/ + iterator begin() { + return _data; + } + + //! Return iterator to the first image of the list \const. + const_iterator begin() const { + return _data; + } + + //! Return iterator to one position after the last image of the list. + /** + **/ + iterator end() { + return _data + _width; + } + + //! Return iterator to one position after the last image of the list \const. + const_iterator end() const { + return _data + _width; + } + + //! Return reference to the first image of the list. + /** + **/ + CImg& front() { + return *_data; + } + + //! Return reference to the first image of the list \const. + const CImg& front() const { + return *_data; + } + + //! Return a reference to the last image of the list. + /** + **/ + const CImg& back() const { + return *(_data + _width - 1); + } + + //! Return a reference to the last image of the list \const. + CImg& back() { + return *(_data + _width - 1); + } + + //! Return pos-th image of the list. + /** + \param pos Indice of the image element to access. + **/ + CImg& at(const int pos) { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "at(): Empty instance.", + cimglist_instance); + + return _data[cimg::cut(pos,0,width() - 1)]; + } + + //! Access to pixel value with Dirichlet boundary conditions. + /** + \param pos Indice of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param out_value Default value returned if \c offset is outside image bounds. + \note list.atNXYZC(p,x,y,z,c); is equivalent to list[p].atXYZC(x,y,z,c);. + **/ + T& atNXYZC(const int pos, const int x, const int y, const int z, const int c, const T& out_value) { + return (pos<0 || pos>=(int)_width)?(cimg::temporary(out_value)=out_value):_data[pos].atXYZC(x,y,z,c,out_value); + } + + //! Access to pixel value with Dirichlet boundary conditions \const. + T atNXYZC(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const { + return (pos<0 || pos>=(int)_width)?out_value:_data[pos].atXYZC(x,y,z,c,out_value); + } + + //! Access to pixel value with Neumann boundary conditions. + /** + \param pos Indice of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note list.atNXYZC(p,x,y,z,c); is equivalent to list[p].atXYZC(x,y,z,c);. + **/ + T& atNXYZC(const int pos, const int x, const int y, const int z, const int c) { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atNXYZC(): Empty instance.", + cimglist_instance); + + return _atNXYZC(pos,x,y,z,c); + } + + //! Access to pixel value with Neumann boundary conditions \const. + T atNXYZC(const int pos, const int x, const int y, const int z, const int c) const { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atNXYZC(): Empty instance.", + cimglist_instance); + + return _atNXYZC(pos,x,y,z,c); + } + + T& _atNXYZC(const int pos, const int x, const int y, const int z, const int c) { + return _data[cimg::cut(pos,0,width() - 1)].atXYZC(x,y,z,c); + } + + T _atNXYZC(const int pos, const int x, const int y, const int z, const int c) const { + return _data[cimg::cut(pos,0,width() - 1)].atXYZC(x,y,z,c); + } + + //! Access pixel value with Dirichlet boundary conditions for the 3 coordinates (\c pos, \c x,\c y,\c z). + /** + \param pos Indice of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param out_value Default value returned if \c offset is outside image bounds. + \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. + **/ + T& atNXYZ(const int pos, const int x, const int y, const int z, const int c, const T& out_value) { + return (pos<0 || pos>=(int)_width)?(cimg::temporary(out_value)=out_value):_data[pos].atXYZ(x,y,z,c,out_value); + } + + //! Access pixel value with Dirichlet boundary conditions for the 3 coordinates (\c pos, \c x,\c y,\c z) \const. + T atNXYZ(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const { + return (pos<0 || pos>=(int)_width)?out_value:_data[pos].atXYZ(x,y,z,c,out_value); + } + + //! Access to pixel value with Neumann boundary conditions for the 4 coordinates (\c pos, \c x,\c y,\c z). + /** + \param pos Indice of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. + **/ + T& atNXYZ(const int pos, const int x, const int y, const int z, const int c=0) { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atNXYZ(): Empty instance.", + cimglist_instance); + + return _atNXYZ(pos,x,y,z,c); + } + + //! Access to pixel value with Neumann boundary conditions for the 4 coordinates (\c pos, \c x,\c y,\c z) \const. + T atNXYZ(const int pos, const int x, const int y, const int z, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atNXYZ(): Empty instance.", + cimglist_instance); + + return _atNXYZ(pos,x,y,z,c); + } + + T& _atNXYZ(const int pos, const int x, const int y, const int z, const int c=0) { + return _data[cimg::cut(pos,0,width() - 1)].atXYZ(x,y,z,c); + } + + T _atNXYZ(const int pos, const int x, const int y, const int z, const int c=0) const { + return _data[cimg::cut(pos,0,width() - 1)].atXYZ(x,y,z,c); + } + + //! Access to pixel value with Dirichlet boundary conditions for the 3 coordinates (\c pos, \c x,\c y). + /** + \param pos Indice of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param out_value Default value returned if \c offset is outside image bounds. + \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. + **/ + T& atNXY(const int pos, const int x, const int y, const int z, const int c, const T& out_value) { + return (pos<0 || pos>=(int)_width)?(cimg::temporary(out_value)=out_value):_data[pos].atXY(x,y,z,c,out_value); + } + + //! Access to pixel value with Dirichlet boundary conditions for the 3 coordinates (\c pos, \c x,\c y) \const. + T atNXY(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const { + return (pos<0 || pos>=(int)_width)?out_value:_data[pos].atXY(x,y,z,c,out_value); + } + + //! Access to pixel value with Neumann boundary conditions for the 3 coordinates (\c pos, \c x,\c y). + /** + \param pos Indice of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. + **/ + T& atNXY(const int pos, const int x, const int y, const int z=0, const int c=0) { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atNXY(): Empty instance.", + cimglist_instance); + + return _atNXY(pos,x,y,z,c); + } + + //! Access to pixel value with Neumann boundary conditions for the 3 coordinates (\c pos, \c x,\c y) \const. + T atNXY(const int pos, const int x, const int y, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atNXY(): Empty instance.", + cimglist_instance); + + return _atNXY(pos,x,y,z,c); + } + + T& _atNXY(const int pos, const int x, const int y, const int z=0, const int c=0) { + return _data[cimg::cut(pos,0,width() - 1)].atXY(x,y,z,c); + } + + T _atNXY(const int pos, const int x, const int y, const int z=0, const int c=0) const { + return _data[cimg::cut(pos,0,width() - 1)].atXY(x,y,z,c); + } + + //! Access to pixel value with Dirichlet boundary conditions for the 2 coordinates (\c pos,\c x). + /** + \param pos Indice of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param out_value Default value returned if \c offset is outside image bounds. + \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. + **/ + T& atNX(const int pos, const int x, const int y, const int z, const int c, const T& out_value) { + return (pos<0 || pos>=(int)_width)?(cimg::temporary(out_value)=out_value):_data[pos].atX(x,y,z,c,out_value); + } + + //! Access to pixel value with Dirichlet boundary conditions for the 2 coordinates (\c pos,\c x) \const. + T atNX(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const { + return (pos<0 || pos>=(int)_width)?out_value:_data[pos].atX(x,y,z,c,out_value); + } + + //! Access to pixel value with Neumann boundary conditions for the 2 coordinates (\c pos, \c x). + /** + \param pos Indice of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. + **/ + T& atNX(const int pos, const int x, const int y=0, const int z=0, const int c=0) { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atNX(): Empty instance.", + cimglist_instance); + + return _atNX(pos,x,y,z,c); + } + + //! Access to pixel value with Neumann boundary conditions for the 2 coordinates (\c pos, \c x) \const. + T atNX(const int pos, const int x, const int y=0, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atNX(): Empty instance.", + cimglist_instance); + + return _atNX(pos,x,y,z,c); + } + + T& _atNX(const int pos, const int x, const int y=0, const int z=0, const int c=0) { + return _data[cimg::cut(pos,0,width() - 1)].atX(x,y,z,c); + } + + T _atNX(const int pos, const int x, const int y=0, const int z=0, const int c=0) const { + return _data[cimg::cut(pos,0,width() - 1)].atX(x,y,z,c); + } + + //! Access to pixel value with Dirichlet boundary conditions for the coordinate (\c pos). + /** + \param pos Indice of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \param out_value Default value returned if \c offset is outside image bounds. + \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. + **/ + T& atN(const int pos, const int x, const int y, const int z, const int c, const T& out_value) { + return (pos<0 || pos>=(int)_width)?(cimg::temporary(out_value)=out_value):(*this)(pos,x,y,z,c); + } + + //! Access to pixel value with Dirichlet boundary conditions for the coordinate (\c pos) \const. + T atN(const int pos, const int x, const int y, const int z, const int c, const T& out_value) const { + return (pos<0 || pos>=(int)_width)?out_value:(*this)(pos,x,y,z,c); + } + + //! Return pixel value with Neumann boundary conditions for the coordinate (\c pos). + /** + \param pos Indice of the image element to access. + \param x X-coordinate of the pixel value. + \param y Y-coordinate of the pixel value. + \param z Z-coordinate of the pixel value. + \param c C-coordinate of the pixel value. + \note list.atNXYZ(p,x,y,z,c); is equivalent to list[p].atXYZ(x,y,z,c);. + **/ + T& atN(const int pos, const int x=0, const int y=0, const int z=0, const int c=0) { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atN(): Empty instance.", + cimglist_instance); + return _atN(pos,x,y,z,c); + } + + //! Return pixel value with Neumann boundary conditions for the coordinate (\c pos) \const. + T atN(const int pos, const int x=0, const int y=0, const int z=0, const int c=0) const { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "atN(): Empty instance.", + cimglist_instance); + return _atN(pos,x,y,z,c); + } + + T& _atN(const int pos, const int x=0, const int y=0, const int z=0, const int c=0) { + return _data[cimg::cut(pos,0,width() - 1)](x,y,z,c); + } + + T _atN(const int pos, const int x=0, const int y=0, const int z=0, const int c=0) const { + return _data[cimg::cut(pos,0,width() - 1)](x,y,z,c); + } + + //! Return a C-string containing the values of all images in the instance list. + /** + \param separator Character separator set between consecutive pixel values. + \param max_size Maximum size of the returned string. + \note The result is returne as a CImg image whose pixel buffer contains the desired C-string. + **/ + CImg value_string(const char separator=',', const unsigned int max_size=0) const { + if (is_empty()) return CImg(1,1,1,1,0); + CImgList items; + for (unsigned int l = 0; l<_width - 1; ++l) { + CImg item = _data[l].value_string(separator,0); + item.back() = separator; + item.move_to(items); + } + _data[_width - 1].value_string(separator,0).move_to(items); + CImg res; (items>'x').move_to(res); + if (max_size) { res.crop(0,max_size); res(max_size) = 0; } + return res; + } + + //@} + //------------------------------------- + // + //! \name Instance Checking + //@{ + //------------------------------------- + + //! Return \c true if list is empty. + /** + **/ + bool is_empty() const { + return (!_data || !_width); + } + + //! Test if number of image elements is equal to specified value. + /** + \param size_n Number of image elements to test. + **/ + bool is_sameN(const unsigned int size_n) const { + return _width==size_n; + } + + //! Test if number of image elements is equal between two images lists. + /** + \param list Input list to compare with. + **/ + template + bool is_sameN(const CImgList& list) const { + return is_sameN(list._width); + } + + // Define useful functions to check list dimensions. + // (cannot be documented because macro-generated). +#define _cimglist_def_is_same1(axis) \ + bool is_same##axis(const unsigned int val) const { \ + bool res = true; \ + for (unsigned int l = 0; l<_width && res; ++l) res = _data[l].is_same##axis(val); return res; \ + } \ + bool is_sameN##axis(const unsigned int n, const unsigned int val) const { \ + return is_sameN(n) && is_same##axis(val); \ + } \ + +#define _cimglist_def_is_same2(axis1,axis2) \ + bool is_same##axis1##axis2(const unsigned int val1, const unsigned int val2) const { \ + bool res = true; \ + for (unsigned int l = 0; l<_width && res; ++l) res = _data[l].is_same##axis1##axis2(val1,val2); return res; \ + } \ + bool is_sameN##axis1##axis2(const unsigned int n, const unsigned int val1, const unsigned int val2) const { \ + return is_sameN(n) && is_same##axis1##axis2(val1,val2); \ + } \ + +#define _cimglist_def_is_same3(axis1,axis2,axis3) \ + bool is_same##axis1##axis2##axis3(const unsigned int val1, const unsigned int val2, \ + const unsigned int val3) const { \ + bool res = true; \ + for (unsigned int l = 0; l<_width && res; ++l) res = _data[l].is_same##axis1##axis2##axis3(val1,val2,val3); \ + return res; \ + } \ + bool is_sameN##axis1##axis2##axis3(const unsigned int n, const unsigned int val1, \ + const unsigned int val2, const unsigned int val3) const { \ + return is_sameN(n) && is_same##axis1##axis2##axis3(val1,val2,val3); \ + } \ + +#define _cimglist_def_is_same(axis) \ + template bool is_same##axis(const CImg& img) const { \ + bool res = true; for (unsigned int l = 0; l<_width && res; ++l) res = _data[l].is_same##axis(img); return res; \ + } \ + template bool is_same##axis(const CImgList& list) const { \ + const unsigned int lmin = std::min(_width,list._width); \ + bool res = true; for (unsigned int l = 0; l bool is_sameN##axis(const unsigned int n, const CImg& img) const { \ + return (is_sameN(n) && is_same##axis(img)); \ + } \ + template bool is_sameN##axis(const CImgList& list) const { \ + return (is_sameN(list) && is_same##axis(list)); \ + } + + _cimglist_def_is_same(XY) + _cimglist_def_is_same(XZ) + _cimglist_def_is_same(XC) + _cimglist_def_is_same(YZ) + _cimglist_def_is_same(YC) + _cimglist_def_is_same(XYZ) + _cimglist_def_is_same(XYC) + _cimglist_def_is_same(YZC) + _cimglist_def_is_same(XYZC) + _cimglist_def_is_same1(X) + _cimglist_def_is_same1(Y) + _cimglist_def_is_same1(Z) + _cimglist_def_is_same1(C) + _cimglist_def_is_same2(X,Y) + _cimglist_def_is_same2(X,Z) + _cimglist_def_is_same2(X,C) + _cimglist_def_is_same2(Y,Z) + _cimglist_def_is_same2(Y,C) + _cimglist_def_is_same2(Z,C) + _cimglist_def_is_same3(X,Y,Z) + _cimglist_def_is_same3(X,Y,C) + _cimglist_def_is_same3(X,Z,C) + _cimglist_def_is_same3(Y,Z,C) + + //! Test if dimensions of each image of the list match specified arguments. + /** + \param dx Checked image width. + \param dy Checked image height. + \param dz Checked image depth. + \param dc Checked image spectrum. + **/ + bool is_sameXYZC(const unsigned int dx, const unsigned int dy, + const unsigned int dz, const unsigned int dc) const { + bool res = true; + for (unsigned int l = 0; l<_width && res; ++l) res = _data[l].is_sameXYZC(dx,dy,dz,dc); + return res; + } + + //! Test if list dimensions match specified arguments. + /** + \param n Number of images in the list. + \param dx Checked image width. + \param dy Checked image height. + \param dz Checked image depth. + \param dc Checked image spectrum. + **/ + bool is_sameNXYZC(const unsigned int n, + const unsigned int dx, const unsigned int dy, + const unsigned int dz, const unsigned int dc) const { + return is_sameN(n) && is_sameXYZC(dx,dy,dz,dc); + } + + //! Test if list contains one particular pixel location. + /** + \param n Index of the image whom checked pixel value belong to. + \param x X-coordinate of the checked pixel value. + \param y Y-coordinate of the checked pixel value. + \param z Z-coordinate of the checked pixel value. + \param c C-coordinate of the checked pixel value. + **/ + bool containsNXYZC(const int n, const int x=0, const int y=0, const int z=0, const int c=0) const { + if (is_empty()) return false; + return n>=0 && n<(int)_width && x>=0 && x<_data[n].width() && y>=0 && y<_data[n].height() && + z>=0 && z<_data[n].depth() && c>=0 && c<_data[n].spectrum(); + } + + //! Test if list contains image with specified indice. + /** + \param n Index of the checked image. + **/ + bool containsN(const int n) const { + if (is_empty()) return false; + return n>=0 && n<(int)_width; + } + + //! Test if one image of the list contains the specified referenced value. + /** + \param pixel Reference to pixel value to test. + \param[out] n Index of image containing the pixel value, if test succeeds. + \param[out] x X-coordinate of the pixel value, if test succeeds. + \param[out] y Y-coordinate of the pixel value, if test succeeds. + \param[out] z Z-coordinate of the pixel value, if test succeeds. + \param[out] c C-coordinate of the pixel value, if test succeeds. + \note If true, set coordinates (n,x,y,z,c). + **/ + template + bool contains(const T& pixel, t& n, t& x, t&y, t& z, t& c) const { + if (is_empty()) return false; + cimglist_for(*this,l) if (_data[l].contains(pixel,x,y,z,c)) { n = (t)l; return true; } + return false; + } + + //! Test if one of the image list contains the specified referenced value. + /** + \param pixel Reference to pixel value to test. + \param[out] n Index of image containing the pixel value, if test succeeds. + \param[out] x X-coordinate of the pixel value, if test succeeds. + \param[out] y Y-coordinate of the pixel value, if test succeeds. + \param[out] z Z-coordinate of the pixel value, if test succeeds. + \note If true, set coordinates (n,x,y,z). + **/ + template + bool contains(const T& pixel, t& n, t& x, t&y, t& z) const { + t c; + return contains(pixel,n,x,y,z,c); + } + + //! Test if one of the image list contains the specified referenced value. + /** + \param pixel Reference to pixel value to test. + \param[out] n Index of image containing the pixel value, if test succeeds. + \param[out] x X-coordinate of the pixel value, if test succeeds. + \param[out] y Y-coordinate of the pixel value, if test succeeds. + \note If true, set coordinates (n,x,y). + **/ + template + bool contains(const T& pixel, t& n, t& x, t&y) const { + t z, c; + return contains(pixel,n,x,y,z,c); + } + + //! Test if one of the image list contains the specified referenced value. + /** + \param pixel Reference to pixel value to test. + \param[out] n Index of image containing the pixel value, if test succeeds. + \param[out] x X-coordinate of the pixel value, if test succeeds. + \note If true, set coordinates (n,x). + **/ + template + bool contains(const T& pixel, t& n, t& x) const { + t y, z, c; + return contains(pixel,n,x,y,z,c); + } + + //! Test if one of the image list contains the specified referenced value. + /** + \param pixel Reference to pixel value to test. + \param[out] n Index of image containing the pixel value, if test succeeds. + \note If true, set coordinates (n). + **/ + template + bool contains(const T& pixel, t& n) const { + t x, y, z, c; + return contains(pixel,n,x,y,z,c); + } + + //! Test if one of the image list contains the specified referenced value. + /** + \param pixel Reference to pixel value to test. + **/ + bool contains(const T& pixel) const { + unsigned int n, x, y, z, c; + return contains(pixel,n,x,y,z,c); + } + + //! Test if the list contains the image 'img'. + /** + \param img Reference to image to test. + \param[out] n Index of image in the list, if test succeeds. + \note If true, returns the position (n) of the image in the list. + **/ + template + bool contains(const CImg& img, t& n) const { + if (is_empty()) return false; + const CImg *const ptr = &img; + cimglist_for(*this,i) if (_data + i==ptr) { n = (t)i; return true; } + return false; + } + + //! Test if the list contains the image img. + /** + \param img Reference to image to test. + **/ + bool contains(const CImg& img) const { + unsigned int n; + return contains(img,n); + } + + //@} + //------------------------------------- + // + //! \name Mathematical Functions + //@{ + //------------------------------------- + + //! Return a reference to the minimum pixel value of the instance list. + /** + **/ + T& min() { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "min(): Empty instance.", + cimglist_instance); + T *ptr_min = _data->_data; + T min_value = *ptr_min; + cimglist_for(*this,l) { + const CImg& img = _data[l]; + cimg_for(img,ptrs,T) if (*ptrs_data; + T min_value = *ptr_min; + cimglist_for(*this,l) { + const CImg& img = _data[l]; + cimg_for(img,ptrs,T) if (*ptrs_data; + T max_value = *ptr_max; + cimglist_for(*this,l) { + const CImg& img = _data[l]; + cimg_for(img,ptrs,T) if (*ptrs>max_value) max_value = *(ptr_max=ptrs); + } + return *ptr_max; + } + + //! Return a reference to the maximum pixel value of the instance list \const. + const T& max() const { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "max(): Empty instance.", + cimglist_instance); + const T *ptr_max = _data->_data; + T max_value = *ptr_max; + cimglist_for(*this,l) { + const CImg& img = _data[l]; + cimg_for(img,ptrs,T) if (*ptrs>max_value) max_value = *(ptr_max=ptrs); + } + return *ptr_max; + } + + //! Return a reference to the minimum pixel value of the instance list and return the maximum vvalue as well. + /** + \param[out] max_val Value of the maximum value found. + **/ + template + T& min_max(t& max_val) { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "min_max(): Empty instance.", + cimglist_instance); + T *ptr_min = _data->_data; + T min_value = *ptr_min, max_value = min_value; + cimglist_for(*this,l) { + const CImg& img = _data[l]; + cimg_for(img,ptrs,T) { + const T val = *ptrs; + if (valmax_value) max_value = val; + } + } + max_val = (t)max_value; + return *ptr_min; + } + + //! Return a reference to the minimum pixel value of the instance list and return the maximum vvalue as well \const. + /** + \param[out] max_val Value of the maximum value found. + **/ + template + const T& min_max(t& max_val) const { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "min_max(): Empty instance.", + cimglist_instance); + const T *ptr_min = _data->_data; + T min_value = *ptr_min, max_value = min_value; + cimglist_for(*this,l) { + const CImg& img = _data[l]; + cimg_for(img,ptrs,T) { + const T val = *ptrs; + if (valmax_value) max_value = val; + } + } + max_val = (t)max_value; + return *ptr_min; + } + + //! Return a reference to the minimum pixel value of the instance list and return the minimum value as well. + /** + \param[out] min_val Value of the minimum value found. + **/ + template + T& max_min(t& min_val) { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "max_min(): Empty instance.", + cimglist_instance); + T *ptr_max = _data->_data; + T min_value = *ptr_max, max_value = min_value; + cimglist_for(*this,l) { + const CImg& img = _data[l]; + cimg_for(img,ptrs,T) { + const T val = *ptrs; + if (val>max_value) { max_value = val; ptr_max = ptrs; } + if (val + const T& max_min(t& min_val) const { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "max_min(): Empty instance.", + cimglist_instance); + const T *ptr_max = _data->_data; + T min_value = *ptr_max, max_value = min_value; + cimglist_for(*this,l) { + const CImg& img = _data[l]; + cimg_for(img,ptrs,T) { + const T val = *ptrs; + if (val>max_value) { max_value = val; ptr_max = ptrs; } + if (val + CImgList& insert(const CImg& img, const unsigned int pos=~0U, const bool is_shared=false) { + const unsigned int npos = pos==~0U?_width:pos; + if (npos>_width) + throw CImgArgumentException(_cimglist_instance + "insert(): Invalid insertion request of specified image (%u,%u,%u,%u,%p) " + "at position %u.", + cimglist_instance, + img._width,img._height,img._depth,img._spectrum,img._data,npos); + if (is_shared) + throw CImgArgumentException(_cimglist_instance + "insert(): Invalid insertion request of specified shared image " + "CImg<%s>(%u,%u,%u,%u,%p) at position %u (pixel types are different).", + cimglist_instance, + img.pixel_type(),img._width,img._height,img._depth,img._spectrum,img._data,npos); + + CImg *const new_data = (++_width>_allocated_width)?new CImg[_allocated_width?(_allocated_width<<=1): + (_allocated_width=16)]:0; + if (!_data) { // Insert new element into empty list. + _data = new_data; + *_data = img; + } else { + if (new_data) { // Insert with re-allocation. + if (npos) std::memcpy(new_data,_data,sizeof(CImg)*npos); + if (npos!=_width - 1) std::memcpy(new_data + npos + 1,_data + npos,sizeof(CImg)*(_width - 1 - npos)); + std::memset(_data,0,sizeof(CImg)*(_width - 1)); + delete[] _data; + _data = new_data; + } else if (npos!=_width - 1) // Insert without re-allocation. + std::memmove(_data + npos + 1,_data + npos,sizeof(CImg)*(_width - 1 - npos)); + _data[npos]._width = _data[npos]._height = _data[npos]._depth = _data[npos]._spectrum = 0; + _data[npos]._data = 0; + _data[npos] = img; + } + return *this; + } + + //! Insert a copy of the image \c img into the current image list, at position \c pos \specialization. + CImgList& insert(const CImg& img, const unsigned int pos=~0U, const bool is_shared=false) { + const unsigned int npos = pos==~0U?_width:pos; + if (npos>_width) + throw CImgArgumentException(_cimglist_instance + "insert(): Invalid insertion request of specified image (%u,%u,%u,%u,%p) " + "at position %u.", + cimglist_instance, + img._width,img._height,img._depth,img._spectrum,img._data,npos); + CImg *const new_data = (++_width>_allocated_width)?new CImg[_allocated_width?(_allocated_width<<=1): + (_allocated_width=16)]:0; + if (!_data) { // Insert new element into empty list. + _data = new_data; + if (is_shared && img) { + _data->_width = img._width; + _data->_height = img._height; + _data->_depth = img._depth; + _data->_spectrum = img._spectrum; + _data->_is_shared = true; + _data->_data = img._data; + } else *_data = img; + } + else { + if (new_data) { // Insert with re-allocation. + if (npos) std::memcpy(new_data,_data,sizeof(CImg)*npos); + if (npos!=_width - 1) std::memcpy(new_data + npos + 1,_data + npos,sizeof(CImg)*(_width - 1 - npos)); + if (is_shared && img) { + new_data[npos]._width = img._width; + new_data[npos]._height = img._height; + new_data[npos]._depth = img._depth; + new_data[npos]._spectrum = img._spectrum; + new_data[npos]._is_shared = true; + new_data[npos]._data = img._data; + } else { + new_data[npos]._width = new_data[npos]._height = new_data[npos]._depth = new_data[npos]._spectrum = 0; + new_data[npos]._data = 0; + new_data[npos] = img; + } + std::memset(_data,0,sizeof(CImg)*(_width - 1)); + delete[] _data; + _data = new_data; + } else { // Insert without re-allocation. + if (npos!=_width - 1) std::memmove(_data + npos + 1,_data + npos,sizeof(CImg)*(_width - 1 - npos)); + if (is_shared && img) { + _data[npos]._width = img._width; + _data[npos]._height = img._height; + _data[npos]._depth = img._depth; + _data[npos]._spectrum = img._spectrum; + _data[npos]._is_shared = true; + _data[npos]._data = img._data; + } else { + _data[npos]._width = _data[npos]._height = _data[npos]._depth = _data[npos]._spectrum = 0; + _data[npos]._data = 0; + _data[npos] = img; + } + } + } + return *this; + } + + //! Insert a copy of the image \c img into the current image list, at position \c pos \newinstance. + template + CImgList get_insert(const CImg& img, const unsigned int pos=~0U, const bool is_shared=false) const { + return (+*this).insert(img,pos,is_shared); + } + + //! Insert n empty images img into the current image list, at position \p pos. + /** + \param n Number of empty images to insert. + \param pos Index of the insertion. + **/ + CImgList& insert(const unsigned int n, const unsigned int pos=~0U) { + CImg empty; + if (!n) return *this; + const unsigned int npos = pos==~0U?_width:pos; + for (unsigned int i = 0; i get_insert(const unsigned int n, const unsigned int pos=~0U) const { + return (+*this).insert(n,pos); + } + + //! Insert \c n copies of the image \c img into the current image list, at position \c pos. + /** + \param n Number of image copies to insert. + \param img Image to insert by copy. + \param pos Index of the insertion. + \param is_shared Tells if inserted images are shared copies of \c img or not. + **/ + template + CImgList& insert(const unsigned int n, const CImg& img, const unsigned int pos=~0U, + const bool is_shared=false) { + if (!n) return *this; + const unsigned int npos = pos==~0U?_width:pos; + insert(img,npos,is_shared); + for (unsigned int i = 1; i + CImgList get_insert(const unsigned int n, const CImg& img, const unsigned int pos=~0U, + const bool is_shared=false) const { + return (+*this).insert(n,img,pos,is_shared); + } + + //! Insert a copy of the image list \c list into the current image list, starting from position \c pos. + /** + \param list Image list to insert. + \param pos Index of the insertion. + \param is_shared Tells if inserted images are shared copies of images of \c list or not. + **/ + template + CImgList& insert(const CImgList& list, const unsigned int pos=~0U, const bool is_shared=false) { + const unsigned int npos = pos==~0U?_width:pos; + if ((void*)this!=(void*)&list) cimglist_for(list,l) insert(list[l],npos + l,is_shared); + else insert(CImgList(list),npos,is_shared); + return *this; + } + + //! Insert a copy of the image list \c list into the current image list, starting from position \c pos \newinstance. + template + CImgList get_insert(const CImgList& list, const unsigned int pos=~0U, const bool is_shared=false) const { + return (+*this).insert(list,pos,is_shared); + } + + //! Insert n copies of the list \c list at position \c pos of the current list. + /** + \param n Number of list copies to insert. + \param list Image list to insert. + \param pos Index of the insertion. + \param is_shared Tells if inserted images are shared copies of images of \c list or not. + **/ + template + CImgList& insert(const unsigned int n, const CImgList& list, const unsigned int pos=~0U, + const bool is_shared=false) { + if (!n) return *this; + const unsigned int npos = pos==~0U?_width:pos; + for (unsigned int i = 0; i + CImgList get_insert(const unsigned int n, const CImgList& list, const unsigned int pos=~0U, + const bool is_shared=false) const { + return (+*this).insert(n,list,pos,is_shared); + } + + //! Remove all images between from indexes. + /** + \param pos1 Starting index of the removal. + \param pos2 Ending index of the removal. + **/ + CImgList& remove(const unsigned int pos1, const unsigned int pos2) { + const unsigned int + npos1 = pos1=_width) + throw CImgArgumentException(_cimglist_instance + "remove(): Invalid remove request at positions %u->%u.", + cimglist_instance, + npos1,tpos2); + else { + if (tpos2>=_width) + throw CImgArgumentException(_cimglist_instance + "remove(): Invalid remove request at positions %u->%u.", + cimglist_instance, + npos1,tpos2); + + for (unsigned int k = npos1; k<=npos2; ++k) _data[k].assign(); + const unsigned int nb = 1 + npos2 - npos1; + if (!(_width-=nb)) return assign(); + if (_width>(_allocated_width>>2) || _allocated_width<=16) { // Removing items without reallocation. + if (npos1!=_width) std::memmove(_data + npos1,_data + npos2 + 1,sizeof(CImg)*(_width - npos1)); + std::memset(_data + _width,0,sizeof(CImg)*nb); + } else { // Removing items with reallocation. + _allocated_width>>=2; + while (_allocated_width>16 && _width<(_allocated_width>>1)) _allocated_width>>=1; + CImg *const new_data = new CImg[_allocated_width]; + if (npos1) std::memcpy(new_data,_data,sizeof(CImg)*npos1); + if (npos1!=_width) std::memcpy(new_data + npos1,_data + npos2 + 1,sizeof(CImg)*(_width - npos1)); + if (_width!=_allocated_width) std::memset(new_data + _width,0,sizeof(CImg)*(_allocated_width - _width)); + std::memset(_data,0,sizeof(CImg)*(_width + nb)); + delete[] _data; + _data = new_data; + } + } + return *this; + } + + //! Remove all images between from indexes \newinstance. + CImgList get_remove(const unsigned int pos1, const unsigned int pos2) const { + return (+*this).remove(pos1,pos2); + } + + //! Remove image at index \c pos from the image list. + /** + \param pos Index of the image to remove. + **/ + CImgList& remove(const unsigned int pos) { + return remove(pos,pos); + } + + //! Remove image at index \c pos from the image list \newinstance. + CImgList get_remove(const unsigned int pos) const { + return (+*this).remove(pos); + } + + //! Remove last image. + /** + **/ + CImgList& remove() { + return remove(_width - 1); + } + + //! Remove last image \newinstance. + CImgList get_remove() const { + return (+*this).remove(); + } + + //! Reverse list order. + CImgList& reverse() { + for (unsigned int l = 0; l<_width/2; ++l) (*this)[l].swap((*this)[_width - 1 - l]); + return *this; + } + + //! Reverse list order \newinstance. + CImgList get_reverse() const { + return (+*this).reverse(); + } + + //! Return a sublist. + /** + \param pos0 Starting index of the sublist. + \param pos1 Ending index of the sublist. + **/ + CImgList& images(const unsigned int pos0, const unsigned int pos1) { + return get_images(pos0,pos1).move_to(*this); + } + + //! Return a sublist \newinstance. + CImgList get_images(const unsigned int pos0, const unsigned int pos1) const { + if (pos0>pos1 || pos1>=_width) + throw CImgArgumentException(_cimglist_instance + "images(): Specified sub-list indices (%u->%u) are out of bounds.", + cimglist_instance, + pos0,pos1); + CImgList res(pos1 - pos0 + 1); + cimglist_for(res,l) res[l].assign(_data[pos0 + l]); + return res; + } + + //! Return a shared sublist. + /** + \param pos0 Starting index of the sublist. + \param pos1 Ending index of the sublist. + **/ + CImgList get_shared_images(const unsigned int pos0, const unsigned int pos1) { + if (pos0>pos1 || pos1>=_width) + throw CImgArgumentException(_cimglist_instance + "get_shared_images(): Specified sub-list indices (%u->%u) are out of bounds.", + cimglist_instance, + pos0,pos1); + CImgList res(pos1 - pos0 + 1); + cimglist_for(res,l) res[l].assign(_data[pos0 + l],_data[pos0 + l]?true:false); + return res; + } + + //! Return a shared sublist \newinstance. + const CImgList get_shared_images(const unsigned int pos0, const unsigned int pos1) const { + if (pos0>pos1 || pos1>=_width) + throw CImgArgumentException(_cimglist_instance + "get_shared_images(): Specified sub-list indices (%u->%u) are out of bounds.", + cimglist_instance, + pos0,pos1); + CImgList res(pos1 - pos0 + 1); + cimglist_for(res,l) res[l].assign(_data[pos0 + l],_data[pos0 + l]?true:false); + return res; + } + + //! Return a single image which is the appending of all images of the current CImgList instance. + /** + \param axis Appending axis. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Appending alignment. + **/ + CImg get_append(const char axis, const float align=0) const { + if (is_empty()) return CImg(); + if (_width==1) return +((*this)[0]); + unsigned int dx = 0, dy = 0, dz = 0, dc = 0, pos = 0; + CImg res; + switch (cimg::lowercase(axis)) { + case 'x' : { // Along the X-axis. + cimglist_for(*this,l) { + const CImg& img = (*this)[l]; + if (img) { + dx+=img._width; + dy = std::max(dy,img._height); + dz = std::max(dz,img._depth); + dc = std::max(dc,img._spectrum); + } + } + res.assign(dx,dy,dz,dc,(T)0); + if (res) cimglist_for(*this,l) { + const CImg& img = (*this)[l]; + if (img) res.draw_image(pos, + (int)(align*(dy - img._height)), + (int)(align*(dz - img._depth)), + (int)(align*(dc - img._spectrum)), + img); + pos+=img._width; + } + } break; + case 'y' : { // Along the Y-axis. + cimglist_for(*this,l) { + const CImg& img = (*this)[l]; + if (img) { + dx = std::max(dx,img._width); + dy+=img._height; + dz = std::max(dz,img._depth); + dc = std::max(dc,img._spectrum); + } + } + res.assign(dx,dy,dz,dc,(T)0); + if (res) cimglist_for(*this,l) { + const CImg& img = (*this)[l]; + if (img) res.draw_image((int)(align*(dx - img._width)), + pos, + (int)(align*(dz - img._depth)), + (int)(align*(dc - img._spectrum)), + img); + pos+=img._height; + } + } break; + case 'z' : { // Along the Z-axis. + cimglist_for(*this,l) { + const CImg& img = (*this)[l]; + if (img) { + dx = std::max(dx,img._width); + dy = std::max(dy,img._height); + dz+=img._depth; + dc = std::max(dc,img._spectrum); + } + } + res.assign(dx,dy,dz,dc,(T)0); + if (res) cimglist_for(*this,l) { + const CImg& img = (*this)[l]; + if (img) res.draw_image((int)(align*(dx - img._width)), + (int)(align*(dy - img._height)), + pos, + (int)(align*(dc - img._spectrum)), + img); + pos+=img._depth; + } + } break; + default : { // Along the C-axis. + cimglist_for(*this,l) { + const CImg& img = (*this)[l]; + if (img) { + dx = std::max(dx,img._width); + dy = std::max(dy,img._height); + dz = std::max(dz,img._depth); + dc+=img._spectrum; + } + } + res.assign(dx,dy,dz,dc,(T)0); + if (res) cimglist_for(*this,l) { + const CImg& img = (*this)[l]; + if (img) res.draw_image((int)(align*(dx - img._width)), + (int)(align*(dy - img._height)), + (int)(align*(dz - img._depth)), + pos, + img); + pos+=img._spectrum; + } + } + } + return res; + } + + //! Return a list where each image has been split along the specified axis. + /** + \param axis Axis to split images along. + \param nb Number of spliting parts for each image. + **/ + CImgList& split(const char axis, const int nb=-1) { + return get_split(axis,nb).move_to(*this); + } + + //! Return a list where each image has been split along the specified axis \newinstance. + CImgList get_split(const char axis, const int nb=-1) const { + CImgList res; + cimglist_for(*this,l) _data[l].get_split(axis,nb).move_to(res,~0U); + return res; + } + + //! Insert image at the end of the list. + /** + \param img Image to insert. + **/ + template + CImgList& push_back(const CImg& img) { + return insert(img); + } + + //! Insert image at the front of the list. + /** + \param img Image to insert. + **/ + template + CImgList& push_front(const CImg& img) { + return insert(img,0); + } + + //! Insert list at the end of the current list. + /** + \param list List to insert. + **/ + template + CImgList& push_back(const CImgList& list) { + return insert(list); + } + + //! Insert list at the front of the current list. + /** + \param list List to insert. + **/ + template + CImgList& push_front(const CImgList& list) { + return insert(list,0); + } + + //! Remove last image. + /** + **/ + CImgList& pop_back() { + return remove(_width - 1); + } + + //! Remove first image. + /** + **/ + CImgList& pop_front() { + return remove(0); + } + + //! Remove image pointed by iterator. + /** + \param iter Iterator pointing to the image to remove. + **/ + CImgList& erase(const iterator iter) { + return remove(iter - _data); + } + + //@} + //---------------------------------- + // + //! \name Data Input + //@{ + //---------------------------------- + + //! Display a simple interactive interface to select images or sublists. + /** + \param disp Window instance to display selection and user interface. + \param feature_type Can be \c false to select a single image, or \c true to select a sublist. + \param axis Axis along whom images are appended for visualization. + \param align Alignment setting when images have not all the same size. + \param exit_on_anykey Exit function when any key is pressed. + \return A one-column vector containing the selected image indexes. + **/ + CImg get_select(CImgDisplay &disp, const bool feature_type=true, + const char axis='x', const float align=0, + const bool exit_on_anykey=false) const { + return _select(disp,0,feature_type,axis,align,exit_on_anykey,0,false,false,false); + } + + //! Display a simple interactive interface to select images or sublists. + /** + \param title Title of a new window used to display selection and user interface. + \param feature_type Can be \c false to select a single image, or \c true to select a sublist. + \param axis Axis along whom images are appended for visualization. + \param align Alignment setting when images have not all the same size. + \param exit_on_anykey Exit function when any key is pressed. + \return A one-column vector containing the selected image indexes. + **/ + CImg get_select(const char *const title, const bool feature_type=true, + const char axis='x', const float align=0, + const bool exit_on_anykey=false) const { + CImgDisplay disp; + return _select(disp,title,feature_type,axis,align,exit_on_anykey,0,false,false,false); + } + + CImg _select(CImgDisplay &disp, const char *const title, const bool feature_type, + const char axis, const float align, const bool exit_on_anykey, + const unsigned int orig, const bool resize_disp, + const bool exit_on_rightbutton, const bool exit_on_wheel) const { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "select(): Empty instance.", + cimglist_instance); + + // Create image correspondence table and get list dimensions for visualization. + CImgList _indices; + unsigned int max_width = 0, max_height = 0, sum_width = 0, sum_height = 0; + cimglist_for(*this,l) { + const CImg& img = _data[l]; + const unsigned int + w = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,false), + h = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,true); + if (w>max_width) max_width = w; + if (h>max_height) max_height = h; + sum_width+=w; sum_height+=h; + if (axis=='x') CImg(w,1,1,1,(unsigned int)l).move_to(_indices); + else CImg(h,1,1,1,(unsigned int)l).move_to(_indices); + } + const CImg indices0 = _indices>'x'; + + // Create display window. + if (!disp) { + if (axis=='x') disp.assign(cimg_fitscreen(sum_width,max_height,1),title?title:0,1); + else disp.assign(cimg_fitscreen(max_width,sum_height,1),title?title:0,1); + if (!title) disp.set_title("CImgList<%s> (%u)",pixel_type(),_width); + } else if (title) disp.set_title("%s",title); + if (resize_disp) { + if (axis=='x') disp.resize(cimg_fitscreen(sum_width,max_height,1),false); + else disp.resize(cimg_fitscreen(max_width,sum_height,1),false); + } + + const unsigned int old_normalization = disp.normalization(); + bool old_is_resized = disp.is_resized(); + disp._normalization = 0; + disp.show().set_key(0); + static const unsigned char foreground_color[] = { 255,255,255 }, background_color[] = { 0,0,0 }; + + // Enter event loop. + CImg visu0, visu; + CImg indices; + CImg positions(_width,4,1,1,-1); + int oindice0 = -1, oindice1 = -1, indice0 = -1, indice1 = -1; + bool is_clicked = false, is_selected = false, text_down = false, update_display = true; + unsigned int key = 0; + + while (!is_selected && !disp.is_closed() && !key) { + + // Create background image. + if (!visu0) { + visu0.assign(disp._width,disp._height,1,3,0); visu.assign(); + (indices0.get_resize(axis=='x'?visu0._width:visu0._height,1)).move_to(indices); + unsigned int ind = 0; + const CImg onexone(1,1,1,1,(T)0); + if (axis=='x') + cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=4)) + cimglist_for(*this,ind) { + unsigned int x0 = 0; + while (x0 &src = _data[ind]?_data[ind]:onexone; + CImg res; + src.__get_select(disp,old_normalization,(src._width - 1)/2,(src._height - 1)/2,(src._depth - 1)/2). + move_to(res); + const unsigned int h = CImgDisplay::_fitscreen(res._width,res._height,1,128,-85,true); + res.resize(x1 - x0,std::max(32U,h*disp._height/max_height),1,res._spectrum==1?3:-100); + positions(ind,0) = positions(ind,2) = (int)x0; + positions(ind,1) = positions(ind,3) = (int)(align*(visu0.height() - res.height())); + positions(ind,2)+=res._width; + positions(ind,3)+=res._height - 1; + visu0.draw_image(positions(ind,0),positions(ind,1),res); + } + else + cimg_pragma_openmp(parallel for cimg_openmp_if(_width>=4)) + cimglist_for(*this,ind) { + unsigned int y0 = 0; + while (y0 &src = _data[ind]?_data[ind]:onexone; + CImg res; + src.__get_select(disp,old_normalization,(src._width - 1)/2,(src._height - 1)/2,(src._depth - 1)/2). + move_to(res); + const unsigned int w = CImgDisplay::_fitscreen(res._width,res._height,1,128,-85,false); + res.resize(std::max(32U,w*disp._width/max_width),y1 - y0,1,res._spectrum==1?3:-100); + positions(ind,0) = positions(ind,2) = (int)(align*(visu0.width() - res.width())); + positions(ind,1) = positions(ind,3) = (int)y0; + positions(ind,2)+=res._width - 1; + positions(ind,3)+=res._height; + visu0.draw_image(positions(ind,0),positions(ind,1),res); + } + if (axis=='x') --positions(ind,2); else --positions(ind,3); + update_display = true; + } + + if (!visu || oindice0!=indice0 || oindice1!=indice1) { + if (indice0>=0 && indice1>=0) { + visu.assign(visu0,false); + const int indm = std::min(indice0,indice1), indM = std::max(indice0,indice1); + for (int ind = indm; ind<=indM; ++ind) if (positions(ind,0)>=0) { + visu.draw_rectangle(positions(ind,0),positions(ind,1),positions(ind,2),positions(ind,3), + background_color,0.2f); + if ((axis=='x' && positions(ind,2) - positions(ind,0)>=8) || + (axis!='x' && positions(ind,3) - positions(ind,1)>=8)) + visu.draw_rectangle(positions(ind,0),positions(ind,1),positions(ind,2),positions(ind,3), + foreground_color,0.9f,0xAAAAAAAA); + } + const int yt = (int)text_down?visu.height() - 13:0; + if (is_clicked) visu.draw_text(0,yt," Images #%u - #%u, Size = %u", + foreground_color,background_color,0.7f,13, + orig + indm,orig + indM,indM - indm + 1); + else visu.draw_text(0,yt," Image #%u (%u,%u,%u,%u)",foreground_color,background_color,0.7f,13, + orig + indice0, + _data[indice0]._width, + _data[indice0]._height, + _data[indice0]._depth, + _data[indice0]._spectrum); + update_display = true; + } else visu.assign(); + } + if (!visu) { visu.assign(visu0,true); update_display = true; } + if (update_display) { visu.display(disp); update_display = false; } + disp.wait(); + + // Manage user events. + const int xm = disp.mouse_x(), ym = disp.mouse_y(); + int indice = -1; + + if (xm>=0) { + indice = (int)indices(axis=='x'?xm:ym); + if (disp.button()&1) { + if (!is_clicked) { is_clicked = true; oindice0 = indice0; indice0 = indice; } + oindice1 = indice1; indice1 = indice; + if (!feature_type) is_selected = true; + } else { + if (!is_clicked) { oindice0 = oindice1 = indice0; indice0 = indice1 = indice; } + else is_selected = true; + } + } else { + if (is_clicked) { + if (!(disp.button()&1)) { is_clicked = is_selected = false; indice0 = indice1 = -1; } + else indice1 = -1; + } else indice0 = indice1 = -1; + } + + if (disp.button()&4) { is_clicked = is_selected = false; indice0 = indice1 = -1; } + if (disp.button()&2 && exit_on_rightbutton) { is_selected = true; indice1 = indice0 = -1; } + if (disp.wheel() && exit_on_wheel) is_selected = true; + + CImg filename(32); + switch (key = disp.key()) { +#if cimg_OS!=2 + case cimg::keyCTRLRIGHT : +#endif + case 0 : case cimg::keyCTRLLEFT : key = 0; break; + case cimg::keyD : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,false), + CImgDisplay::_fitscreen(3*disp.width()/2,3*disp.height()/2,1,128,-100,true),false). + _is_resized = true; + disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyC : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(cimg_fitscreen(2*disp.width()/3,2*disp.height()/3,1),false)._is_resized = true; + disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyR : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.set_fullscreen(false). + resize(cimg_fitscreen(axis=='x'?sum_width:max_width,axis=='x'?max_height:sum_height,1),false). + _is_resized = true; + disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyF : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + disp.resize(disp.screen_width(),disp.screen_height(),false).toggle_fullscreen()._is_resized = true; + disp.set_key(key,false); key = 0; visu0.assign(); + } break; + case cimg::keyS : if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + static unsigned int snap_number = 0; + std::FILE *file; + do { + cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.bmp",snap_number++); + if ((file=std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + if (visu0) { + (+visu0).draw_text(0,0," Saving snapshot... ", + foreground_color,background_color,0.7f,13).display(disp); + visu0.save(filename); + (+visu0).draw_text(0,0," Snapshot '%s' saved. ", + foreground_color,background_color,0.7f,13,filename._data).display(disp); + } + disp.set_key(key,false).wait(); key = 0; + } break; + case cimg::keyO : + if (disp.is_keyCTRLLEFT() || disp.is_keyCTRLRIGHT()) { + static unsigned int snap_number = 0; + std::FILE *file; + do { +#ifdef cimg_use_zlib + cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.cimgz",snap_number++); +#else + cimg_snprintf(filename,filename._width,cimg_appname "_%.4u.cimg",snap_number++); +#endif + if ((file=std_fopen(filename,"r"))!=0) cimg::fclose(file); + } while (file); + (+visu0).draw_text(0,0," Saving instance... ", + foreground_color,background_color,0.7f,13).display(disp); + save(filename); + (+visu0).draw_text(0,0," Instance '%s' saved. ", + foreground_color,background_color,0.7f,13,filename._data).display(disp); + disp.set_key(key,false).wait(); key = 0; + } break; + } + if (disp.is_resized()) { disp.resize(false); visu0.assign(); } + if (ym>=0 && ym<13) { if (!text_down) { visu.assign(); text_down = true; }} + else if (ym>=visu.height() - 13) { if (text_down) { visu.assign(); text_down = false; }} + if (!exit_on_anykey && key && key!=cimg::keyESC && + (key!=cimg::keyW || (!disp.is_keyCTRLLEFT() && !disp.is_keyCTRLRIGHT()))) { + key = 0; + } + } + CImg res(1,2,1,1,-1); + if (is_selected) { + if (feature_type) res.fill(std::min(indice0,indice1),std::max(indice0,indice1)); + else res.fill(indice0); + } + if (!(disp.button()&2)) disp.set_button(); + disp._normalization = old_normalization; + disp._is_resized = old_is_resized; + disp.set_key(key); + return res; + } + + //! Load a list from a file. + /** + \param filename Filename to read data from. + **/ + CImgList& load(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "load(): Specified filename is (null).", + cimglist_instance); + + if (!cimg::strncasecmp(filename,"http://",7) || !cimg::strncasecmp(filename,"https://",8)) { + CImg filename_local(256); + load(cimg::load_network(filename,filename_local)); + std::remove(filename_local); + return *this; + } + + const bool is_stdin = *filename=='-' && (!filename[1] || filename[1]=='.'); + const char *const ext = cimg::split_filename(filename); + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + bool is_loaded = true; + try { +#ifdef cimglist_load_plugin + cimglist_load_plugin(filename); +#endif +#ifdef cimglist_load_plugin1 + cimglist_load_plugin1(filename); +#endif +#ifdef cimglist_load_plugin2 + cimglist_load_plugin2(filename); +#endif +#ifdef cimglist_load_plugin3 + cimglist_load_plugin3(filename); +#endif +#ifdef cimglist_load_plugin4 + cimglist_load_plugin4(filename); +#endif +#ifdef cimglist_load_plugin5 + cimglist_load_plugin5(filename); +#endif +#ifdef cimglist_load_plugin6 + cimglist_load_plugin6(filename); +#endif +#ifdef cimglist_load_plugin7 + cimglist_load_plugin7(filename); +#endif +#ifdef cimglist_load_plugin8 + cimglist_load_plugin8(filename); +#endif + if (!cimg::strcasecmp(ext,"tif") || + !cimg::strcasecmp(ext,"tiff")) load_tiff(filename); + else if (!cimg::strcasecmp(ext,"gif")) load_gif_external(filename); + else if (!cimg::strcasecmp(ext,"cimg") || + !cimg::strcasecmp(ext,"cimgz") || + !*ext) load_cimg(filename); + else if (!cimg::strcasecmp(ext,"rec") || + !cimg::strcasecmp(ext,"par")) load_parrec(filename); + else if (!cimg::strcasecmp(ext,"avi") || + !cimg::strcasecmp(ext,"mov") || + !cimg::strcasecmp(ext,"asf") || + !cimg::strcasecmp(ext,"divx") || + !cimg::strcasecmp(ext,"flv") || + !cimg::strcasecmp(ext,"mpg") || + !cimg::strcasecmp(ext,"m1v") || + !cimg::strcasecmp(ext,"m2v") || + !cimg::strcasecmp(ext,"m4v") || + !cimg::strcasecmp(ext,"mjp") || + !cimg::strcasecmp(ext,"mp4") || + !cimg::strcasecmp(ext,"mkv") || + !cimg::strcasecmp(ext,"mpe") || + !cimg::strcasecmp(ext,"movie") || + !cimg::strcasecmp(ext,"ogm") || + !cimg::strcasecmp(ext,"ogg") || + !cimg::strcasecmp(ext,"ogv") || + !cimg::strcasecmp(ext,"qt") || + !cimg::strcasecmp(ext,"rm") || + !cimg::strcasecmp(ext,"vob") || + !cimg::strcasecmp(ext,"wmv") || + !cimg::strcasecmp(ext,"xvid") || + !cimg::strcasecmp(ext,"mpeg")) load_video(filename); + else if (!cimg::strcasecmp(ext,"gz")) load_gzip_external(filename); + else is_loaded = false; + } catch (CImgIOException&) { is_loaded = false; } + + // If nothing loaded, try to guess file format from magic number in file. + if (!is_loaded && !is_stdin) { + std::FILE *const file = std_fopen(filename,"rb"); + if (!file) { + cimg::exception_mode(omode); + throw CImgIOException(_cimglist_instance + "load(): Failed to open file '%s'.", + cimglist_instance, + filename); + } + + const char *const f_type = cimg::ftype(file,filename); + std::fclose(file); + is_loaded = true; + try { + if (!cimg::strcasecmp(f_type,"gif")) load_gif_external(filename); + else if (!cimg::strcasecmp(f_type,"tif")) load_tiff(filename); + else is_loaded = false; + } catch (CImgIOException&) { is_loaded = false; } + } + + // If nothing loaded, try to load file as a single image. + if (!is_loaded) { + assign(1); + try { + _data->load(filename); + } catch (CImgIOException&) { + cimg::exception_mode(omode); + throw CImgIOException(_cimglist_instance + "load(): Failed to recognize format of file '%s'.", + cimglist_instance, + filename); + } + } + cimg::exception_mode(omode); + return *this; + } + + //! Load a list from a file \newinstance. + static CImgList get_load(const char *const filename) { + return CImgList().load(filename); + } + + //! Load a list from a .cimg file. + /** + \param filename Filename to read data from. + **/ + CImgList& load_cimg(const char *const filename) { + return _load_cimg(0,filename); + } + + //! Load a list from a .cimg file \newinstance. + static CImgList get_load_cimg(const char *const filename) { + return CImgList().load_cimg(filename); + } + + //! Load a list from a .cimg file. + /** + \param file File to read data from. + **/ + CImgList& load_cimg(std::FILE *const file) { + return _load_cimg(file,0); + } + + //! Load a list from a .cimg file \newinstance. + static CImgList get_load_cimg(std::FILE *const file) { + return CImgList().load_cimg(file); + } + + CImgList& _load_cimg(std::FILE *const file, const char *const filename) { +#ifdef cimg_use_zlib +#define _cimgz_load_cimg_case(Tss) { \ + Bytef *const cbuf = new Bytef[csiz]; \ + cimg::fread(cbuf,csiz,nfile); \ + raw.assign(W,H,D,C); \ + uLongf destlen = (ulongT)raw.size()*sizeof(Tss); \ + uncompress((Bytef*)raw._data,&destlen,cbuf,csiz); \ + delete[] cbuf; \ + if (endian!=cimg::endianness()) cimg::invert_endianness(raw._data,raw.size()); \ + raw.move_to(img); \ +} +#else +#define _cimgz_load_cimg_case(Tss) \ + throw CImgIOException(_cimglist_instance \ + "load_cimg(): Unable to load compressed data from file '%s' unless zlib is enabled.", \ + cimglist_instance, \ + filename?filename:"(FILE*)"); +#endif + +#define _cimg_load_cimg_case(Ts,Tss) \ + if (!loaded && !cimg::strcasecmp(Ts,str_pixeltype)) { \ + for (unsigned int l = 0; l=0 && j<255) tmp[j++] = (char)i; tmp[j] = 0; \ + W = H = D = C = 0; csiz = 0; \ + if ((err = cimg_sscanf(tmp,"%u %u %u %u #%lu",&W,&H,&D,&C,&csiz))<4) \ + throw CImgIOException(_cimglist_instance \ + "load_cimg(): Invalid specified size (%u,%u,%u,%u) of image %u in file '%s'.", \ + cimglist_instance, \ + W,H,D,C,l,filename?filename:("(FILE*)")); \ + if (W*H*D*C>0) { \ + CImg raw; \ + CImg &img = _data[l]; \ + if (err==5) _cimgz_load_cimg_case(Tss) \ + else { \ + img.assign(W,H,D,C); \ + T *ptrd = img._data; \ + for (ulongT to_read = img.size(); to_read; ) { \ + raw.assign((unsigned int)std::min(to_read,cimg_iobuffer)); \ + cimg::fread(raw._data,raw._width,nfile); \ + if (endian!=cimg::endianness()) cimg::invert_endianness(raw._data,raw.size()); \ + const Tss *ptrs = raw._data; \ + for (ulongT off = (ulongT)raw._width; off; --off) *(ptrd++) = (T)*(ptrs++); \ + to_read-=raw._width; \ + } \ + } \ + } \ + } \ + loaded = true; \ + } + + if (!filename && !file) + throw CImgArgumentException(_cimglist_instance + "load_cimg(): Specified filename is (null).", + cimglist_instance); + + const ulongT cimg_iobuffer = (ulongT)24*1024*1024; + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + bool loaded = false, endian = cimg::endianness(); + CImg tmp(256), str_pixeltype(256), str_endian(256); + *tmp = *str_pixeltype = *str_endian = 0; + unsigned int j, N = 0, W, H, D, C; + unsigned long csiz; + int i, err; + do { + j = 0; while ((i=std::fgetc(nfile))!='\n' && i>=0 && j<255) tmp[j++] = (char)i; tmp[j] = 0; + } while (*tmp=='#' && i>=0); + err = cimg_sscanf(tmp,"%u%*c%255[A-Za-z64_]%*c%255[sA-Za-z_ ]", + &N,str_pixeltype._data,str_endian._data); + if (err<2) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimglist_instance + "load_cimg(): CImg header not found in file '%s'.", + cimglist_instance, + filename?filename:"(FILE*)"); + } + if (!cimg::strncasecmp("little",str_endian,6)) endian = false; + else if (!cimg::strncasecmp("big",str_endian,3)) endian = true; + assign(N); + _cimg_load_cimg_case("bool",bool); + _cimg_load_cimg_case("unsigned_char",unsigned char); + _cimg_load_cimg_case("uchar",unsigned char); + _cimg_load_cimg_case("char",char); + _cimg_load_cimg_case("unsigned_short",unsigned short); + _cimg_load_cimg_case("ushort",unsigned short); + _cimg_load_cimg_case("short",short); + _cimg_load_cimg_case("unsigned_int",unsigned int); + _cimg_load_cimg_case("uint",unsigned int); + _cimg_load_cimg_case("int",int); + _cimg_load_cimg_case("unsigned_long",ulongT); + _cimg_load_cimg_case("ulong",ulongT); + _cimg_load_cimg_case("long",longT); + _cimg_load_cimg_case("unsigned_int64",uint64T); + _cimg_load_cimg_case("uint64",uint64T); + _cimg_load_cimg_case("int64",int64T); + _cimg_load_cimg_case("float",float); + _cimg_load_cimg_case("double",double); + + if (!loaded) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimglist_instance + "load_cimg(): Unsupported pixel type '%s' for file '%s'.", + cimglist_instance, + str_pixeltype._data,filename?filename:"(FILE*)"); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load a sublist list from a (non compressed) .cimg file. + /** + \param filename Filename to read data from. + \param n0 Starting index of images to read (~0U for max). + \param n1 Ending index of images to read (~0U for max). + \param x0 Starting X-coordinates of image regions to read. + \param y0 Starting Y-coordinates of image regions to read. + \param z0 Starting Z-coordinates of image regions to read. + \param c0 Starting C-coordinates of image regions to read. + \param x1 Ending X-coordinates of image regions to read (~0U for max). + \param y1 Ending Y-coordinates of image regions to read (~0U for max). + \param z1 Ending Z-coordinates of image regions to read (~0U for max). + \param c1 Ending C-coordinates of image regions to read (~0U for max). + **/ + CImgList& load_cimg(const char *const filename, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1) { + return _load_cimg(0,filename,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1); + } + + //! Load a sublist list from a (non compressed) .cimg file \newinstance. + static CImgList get_load_cimg(const char *const filename, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1) { + return CImgList().load_cimg(filename,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1); + } + + //! Load a sub-image list from a (non compressed) .cimg file \overloading. + CImgList& load_cimg(std::FILE *const file, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1) { + return _load_cimg(file,0,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1); + } + + //! Load a sub-image list from a (non compressed) .cimg file \newinstance. + static CImgList get_load_cimg(std::FILE *const file, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1) { + return CImgList().load_cimg(file,n0,n1,x0,y0,z0,c0,x1,y1,z1,c1); + } + + CImgList& _load_cimg(std::FILE *const file, const char *const filename, + const unsigned int n0, const unsigned int n1, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0, + const unsigned int x1, const unsigned int y1, + const unsigned int z1, const unsigned int c1) { +#define _cimg_load_cimg_case2(Ts,Tss) \ + if (!loaded && !cimg::strcasecmp(Ts,str_pixeltype)) { \ + for (unsigned int l = 0; l<=nn1; ++l) { \ + j = 0; while ((i=std::fgetc(nfile))!='\n' && i>=0) tmp[j++] = (char)i; tmp[j] = 0; \ + W = H = D = C = 0; \ + if (cimg_sscanf(tmp,"%u %u %u %u",&W,&H,&D,&C)!=4) \ + throw CImgIOException(_cimglist_instance \ + "load_cimg(): Invalid specified size (%u,%u,%u,%u) of image %u in file '%s'", \ + cimglist_instance, \ + W,H,D,C,l,filename?filename:"(FILE*)"); \ + if (W*H*D*C>0) { \ + if (l=W || ny0>=H || nz0>=D || nc0>=C) cimg::fseek(nfile,W*H*D*C*sizeof(Tss),SEEK_CUR); \ + else { \ + const unsigned int \ + _nx1 = nx1==~0U?W - 1:nx1, \ + _ny1 = ny1==~0U?H - 1:ny1, \ + _nz1 = nz1==~0U?D - 1:nz1, \ + _nc1 = nc1==~0U?C - 1:nc1; \ + if (_nx1>=W || _ny1>=H || _nz1>=D || _nc1>=C) \ + throw CImgArgumentException(_cimglist_instance \ + "load_cimg(): Invalid specified coordinates " \ + "[%u](%u,%u,%u,%u) -> [%u](%u,%u,%u,%u) " \ + "because image [%u] in file '%s' has size (%u,%u,%u,%u).", \ + cimglist_instance, \ + n0,x0,y0,z0,c0,n1,x1,y1,z1,c1,l,filename?filename:"(FILE*)",W,H,D,C); \ + CImg raw(1 + _nx1 - nx0); \ + CImg &img = _data[l - nn0]; \ + img.assign(1 + _nx1 - nx0,1 + _ny1 - ny0,1 + _nz1 - nz0,1 + _nc1 - nc0); \ + T *ptrd = img._data; \ + ulongT skipvb = nc0*W*H*D*sizeof(Tss); \ + if (skipvb) cimg::fseek(nfile,skipvb,SEEK_CUR); \ + for (unsigned int c = 1 + _nc1 - nc0; c; --c) { \ + const ulongT skipzb = nz0*W*H*sizeof(Tss); \ + if (skipzb) cimg::fseek(nfile,skipzb,SEEK_CUR); \ + for (unsigned int z = 1 + _nz1 - nz0; z; --z) { \ + const ulongT skipyb = ny0*W*sizeof(Tss); \ + if (skipyb) cimg::fseek(nfile,skipyb,SEEK_CUR); \ + for (unsigned int y = 1 + _ny1 - ny0; y; --y) { \ + const ulongT skipxb = nx0*sizeof(Tss); \ + if (skipxb) cimg::fseek(nfile,skipxb,SEEK_CUR); \ + cimg::fread(raw._data,raw._width,nfile); \ + if (endian!=cimg::endianness()) cimg::invert_endianness(raw._data,raw._width); \ + const Tss *ptrs = raw._data; \ + for (unsigned int off = raw._width; off; --off) *(ptrd++) = (T)*(ptrs++); \ + const ulongT skipxe = (W - 1 - _nx1)*sizeof(Tss); \ + if (skipxe) cimg::fseek(nfile,skipxe,SEEK_CUR); \ + } \ + const ulongT skipye = (H - 1 - _ny1)*W*sizeof(Tss); \ + if (skipye) cimg::fseek(nfile,skipye,SEEK_CUR); \ + } \ + const ulongT skipze = (D - 1 - _nz1)*W*H*sizeof(Tss); \ + if (skipze) cimg::fseek(nfile,skipze,SEEK_CUR); \ + } \ + const ulongT skipve = (C - 1 - _nc1)*W*H*D*sizeof(Tss); \ + if (skipve) cimg::fseek(nfile,skipve,SEEK_CUR); \ + } \ + } \ + } \ + loaded = true; \ + } + + if (!filename && !file) + throw CImgArgumentException(_cimglist_instance + "load_cimg(): Specified filename is (null).", + cimglist_instance); + unsigned int + nn0 = std::min(n0,n1), nn1 = std::max(n0,n1), + nx0 = std::min(x0,x1), nx1 = std::max(x0,x1), + ny0 = std::min(y0,y1), ny1 = std::max(y0,y1), + nz0 = std::min(z0,z1), nz1 = std::max(z0,z1), + nc0 = std::min(c0,c1), nc1 = std::max(c0,c1); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + bool loaded = false, endian = cimg::endianness(); + CImg tmp(256), str_pixeltype(256), str_endian(256); + *tmp = *str_pixeltype = *str_endian = 0; + unsigned int j, N, W, H, D, C; + int i, err; + j = 0; while ((i=std::fgetc(nfile))!='\n' && i!=EOF && j<256) tmp[j++] = (char)i; tmp[j] = 0; + err = cimg_sscanf(tmp,"%u%*c%255[A-Za-z64_]%*c%255[sA-Za-z_ ]", + &N,str_pixeltype._data,str_endian._data); + if (err<2) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimglist_instance + "load_cimg(): CImg header not found in file '%s'.", + cimglist_instance, + filename?filename:"(FILE*)"); + } + if (!cimg::strncasecmp("little",str_endian,6)) endian = false; + else if (!cimg::strncasecmp("big",str_endian,3)) endian = true; + nn1 = n1==~0U?N - 1:n1; + if (nn1>=N) + throw CImgArgumentException(_cimglist_instance + "load_cimg(): Invalid specified coordinates [%u](%u,%u,%u,%u) -> [%u](%u,%u,%u,%u) " + "because file '%s' contains only %u images.", + cimglist_instance, + n0,x0,y0,z0,c0,n1,x1,y1,z1,c1,filename?filename:"(FILE*)",N); + assign(1 + nn1 - n0); + _cimg_load_cimg_case2("bool",bool); + _cimg_load_cimg_case2("unsigned_char",unsigned char); + _cimg_load_cimg_case2("uchar",unsigned char); + _cimg_load_cimg_case2("char",char); + _cimg_load_cimg_case2("unsigned_short",unsigned short); + _cimg_load_cimg_case2("ushort",unsigned short); + _cimg_load_cimg_case2("short",short); + _cimg_load_cimg_case2("unsigned_int",unsigned int); + _cimg_load_cimg_case2("uint",unsigned int); + _cimg_load_cimg_case2("int",int); + _cimg_load_cimg_case2("unsigned_long",ulongT); + _cimg_load_cimg_case2("ulong",ulongT); + _cimg_load_cimg_case2("long",longT); + _cimg_load_cimg_case2("unsigned_int64",uint64T); + _cimg_load_cimg_case2("uint64",uint64T); + _cimg_load_cimg_case2("int64",int64T); + _cimg_load_cimg_case2("float",float); + _cimg_load_cimg_case2("double",double); + if (!loaded) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimglist_instance + "load_cimg(): Unsupported pixel type '%s' for file '%s'.", + cimglist_instance, + str_pixeltype._data,filename?filename:"(FILE*)"); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load a list from a PAR/REC (Philips) file. + /** + \param filename Filename to read data from. + **/ + CImgList& load_parrec(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "load_parrec(): Specified filename is (null).", + cimglist_instance); + + CImg body(1024), filenamepar(1024), filenamerec(1024); + *body = *filenamepar = *filenamerec = 0; + const char *const ext = cimg::split_filename(filename,body); + if (!std::strcmp(ext,"par")) { + std::strncpy(filenamepar,filename,filenamepar._width - 1); + cimg_snprintf(filenamerec,filenamerec._width,"%s.rec",body._data); + } + if (!std::strcmp(ext,"PAR")) { + std::strncpy(filenamepar,filename,filenamepar._width - 1); + cimg_snprintf(filenamerec,filenamerec._width,"%s.REC",body._data); + } + if (!std::strcmp(ext,"rec")) { + std::strncpy(filenamerec,filename,filenamerec._width - 1); + cimg_snprintf(filenamepar,filenamepar._width,"%s.par",body._data); + } + if (!std::strcmp(ext,"REC")) { + std::strncpy(filenamerec,filename,filenamerec._width - 1); + cimg_snprintf(filenamepar,filenamepar._width,"%s.PAR",body._data); + } + std::FILE *file = cimg::fopen(filenamepar,"r"); + + // Parse header file + CImgList st_slices; + CImgList st_global; + CImg line(256); *line = 0; + int err; + do { err = std::fscanf(file,"%255[^\n]%*c",line._data); } while (err!=EOF && (*line=='#' || *line=='.')); + do { + unsigned int sn,size_x,size_y,pixsize; + float rs,ri,ss; + err = std::fscanf(file,"%u%*u%*u%*u%*u%*u%*u%u%*u%u%u%g%g%g%*[^\n]",&sn,&pixsize,&size_x,&size_y,&ri,&rs,&ss); + if (err==7) { + CImg::vector((float)sn,(float)pixsize,(float)size_x,(float)size_y,ri,rs,ss,0).move_to(st_slices); + unsigned int i; for (i = 0; i::vector(size_x,size_y,sn).move_to(st_global); + else { + CImg &vec = st_global[i]; + if (size_x>vec[0]) vec[0] = size_x; + if (size_y>vec[1]) vec[1] = size_y; + vec[2] = sn; + } + st_slices[st_slices._width - 1][7] = (float)i; + } + } while (err==7); + + // Read data + std::FILE *file2 = cimg::fopen(filenamerec,"rb"); + cimglist_for(st_global,l) { + const CImg& vec = st_global[l]; + CImg(vec[0],vec[1],vec[2]).move_to(*this); + } + + cimglist_for(st_slices,l) { + const CImg& vec = st_slices[l]; + const unsigned int + sn = (unsigned int)vec[0] - 1, + pixsize = (unsigned int)vec[1], + size_x = (unsigned int)vec[2], + size_y = (unsigned int)vec[3], + imn = (unsigned int)vec[7]; + const float ri = vec[4], rs = vec[5], ss = vec[6]; + switch (pixsize) { + case 8 : { + CImg buf(size_x,size_y); + cimg::fread(buf._data,size_x*size_y,file2); + if (cimg::endianness()) cimg::invert_endianness(buf._data,size_x*size_y); + CImg& img = (*this)[imn]; + cimg_forXY(img,x,y) img(x,y,sn) = (T)(( buf(x,y)*rs + ri )/(rs*ss)); + } break; + case 16 : { + CImg buf(size_x,size_y); + cimg::fread(buf._data,size_x*size_y,file2); + if (cimg::endianness()) cimg::invert_endianness(buf._data,size_x*size_y); + CImg& img = (*this)[imn]; + cimg_forXY(img,x,y) img(x,y,sn) = (T)(( buf(x,y)*rs + ri )/(rs*ss)); + } break; + case 32 : { + CImg buf(size_x,size_y); + cimg::fread(buf._data,size_x*size_y,file2); + if (cimg::endianness()) cimg::invert_endianness(buf._data,size_x*size_y); + CImg& img = (*this)[imn]; + cimg_forXY(img,x,y) img(x,y,sn) = (T)(( buf(x,y)*rs + ri )/(rs*ss)); + } break; + default : + cimg::fclose(file); + cimg::fclose(file2); + throw CImgIOException(_cimglist_instance + "load_parrec(): Unsupported %d-bits pixel type for file '%s'.", + cimglist_instance, + pixsize,filename); + } + } + cimg::fclose(file); + cimg::fclose(file2); + if (!_width) + throw CImgIOException(_cimglist_instance + "load_parrec(): Failed to recognize valid PAR-REC data in file '%s'.", + cimglist_instance, + filename); + return *this; + } + + //! Load a list from a PAR/REC (Philips) file \newinstance. + static CImgList get_load_parrec(const char *const filename) { + return CImgList().load_parrec(filename); + } + + //! Load a list from a YUV image sequence file. + /** + \param filename Filename to read data from. + \param size_x Width of the images. + \param size_y Height of the images. + \param first_frame Index of first image frame to read. + \param last_frame Index of last image frame to read. + \param step_frame Step applied between each frame. + \param yuv2rgb Apply YUV to RGB transformation during reading. + **/ + CImgList& load_yuv(const char *const filename, + const unsigned int size_x, const unsigned int size_y, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, const bool yuv2rgb=true) { + return _load_yuv(0,filename,size_x,size_y,first_frame,last_frame,step_frame,yuv2rgb); + } + + //! Load a list from a YUV image sequence file \newinstance. + static CImgList get_load_yuv(const char *const filename, + const unsigned int size_x, const unsigned int size_y=1, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, const bool yuv2rgb=true) { + return CImgList().load_yuv(filename,size_x,size_y,first_frame,last_frame,step_frame,yuv2rgb); + } + + //! Load a list from an image sequence YUV file \overloading. + CImgList& load_yuv(std::FILE *const file, + const unsigned int size_x, const unsigned int size_y, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, const bool yuv2rgb=true) { + return _load_yuv(file,0,size_x,size_y,first_frame,last_frame,step_frame,yuv2rgb); + } + + //! Load a list from an image sequence YUV file \newinstance. + static CImgList get_load_yuv(std::FILE *const file, + const unsigned int size_x, const unsigned int size_y=1, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, const bool yuv2rgb=true) { + return CImgList().load_yuv(file,size_x,size_y,first_frame,last_frame,step_frame,yuv2rgb); + } + + CImgList& _load_yuv(std::FILE *const file, const char *const filename, + const unsigned int size_x, const unsigned int size_y, + const unsigned int first_frame, const unsigned int last_frame, + const unsigned int step_frame, const bool yuv2rgb) { + if (!filename && !file) + throw CImgArgumentException(_cimglist_instance + "load_yuv(): Specified filename is (null).", + cimglist_instance); + if (size_x%2 || size_y%2) + throw CImgArgumentException(_cimglist_instance + "load_yuv(): Invalid odd XY dimensions %ux%u in file '%s'.", + cimglist_instance, + size_x,size_y,filename?filename:"(FILE*)"); + if (!size_x || !size_y) + throw CImgArgumentException(_cimglist_instance + "load_yuv(): Invalid sequence size (%u,%u) in file '%s'.", + cimglist_instance, + size_x,size_y,filename?filename:"(FILE*)"); + + const unsigned int + nfirst_frame = first_frame tmp(size_x,size_y,1,3), UV(size_x/2,size_y/2,1,2); + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb"); + bool stop_flag = false; + int err; + if (nfirst_frame) { + err = cimg::fseek(nfile,nfirst_frame*(size_x*size_y + size_x*size_y/2),SEEK_CUR); + if (err) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimglist_instance + "load_yuv(): File '%s' doesn't contain frame number %u.", + cimglist_instance, + filename?filename:"(FILE*)",nfirst_frame); + } + } + unsigned int frame; + for (frame = nfirst_frame; !stop_flag && frame<=nlast_frame; frame+=nstep_frame) { + tmp.fill(0); + // *TRY* to read the luminance part, do not replace by cimg::fread! + err = (int)std::fread((void*)(tmp._data),1,(ulongT)tmp._width*tmp._height,nfile); + if (err!=(int)(tmp._width*tmp._height)) { + stop_flag = true; + if (err>0) + cimg::warn(_cimglist_instance + "load_yuv(): File '%s' contains incomplete data or given image dimensions " + "(%u,%u) are incorrect.", + cimglist_instance, + filename?filename:"(FILE*)",size_x,size_y); + } else { + UV.fill(0); + // *TRY* to read the luminance part, do not replace by cimg::fread! + err = (int)std::fread((void*)(UV._data),1,(size_t)(UV.size()),nfile); + if (err!=(int)(UV.size())) { + stop_flag = true; + if (err>0) + cimg::warn(_cimglist_instance + "load_yuv(): File '%s' contains incomplete data or given image dimensions (%u,%u) " + "are incorrect.", + cimglist_instance, + filename?filename:"(FILE*)",size_x,size_y); + } else { + cimg_forXY(UV,x,y) { + const int x2 = x*2, y2 = y*2; + tmp(x2,y2,1) = tmp(x2 + 1,y2,1) = tmp(x2,y2 + 1,1) = tmp(x2 + 1,y2 + 1,1) = UV(x,y,0); + tmp(x2,y2,2) = tmp(x2 + 1,y2,2) = tmp(x2,y2 + 1,2) = tmp(x2 + 1,y2 + 1,2) = UV(x,y,1); + } + if (yuv2rgb) tmp.YCbCrtoRGB(); + insert(tmp); + if (nstep_frame>1) cimg::fseek(nfile,(nstep_frame - 1)*(size_x*size_y + size_x*size_y/2),SEEK_CUR); + } + } + } + if (stop_flag && nlast_frame!=~0U && frame!=nlast_frame) + cimg::warn(_cimglist_instance + "load_yuv(): Frame %d not reached since only %u frames were found in file '%s'.", + cimglist_instance, + nlast_frame,frame - 1,filename?filename:"(FILE*)"); + + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Load an image from a video file, using OpenCV library. + /** + \param filename Filename, as a C-string. + \param first_frame Index of the first frame to read. + \param last_frame Index of the last frame to read. + \param step_frame Step value for frame reading. + \note If step_frame==0, the current video stream is forced to be released (without any frames read). + **/ + CImgList& load_video(const char *const filename, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1) { +#ifndef cimg_use_opencv + if (first_frame || last_frame!=~0U || step_frame>1) + throw CImgArgumentException(_cimglist_instance + "load_video() : File '%s', arguments 'first_frame', 'last_frame' " + "and 'step_frame' can be only set when using OpenCV " + "(-Dcimg_use_opencv must be enabled).", + cimglist_instance,filename); + return load_ffmpeg_external(filename); +#else + static CvCapture *captures[32] = { 0 }; + static CImgList filenames(32); + static CImg positions(32,1,1,1,0); + static int last_used_index = -1; + + // Detect if a video capture already exists for the specified filename. + cimg::mutex(9); + int index = -1; + if (filename) { + if (last_used_index>=0 && !std::strcmp(filename,filenames[last_used_index])) { + index = last_used_index; + } else cimglist_for(filenames,l) if (filenames[l] && !std::strcmp(filename,filenames[l])) { + index = l; break; + } + } else index = last_used_index; + cimg::mutex(9,0); + + // Release stream if needed. + if (!step_frame || (index>=0 && positions[index]>first_frame)) { + if (index>=0) { + cimg::mutex(9); + cvReleaseCapture(&captures[index]); + captures[index] = 0; filenames[index].assign(); positions[index] = 0; + if (last_used_index==index) last_used_index = -1; + index = -1; + cimg::mutex(9,0); + } else + if (filename) + cimg::warn(_cimglist_instance + "load_video() : File '%s', no opened video stream associated with filename found.", + cimglist_instance,filename); + else + cimg::warn(_cimglist_instance + "load_video() : No opened video stream found.", + cimglist_instance,filename); + if (!step_frame) return *this; + } + + // Find empty slot for capturing video stream. + if (index<0) { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "load_video(): No already open video reader found. You must specify a " + "non-(null) filename argument for the first call.", + cimglist_instance); + else { cimg::mutex(9); cimglist_for(filenames,l) if (!filenames[l]) { index = l; break; } cimg::mutex(9,0); } + if (index<0) + throw CImgIOException(_cimglist_instance + "load_video(): File '%s', no video reader slots available. " + "You have to release some of your previously opened videos.", + cimglist_instance,filename); + cimg::mutex(9); + captures[index] = cvCaptureFromFile(filename); + CImg::string(filename).move_to(filenames[index]); + positions[index] = 0; + cimg::mutex(9,0); + if (!captures[index]) { + filenames[index].assign(); + std::fclose(cimg::fopen(filename,"rb")); // Check file availability. + throw CImgIOException(_cimglist_instance + "load_video(): File '%s', unable to detect format of video file.", + cimglist_instance,filename); + } + } + + cimg::mutex(9); + const unsigned int nb_frames = (unsigned int)std::max(0.,cvGetCaptureProperty(captures[index], + CV_CAP_PROP_FRAME_COUNT)); + cimg::mutex(9,0); + assign(); + + // Skip frames if necessary. + bool go_on = true; + unsigned int &pos = positions[index]; + while (pos frame(src->width,src->height,1,3); + const int step = (int)(src->widthStep - 3*src->width); + const unsigned char* ptrs = (unsigned char*)src->imageData; + T *ptr_r = frame.data(0,0,0,0), *ptr_g = frame.data(0,0,0,1), *ptr_b = frame.data(0,0,0,2); + if (step>0) cimg_forY(frame,y) { + cimg_forX(frame,x) { *(ptr_b++) = (T)*(ptrs++); *(ptr_g++) = (T)*(ptrs++); *(ptr_r++) = (T)*(ptrs++); } + ptrs+=step; + } else for (ulongT siz = (ulongT)src->width*src->height; siz; --siz) { + *(ptr_b++) = (T)*(ptrs++); *(ptr_g++) = (T)*(ptrs++); *(ptr_r++) = (T)*(ptrs++); + } + frame.move_to(*this); + ++pos; + + bool skip_failed = false; + for (unsigned int i = 1; i=nb_frames)) { // Close video stream when necessary. + cimg::mutex(9); + cvReleaseCapture(&captures[index]); + captures[index] = 0; + filenames[index].assign(); + positions[index] = 0; + index = -1; + cimg::mutex(9,0); + } + + cimg::mutex(9); + last_used_index = index; + cimg::mutex(9,0); + + if (is_empty()) + throw CImgIOException(_cimglist_instance + "load_video(): File '%s', unable to locate frame %u.", + cimglist_instance,filename,first_frame); + return *this; +#endif + } + + //! Load an image from a video file, using OpenCV library \newinstance. + static CImgList get_load_video(const char *const filename, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1) { + return CImgList().load_video(filename,first_frame,last_frame,step_frame); + } + + //! Load an image from a video file using the external tool 'ffmpeg'. + /** + \param filename Filename to read data from. + **/ + CImgList& load_ffmpeg_external(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "load_ffmpeg_external(): Specified filename is (null).", + cimglist_instance); + std::fclose(cimg::fopen(filename,"rb")); // Check if file exists. + CImg command(1024), filename_tmp(256), filename_tmp2(256); + std::FILE *file = 0; + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_000001.ppm",filename_tmp._data); + if ((file=std_fopen(filename_tmp2,"rb"))!=0) cimg::fclose(file); + } while (file); + cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_%%6d.ppm",filename_tmp._data); +#if cimg_OS!=2 + cimg_snprintf(command,command._width,"%s -i \"%s\" \"%s\" >/dev/null 2>&1", + cimg::ffmpeg_path(), + CImg::string(filename)._system_strescape().data(), + CImg::string(filename_tmp2)._system_strescape().data()); +#else + cimg_snprintf(command,command._width,"\"%s -i \"%s\" \"%s\"\" >NUL 2>&1", + cimg::ffmpeg_path(), + CImg::string(filename)._system_strescape().data(), + CImg::string(filename_tmp2)._system_strescape().data()); +#endif + cimg::system(command,0); + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + assign(); + unsigned int i = 1; + for (bool stop_flag = false; !stop_flag; ++i) { + cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_%.6u.ppm",filename_tmp._data,i); + CImg img; + try { img.load_pnm(filename_tmp2); } + catch (CImgException&) { stop_flag = true; } + if (img) { img.move_to(*this); std::remove(filename_tmp2); } + } + cimg::exception_mode(omode); + if (is_empty()) + throw CImgIOException(_cimglist_instance + "load_ffmpeg_external(): Failed to open file '%s' with external command 'ffmpeg'.", + cimglist_instance, + filename); + return *this; + } + + //! Load an image from a video file using the external tool 'ffmpeg' \newinstance. + static CImgList get_load_ffmpeg_external(const char *const filename) { + return CImgList().load_ffmpeg_external(filename); + } + + //! Load gif file, using ImageMagick or GraphicsMagick's external tools. + /** + \param filename Filename to read data from. + **/ + CImgList& load_gif_external(const char *const filename) { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "load_gif_external(): Specified filename is (null).", + cimglist_instance); + std::fclose(cimg::fopen(filename,"rb")); // Check if file exists. + if (!_load_gif_external(filename,false)) + if (!_load_gif_external(filename,true)) + try { assign(CImg().load_other(filename)); } catch (CImgException&) { assign(); } + if (is_empty()) + throw CImgIOException(_cimglist_instance + "load_gif_external(): Failed to open file '%s'.", + cimglist_instance,filename); + return *this; + } + + CImgList& _load_gif_external(const char *const filename, const bool use_graphicsmagick=false) { + CImg command(1024), filename_tmp(256), filename_tmp2(256); + std::FILE *file = 0; + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + if (use_graphicsmagick) cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s.png.0",filename_tmp._data); + else cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s-0.png",filename_tmp._data); + if ((file=std_fopen(filename_tmp2,"rb"))!=0) cimg::fclose(file); + } while (file); +#if cimg_OS!=2 + if (use_graphicsmagick) cimg_snprintf(command,command._width,"%s convert \"%s\" \"%s.png\" >/dev/null 2>&1", + cimg::graphicsmagick_path(), + CImg::string(filename)._system_strescape().data(), + CImg::string(filename_tmp)._system_strescape().data()); + else cimg_snprintf(command,command._width,"%s \"%s\" \"%s.png\" >/dev/null 2>&1", + cimg::imagemagick_path(), + CImg::string(filename)._system_strescape().data(), + CImg::string(filename_tmp)._system_strescape().data()); +#else + if (use_graphicsmagick) cimg_snprintf(command,command._width,"\"%s convert \"%s\" \"%s.png\"\" >NUL 2>&1", + cimg::graphicsmagick_path(), + CImg::string(filename)._system_strescape().data(), + CImg::string(filename_tmp)._system_strescape().data()); + else cimg_snprintf(command,command._width,"\"%s \"%s\" \"%s.png\"\" >NUL 2>&1", + cimg::imagemagick_path(), + CImg::string(filename)._system_strescape().data(), + CImg::string(filename_tmp)._system_strescape().data()); +#endif + cimg::system(command,0); + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + assign(); + + // Try to read a single frame gif. + cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s.png",filename_tmp._data); + CImg img; + try { img.load_png(filename_tmp2); } + catch (CImgException&) { } + if (img) { img.move_to(*this); std::remove(filename_tmp2); } + else { // Try to read animated gif. + unsigned int i = 0; + for (bool stop_flag = false; !stop_flag; ++i) { + if (use_graphicsmagick) cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s.png.%u",filename_tmp._data,i); + else cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s-%u.png",filename_tmp._data,i); + CImg img; + try { img.load_png(filename_tmp2); } + catch (CImgException&) { stop_flag = true; } + if (img) { img.move_to(*this); std::remove(filename_tmp2); } + } + } + cimg::exception_mode(omode); + return *this; + } + + //! Load gif file, using ImageMagick or GraphicsMagick's external tools \newinstance. + static CImgList get_load_gif_external(const char *const filename) { + return CImgList().load_gif_external(filename); + } + + //! Load a gzipped list, using external tool 'gunzip'. + /** + \param filename Filename to read data from. + **/ + CImgList& load_gzip_external(const char *const filename) { + if (!filename) + throw CImgIOException(_cimglist_instance + "load_gzip_external(): Specified filename is (null).", + cimglist_instance); + std::fclose(cimg::fopen(filename,"rb")); // Check if file exists. + CImg command(1024), filename_tmp(256), body(256); + const char + *ext = cimg::split_filename(filename,body), + *ext2 = cimg::split_filename(body,0); + std::FILE *file = 0; + do { + if (!cimg::strcasecmp(ext,"gz")) { + if (*ext2) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext2); + else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + } else { + if (*ext) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext); + else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + } + if ((file=std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + cimg_snprintf(command,command._width,"%s -c \"%s\" > \"%s\"", + cimg::gunzip_path(), + CImg::string(filename)._system_strescape().data(), + CImg::string(filename_tmp)._system_strescape().data()); + cimg::system(command); + if (!(file = std_fopen(filename_tmp,"rb"))) { + cimg::fclose(cimg::fopen(filename,"r")); + throw CImgIOException(_cimglist_instance + "load_gzip_external(): Failed to open file '%s'.", + cimglist_instance, + filename); + + } else cimg::fclose(file); + load(filename_tmp); + std::remove(filename_tmp); + return *this; + } + + //! Load a gzipped list, using external tool 'gunzip' \newinstance. + static CImgList get_load_gzip_external(const char *const filename) { + return CImgList().load_gzip_external(filename); + } + + //! Load a 3d object from a .OFF file. + /** + \param filename Filename to read data from. + \param[out] primitives At return, contains the list of 3d object primitives. + \param[out] colors At return, contains the list of 3d object colors. + \return List of 3d object vertices. + **/ + template + CImgList& load_off(const char *const filename, + CImgList& primitives, CImgList& colors) { + return get_load_off(filename,primitives,colors).move_to(*this); + } + + //! Load a 3d object from a .OFF file \newinstance. + template + static CImgList get_load_off(const char *const filename, + CImgList& primitives, CImgList& colors) { + return CImg().load_off(filename,primitives,colors)<'x'; + } + + //! Load images from a TIFF file. + /** + \param filename Filename to read data from. + \param first_frame Index of first image frame to read. + \param last_frame Index of last image frame to read. + \param step_frame Step applied between each frame. + \param[out] voxel_size Voxel size, as stored in the filename. + \param[out] description Description, as stored in the filename. + **/ + CImgList& load_tiff(const char *const filename, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, + float *const voxel_size=0, + CImg *const description=0) { + const unsigned int + nfirst_frame = first_frame::get_load_tiff(filename)); +#else +#if cimg_verbosity<3 + TIFFSetWarningHandler(0); + TIFFSetErrorHandler(0); +#endif + TIFF *tif = TIFFOpen(filename,"r"); + if (tif) { + unsigned int nb_images = 0; + do ++nb_images; while (TIFFReadDirectory(tif)); + if (nfirst_frame>=nb_images || (nlast_frame!=~0U && nlast_frame>=nb_images)) + cimg::warn(_cimglist_instance + "load_tiff(): Invalid specified frame range is [%u,%u] (step %u) since " + "file '%s' contains %u image(s).", + cimglist_instance, + nfirst_frame,nlast_frame,nstep_frame,filename,nb_images); + + if (nfirst_frame>=nb_images) return assign(); + if (nlast_frame>=nb_images) nlast_frame = nb_images - 1; + assign(1 + (nlast_frame - nfirst_frame)/nstep_frame); + TIFFSetDirectory(tif,0); + cimglist_for(*this,l) _data[l]._load_tiff(tif,nfirst_frame + l*nstep_frame,voxel_size,description); + TIFFClose(tif); + } else throw CImgIOException(_cimglist_instance + "load_tiff(): Failed to open file '%s'.", + cimglist_instance, + filename); + return *this; +#endif + } + + //! Load a multi-page TIFF file \newinstance. + static CImgList get_load_tiff(const char *const filename, + const unsigned int first_frame=0, const unsigned int last_frame=~0U, + const unsigned int step_frame=1, + float *const voxel_size=0, + CImg *const description=0) { + return CImgList().load_tiff(filename,first_frame,last_frame,step_frame,voxel_size,description); + } + + //@} + //---------------------------------- + // + //! \name Data Output + //@{ + //---------------------------------- + + //! Print information about the list on the standard output. + /** + \param title Label set to the information displayed. + \param display_stats Tells if image statistics must be computed and displayed. + **/ + const CImgList& print(const char *const title=0, const bool display_stats=true) const { + unsigned int msiz = 0; + cimglist_for(*this,l) msiz+=_data[l].size(); + msiz*=sizeof(T); + const unsigned int mdisp = msiz<8*1024?0U:msiz<8*1024*1024?1U:2U; + CImg _title(64); + if (!title) cimg_snprintf(_title,_title._width,"CImgList<%s>",pixel_type()); + std::fprintf(cimg::output(),"%s%s%s%s: %sthis%s = %p, %ssize%s = %u/%u [%u %s], %sdata%s = (CImg<%s>*)%p", + cimg::t_magenta,cimg::t_bold,title?title:_title._data,cimg::t_normal, + cimg::t_bold,cimg::t_normal,(void*)this, + cimg::t_bold,cimg::t_normal,_width,_allocated_width, + mdisp==0?msiz:(mdisp==1?(msiz>>10):(msiz>>20)), + mdisp==0?"b":(mdisp==1?"Kio":"Mio"), + cimg::t_bold,cimg::t_normal,pixel_type(),(void*)begin()); + if (_data) std::fprintf(cimg::output(),"..%p.\n",(void*)((char*)end() - 1)); + else std::fprintf(cimg::output(),".\n"); + + char tmp[16] = { 0 }; + cimglist_for(*this,ll) { + cimg_snprintf(tmp,sizeof(tmp),"[%d]",ll); + std::fprintf(cimg::output()," "); + _data[ll].print(tmp,display_stats); + if (ll==3 && width()>8) { ll = width() - 5; std::fprintf(cimg::output()," ...\n"); } + } + std::fflush(cimg::output()); + return *this; + } + + //! Display the current CImgList instance in an existing CImgDisplay window (by reference). + /** + \param disp Reference to an existing CImgDisplay instance, where the current image list will be displayed. + \param axis Appending axis. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Appending alignmenet. + \note This function displays the list images of the current CImgList instance into an existing + CImgDisplay window. + Images of the list are appended in a single temporarly image for visualization purposes. + The function returns immediately. + **/ + const CImgList& display(CImgDisplay &disp, const char axis='x', const float align=0) const { + disp.display(*this,axis,align); + return *this; + } + + //! Display the current CImgList instance in a new display window. + /** + \param disp Display window. + \param display_info Tells if image information are displayed on the standard output. + \param axis Alignment axis for images viewing. + \param align Apending alignment. + \param[in,out] XYZ Contains the XYZ coordinates at start / exit of the function. + \param exit_on_anykey Exit function when any key is pressed. + \note This function opens a new window with a specific title and displays the list images of the + current CImgList instance into it. + Images of the list are appended in a single temporarly image for visualization purposes. + The function returns when a key is pressed or the display window is closed by the user. + **/ + const CImgList& display(CImgDisplay &disp, const bool display_info, + const char axis='x', const float align=0, + unsigned int *const XYZ=0, const bool exit_on_anykey=false) const { + bool is_exit = false; + return _display(disp,0,0,display_info,axis,align,XYZ,exit_on_anykey,0,true,is_exit); + } + + //! Display the current CImgList instance in a new display window. + /** + \param title Title of the opening display window. + \param display_info Tells if list information must be written on standard output. + \param axis Appending axis. Can be { 'x' | 'y' | 'z' | 'c' }. + \param align Appending alignment. + \param[in,out] XYZ Contains the XYZ coordinates at start / exit of the function. + \param exit_on_anykey Exit function when any key is pressed. + **/ + const CImgList& display(const char *const title=0, const bool display_info=true, + const char axis='x', const float align=0, + unsigned int *const XYZ=0, const bool exit_on_anykey=false) const { + CImgDisplay disp; + bool is_exit = false; + return _display(disp,title,0,display_info,axis,align,XYZ,exit_on_anykey,0,true,is_exit); + } + + const CImgList& _display(CImgDisplay &disp, const char *const title, const CImgList *const titles, + const bool display_info, const char axis, const float align, unsigned int *const XYZ, + const bool exit_on_anykey, const unsigned int orig, const bool is_first_call, + bool &is_exit) const { + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "display(): Empty instance.", + cimglist_instance); + if (!disp) { + if (axis=='x') { + unsigned int sum_width = 0, max_height = 0; + cimglist_for(*this,l) { + const CImg &img = _data[l]; + const unsigned int + w = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,false), + h = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,true); + sum_width+=w; + if (h>max_height) max_height = h; + } + disp.assign(cimg_fitscreen(sum_width,max_height,1),title?title:titles?titles->__display()._data:0,1); + } else { + unsigned int max_width = 0, sum_height = 0; + cimglist_for(*this,l) { + const CImg &img = _data[l]; + const unsigned int + w = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,false), + h = CImgDisplay::_fitscreen(img._width,img._height,img._depth,128,-85,true); + if (w>max_width) max_width = w; + sum_height+=h; + } + disp.assign(cimg_fitscreen(max_width,sum_height,1),title?title:titles?titles->__display()._data:0,1); + } + if (!title && !titles) disp.set_title("CImgList<%s> (%u)",pixel_type(),_width); + } else if (title) disp.set_title("%s",title); + else if (titles) disp.set_title("%s",titles->__display()._data); + const CImg dtitle = CImg::string(disp.title()); + if (display_info) print(disp.title()); + disp.show().flush(); + + if (_width==1) { + const unsigned int dw = disp._width, dh = disp._height; + if (!is_first_call) + disp.resize(cimg_fitscreen(_data[0]._width,_data[0]._height,_data[0]._depth),false); + disp.set_title("%s (%ux%ux%ux%u)", + dtitle.data(),_data[0]._width,_data[0]._height,_data[0]._depth,_data[0]._spectrum); + _data[0]._display(disp,0,false,XYZ,exit_on_anykey,!is_first_call); + if (disp.key()) is_exit = true; + disp.resize(cimg_fitscreen(dw,dh,1),false).set_title("%s",dtitle.data()); + } else { + bool disp_resize = !is_first_call; + while (!disp.is_closed() && !is_exit) { + const CImg s = _select(disp,0,true,axis,align,exit_on_anykey,orig,disp_resize,!is_first_call,true); + disp_resize = true; + if (s[0]<0 && !disp.wheel()) { // No selections done. + if (disp.button()&2) { disp.flush(); break; } + is_exit = true; + } else if (disp.wheel()) { // Zoom in/out. + const int wheel = disp.wheel(); + disp.set_wheel(); + if (!is_first_call && wheel<0) break; + if (wheel>0 && _width>=4) { + const unsigned int + delta = std::max(1U,(unsigned int)cimg::round(0.3*_width)), + ind0 = (unsigned int)std::max(0,s[0] - (int)delta), + ind1 = (unsigned int)std::min(width() - 1,s[0] + (int)delta); + if ((ind0!=0 || ind1!=_width - 1) && ind1 - ind0>=3) { + const CImgList sublist = get_shared_images(ind0,ind1); + CImgList t_sublist; + if (titles) t_sublist = titles->get_shared_images(ind0,ind1); + sublist._display(disp,0,titles?&t_sublist:0,false,axis,align,XYZ,exit_on_anykey, + orig + ind0,false,is_exit); + } + } + } else if (s[0]!=0 || s[1]!=width() - 1) { + const CImgList sublist = get_shared_images(s[0],s[1]); + CImgList t_sublist; + if (titles) t_sublist = titles->get_shared_images(s[0],s[1]); + sublist._display(disp,0,titles?&t_sublist:0,false,axis,align,XYZ,exit_on_anykey, + orig + s[0],false,is_exit); + } + disp.set_title("%s",dtitle.data()); + } + } + return *this; + } + + // [internal] Return string to describe display title. + CImg __display() const { + CImg res, str; + cimglist_for(*this,l) { + CImg::string(_data[l]).move_to(str); + if (l!=width() - 1) { + str.resize(str._width + 1,1,1,1,0); + str[str._width - 2] = ','; + str[str._width - 1] = ' '; + } + res.append(str,'x'); + } + if (!res) return CImg(1,1,1,1,0).move_to(res); + cimg::strellipsize(res,128,false); + if (_width>1) { + const unsigned int l = (unsigned int)std::strlen(res); + if (res._width<=l + 16) res.resize(l + 16,1,1,1,0); + cimg_snprintf(res._data + l,16," (#%u)",_width); + } + return res; + } + + //! Save list into a file. + /** + \param filename Filename to write data to. + \param number When positive, represents an index added to the filename. Otherwise, no number is added. + \param digits Number of digits used for adding the number to the filename. + **/ + const CImgList& save(const char *const filename, const int number=-1, const unsigned int digits=6) const { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "save(): Specified filename is (null).", + cimglist_instance); + // Do not test for empty instances, since .cimg format is able to manage empty instances. + const bool is_stdout = *filename=='-' && (!filename[1] || filename[1]=='.'); + const char *const ext = cimg::split_filename(filename); + CImg nfilename(1024); + const char *const fn = is_stdout?filename:number>=0?cimg::number_filename(filename,number,digits,nfilename): + filename; + +#ifdef cimglist_save_plugin + cimglist_save_plugin(fn); +#endif +#ifdef cimglist_save_plugin1 + cimglist_save_plugin1(fn); +#endif +#ifdef cimglist_save_plugin2 + cimglist_save_plugin2(fn); +#endif +#ifdef cimglist_save_plugin3 + cimglist_save_plugin3(fn); +#endif +#ifdef cimglist_save_plugin4 + cimglist_save_plugin4(fn); +#endif +#ifdef cimglist_save_plugin5 + cimglist_save_plugin5(fn); +#endif +#ifdef cimglist_save_plugin6 + cimglist_save_plugin6(fn); +#endif +#ifdef cimglist_save_plugin7 + cimglist_save_plugin7(fn); +#endif +#ifdef cimglist_save_plugin8 + cimglist_save_plugin8(fn); +#endif + if (!cimg::strcasecmp(ext,"cimgz")) return save_cimg(fn,true); + else if (!cimg::strcasecmp(ext,"cimg") || !*ext) return save_cimg(fn,false); + else if (!cimg::strcasecmp(ext,"yuv")) return save_yuv(fn,true); + else if (!cimg::strcasecmp(ext,"avi") || + !cimg::strcasecmp(ext,"mov") || + !cimg::strcasecmp(ext,"asf") || + !cimg::strcasecmp(ext,"divx") || + !cimg::strcasecmp(ext,"flv") || + !cimg::strcasecmp(ext,"mpg") || + !cimg::strcasecmp(ext,"m1v") || + !cimg::strcasecmp(ext,"m2v") || + !cimg::strcasecmp(ext,"m4v") || + !cimg::strcasecmp(ext,"mjp") || + !cimg::strcasecmp(ext,"mp4") || + !cimg::strcasecmp(ext,"mkv") || + !cimg::strcasecmp(ext,"mpe") || + !cimg::strcasecmp(ext,"movie") || + !cimg::strcasecmp(ext,"ogm") || + !cimg::strcasecmp(ext,"ogg") || + !cimg::strcasecmp(ext,"ogv") || + !cimg::strcasecmp(ext,"qt") || + !cimg::strcasecmp(ext,"rm") || + !cimg::strcasecmp(ext,"vob") || + !cimg::strcasecmp(ext,"wmv") || + !cimg::strcasecmp(ext,"xvid") || + !cimg::strcasecmp(ext,"mpeg")) return save_video(fn); +#ifdef cimg_use_tiff + else if (!cimg::strcasecmp(ext,"tif") || + !cimg::strcasecmp(ext,"tiff")) return save_tiff(fn); +#endif + else if (!cimg::strcasecmp(ext,"gz")) return save_gzip_external(fn); + else { + if (_width==1) _data[0].save(fn,-1); + else cimglist_for(*this,l) { _data[l].save(fn,is_stdout?-1:l); if (is_stdout) std::fputc(EOF,cimg::_stdout()); } + } + return *this; + } + + //! Tell if an image list can be saved as one single file. + /** + \param filename Filename, as a C-string. + \return \c true if the file format supports multiple images, \c false otherwise. + **/ + static bool is_saveable(const char *const filename) { + const char *const ext = cimg::split_filename(filename); + if (!cimg::strcasecmp(ext,"cimgz") || +#ifdef cimg_use_tiff + !cimg::strcasecmp(ext,"tif") || + !cimg::strcasecmp(ext,"tiff") || +#endif + !cimg::strcasecmp(ext,"yuv") || + !cimg::strcasecmp(ext,"avi") || + !cimg::strcasecmp(ext,"mov") || + !cimg::strcasecmp(ext,"asf") || + !cimg::strcasecmp(ext,"divx") || + !cimg::strcasecmp(ext,"flv") || + !cimg::strcasecmp(ext,"mpg") || + !cimg::strcasecmp(ext,"m1v") || + !cimg::strcasecmp(ext,"m2v") || + !cimg::strcasecmp(ext,"m4v") || + !cimg::strcasecmp(ext,"mjp") || + !cimg::strcasecmp(ext,"mp4") || + !cimg::strcasecmp(ext,"mkv") || + !cimg::strcasecmp(ext,"mpe") || + !cimg::strcasecmp(ext,"movie") || + !cimg::strcasecmp(ext,"ogm") || + !cimg::strcasecmp(ext,"ogg") || + !cimg::strcasecmp(ext,"ogv") || + !cimg::strcasecmp(ext,"qt") || + !cimg::strcasecmp(ext,"rm") || + !cimg::strcasecmp(ext,"vob") || + !cimg::strcasecmp(ext,"wmv") || + !cimg::strcasecmp(ext,"xvid") || + !cimg::strcasecmp(ext,"mpeg")) return true; + return false; + } + + //! Save image sequence as a GIF animated file. + /** + \param filename Filename to write data to. + \param fps Number of desired frames per second. + \param nb_loops Number of loops (\c 0 for infinite looping). + **/ + const CImgList& save_gif_external(const char *const filename, const float fps=25, + const unsigned int nb_loops=0) { + CImg command(1024), filename_tmp(256), filename_tmp2(256); + CImgList filenames; + std::FILE *file = 0; + +#ifdef cimg_use_png +#define _cimg_save_gif_ext "png" +#else +#define _cimg_save_gif_ext "ppm" +#endif + + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_000001." _cimg_save_gif_ext,filename_tmp._data); + if ((file=std_fopen(filename_tmp2,"rb"))!=0) cimg::fclose(file); + } while (file); + cimglist_for(*this,l) { + cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_%.6u." _cimg_save_gif_ext,filename_tmp._data,l + 1); + CImg::string(filename_tmp2).move_to(filenames); + if (_data[l]._depth>1 || _data[l]._spectrum!=3) _data[l].get_resize(-100,-100,1,3).save(filename_tmp2); + else _data[l].save(filename_tmp2); + } + +#if cimg_OS!=2 + cimg_snprintf(command,command._width,"%s -delay %u -loop %u", + cimg::imagemagick_path(),(unsigned int)std::max(0.0f,cimg::round(100/fps)),nb_loops); + CImg::string(command).move_to(filenames,0); + cimg_snprintf(command,command._width,"\"%s\" >/dev/null 2>&1", + CImg::string(filename)._system_strescape().data()); + CImg::string(command).move_to(filenames); +#else + cimg_snprintf(command,command._width,"\"%s -delay %u -loop %u", + cimg::imagemagick_path(),(unsigned int)std::max(0.0f,cimg::round(100/fps)),nb_loops); + CImg::string(command).move_to(filenames,0); + cimg_snprintf(command,command._width,"\"%s\"\" >NUL 2>&1", + CImg::string(filename)._system_strescape().data()); + CImg::string(command).move_to(filenames); +#endif + CImg _command = filenames>'x'; + cimg_for(_command,p,char) if (!*p) *p = ' '; + _command.back() = 0; + + cimg::system(_command); + file = std_fopen(filename,"rb"); + if (!file) + throw CImgIOException(_cimglist_instance + "save_gif_external(): Failed to save file '%s' with external command 'magick/convert'.", + cimglist_instance, + filename); + else cimg::fclose(file); + cimglist_for_in(*this,1,filenames._width - 1,l) std::remove(filenames[l]); + return *this; + } + + const CImgList& _save_yuv(std::FILE *const file, const char *const filename, const bool is_rgb) const { + if (!file && !filename) + throw CImgArgumentException(_cimglist_instance + "save_yuv(): Specified filename is (null).", + cimglist_instance); + if (is_empty()) { cimg::fempty(file,filename); return *this; } + if ((*this)[0].width()%2 || (*this)[0].height()%2) + throw CImgInstanceException(_cimglist_instance + "save_yuv(): Invalid odd instance dimensions (%u,%u) for file '%s'.", + cimglist_instance, + (*this)[0].width(),(*this)[0].height(), + filename?filename:"(FILE*)"); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + cimglist_for(*this,l) { + CImg YCbCr((*this)[l]); + if (is_rgb) YCbCr.RGBtoYCbCr(); + cimg::fwrite(YCbCr._data,(size_t)YCbCr._width*YCbCr._height,nfile); + cimg::fwrite(YCbCr.get_resize(YCbCr._width/2, YCbCr._height/2,1,3,3).data(0,0,0,1), + (size_t)YCbCr._width*YCbCr._height/2,nfile); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save list as a YUV image sequence file. + /** + \param filename Filename to write data to. + \param is_rgb Tells if the RGB to YUV conversion must be done for saving. + **/ + const CImgList& save_yuv(const char *const filename=0, const bool is_rgb=true) const { + return _save_yuv(0,filename,is_rgb); + } + + //! Save image sequence into a YUV file. + /** + \param file File to write data to. + \param is_rgb Tells if the RGB to YUV conversion must be done for saving. + **/ + const CImgList& save_yuv(std::FILE *const file, const bool is_rgb=true) const { + return _save_yuv(file,0,is_rgb); + } + + const CImgList& _save_cimg(std::FILE *const file, const char *const filename, const bool is_compressed) const { + if (!file && !filename) + throw CImgArgumentException(_cimglist_instance + "save_cimg(): Specified filename is (null).", + cimglist_instance); +#ifndef cimg_use_zlib + if (is_compressed) + cimg::warn(_cimglist_instance + "save_cimg(): Unable to save compressed data in file '%s' unless zlib is enabled, " + "saving them uncompressed.", + cimglist_instance, + filename?filename:"(FILE*)"); +#endif + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + const char *const ptype = pixel_type(), *const etype = cimg::endianness()?"big":"little"; + if (std::strstr(ptype,"unsigned")==ptype) std::fprintf(nfile,"%u unsigned_%s %s_endian\n",_width,ptype + 9,etype); + else std::fprintf(nfile,"%u %s %s_endian\n",_width,ptype,etype); + cimglist_for(*this,l) { + const CImg& img = _data[l]; + std::fprintf(nfile,"%u %u %u %u",img._width,img._height,img._depth,img._spectrum); + if (img._data) { + CImg tmp; + if (cimg::endianness()) { tmp = img; cimg::invert_endianness(tmp._data,tmp.size()); } + const CImg& ref = cimg::endianness()?tmp:img; + bool failed_to_compress = true; + if (is_compressed) { +#ifdef cimg_use_zlib + const ulongT siz = sizeof(T)*ref.size(); + uLongf csiz = siz + siz/100 + 16; + Bytef *const cbuf = new Bytef[csiz]; + if (compress(cbuf,&csiz,(Bytef*)ref._data,siz)) + cimg::warn(_cimglist_instance + "save_cimg(): Failed to save compressed data for file '%s', saving them uncompressed.", + cimglist_instance, + filename?filename:"(FILE*)"); + else { + std::fprintf(nfile," #%lu\n",csiz); + cimg::fwrite(cbuf,csiz,nfile); + delete[] cbuf; + failed_to_compress = false; + } +#endif + } + if (failed_to_compress) { // Write in a non-compressed way. + std::fputc('\n',nfile); + cimg::fwrite(ref._data,ref.size(),nfile); + } + } else std::fputc('\n',nfile); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Save list into a .cimg file. + /** + \param filename Filename to write data to. + \param is_compressed Tells if data compression must be enabled. + **/ + const CImgList& save_cimg(const char *const filename, const bool is_compressed=false) const { + return _save_cimg(0,filename,is_compressed); + } + + //! Save list into a .cimg file. + /** + \param file File to write data to. + \param is_compressed Tells if data compression must be enabled. + **/ + const CImgList& save_cimg(std::FILE *file, const bool is_compressed=false) const { + return _save_cimg(file,0,is_compressed); + } + + const CImgList& _save_cimg(std::FILE *const file, const char *const filename, + const unsigned int n0, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0) const { +#define _cimg_save_cimg_case(Ts,Tss) \ + if (!saved && !cimg::strcasecmp(Ts,str_pixeltype)) { \ + for (unsigned int l = 0; l0) { \ + if (l=W || y0>=H || z0>=D || c0>=D) cimg::fseek(nfile,W*H*D*C*sizeof(Tss),SEEK_CUR); \ + else { \ + const CImg& img = (*this)[l - n0]; \ + const T *ptrs = img._data; \ + const unsigned int \ + x1 = x0 + img._width - 1, \ + y1 = y0 + img._height - 1, \ + z1 = z0 + img._depth - 1, \ + c1 = c0 + img._spectrum - 1, \ + nx1 = x1>=W?W - 1:x1, \ + ny1 = y1>=H?H - 1:y1, \ + nz1 = z1>=D?D - 1:z1, \ + nc1 = c1>=C?C - 1:c1; \ + CImg raw(1 + nx1 - x0); \ + const unsigned int skipvb = c0*W*H*D*sizeof(Tss); \ + if (skipvb) cimg::fseek(nfile,skipvb,SEEK_CUR); \ + for (unsigned int v = 1 + nc1 - c0; v; --v) { \ + const unsigned int skipzb = z0*W*H*sizeof(Tss); \ + if (skipzb) cimg::fseek(nfile,skipzb,SEEK_CUR); \ + for (unsigned int z = 1 + nz1 - z0; z; --z) { \ + const unsigned int skipyb = y0*W*sizeof(Tss); \ + if (skipyb) cimg::fseek(nfile,skipyb,SEEK_CUR); \ + for (unsigned int y = 1 + ny1 - y0; y; --y) { \ + const unsigned int skipxb = x0*sizeof(Tss); \ + if (skipxb) cimg::fseek(nfile,skipxb,SEEK_CUR); \ + raw.assign(ptrs, raw._width); \ + ptrs+=img._width; \ + if (endian) cimg::invert_endianness(raw._data,raw._width); \ + cimg::fwrite(raw._data,raw._width,nfile); \ + const unsigned int skipxe = (W - 1 - nx1)*sizeof(Tss); \ + if (skipxe) cimg::fseek(nfile,skipxe,SEEK_CUR); \ + } \ + const unsigned int skipye = (H - 1 - ny1)*W*sizeof(Tss); \ + if (skipye) cimg::fseek(nfile,skipye,SEEK_CUR); \ + } \ + const unsigned int skipze = (D - 1 - nz1)*W*H*sizeof(Tss); \ + if (skipze) cimg::fseek(nfile,skipze,SEEK_CUR); \ + } \ + const unsigned int skipve = (C - 1 - nc1)*W*H*D*sizeof(Tss); \ + if (skipve) cimg::fseek(nfile,skipve,SEEK_CUR); \ + } \ + } \ + } \ + saved = true; \ + } + + if (!file && !filename) + throw CImgArgumentException(_cimglist_instance + "save_cimg(): Specified filename is (null).", + cimglist_instance); + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "save_cimg(): Empty instance, for file '%s'.", + cimglist_instance, + filename?filename:"(FILE*)"); + + std::FILE *const nfile = file?file:cimg::fopen(filename,"rb+"); + bool saved = false, endian = cimg::endianness(); + CImg tmp(256), str_pixeltype(256), str_endian(256); + *tmp = *str_pixeltype = *str_endian = 0; + unsigned int j, N, W, H, D, C; + int i, err; + j = 0; while ((i=std::fgetc(nfile))!='\n' && i!=EOF && j<256) tmp[j++] = (char)i; tmp[j] = 0; + err = cimg_sscanf(tmp,"%u%*c%255[A-Za-z64_]%*c%255[sA-Za-z_ ]",&N,str_pixeltype._data,str_endian._data); + if (err<2) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimglist_instance + "save_cimg(): CImg header not found in file '%s'.", + cimglist_instance, + filename?filename:"(FILE*)"); + } + if (!cimg::strncasecmp("little",str_endian,6)) endian = false; + else if (!cimg::strncasecmp("big",str_endian,3)) endian = true; + const unsigned int lmax = std::min(N,n0 + _width); + _cimg_save_cimg_case("bool",bool); + _cimg_save_cimg_case("unsigned_char",unsigned char); + _cimg_save_cimg_case("uchar",unsigned char); + _cimg_save_cimg_case("char",char); + _cimg_save_cimg_case("unsigned_short",unsigned short); + _cimg_save_cimg_case("ushort",unsigned short); + _cimg_save_cimg_case("short",short); + _cimg_save_cimg_case("unsigned_int",unsigned int); + _cimg_save_cimg_case("uint",unsigned int); + _cimg_save_cimg_case("int",int); + _cimg_save_cimg_case("unsigned_int64",uint64T); + _cimg_save_cimg_case("uint64",uint64T); + _cimg_save_cimg_case("int64",int64T); + _cimg_save_cimg_case("float",float); + _cimg_save_cimg_case("double",double); + if (!saved) { + if (!file) cimg::fclose(nfile); + throw CImgIOException(_cimglist_instance + "save_cimg(): Unsupported data type '%s' for file '%s'.", + cimglist_instance, + filename?filename:"(FILE*)",str_pixeltype._data); + } + if (!file) cimg::fclose(nfile); + return *this; + } + + //! Insert the image instance into into an existing .cimg file, at specified coordinates. + /** + \param filename Filename to write data to. + \param n0 Starting index of images to write. + \param x0 Starting X-coordinates of image regions to write. + \param y0 Starting Y-coordinates of image regions to write. + \param z0 Starting Z-coordinates of image regions to write. + \param c0 Starting C-coordinates of image regions to write. + **/ + const CImgList& save_cimg(const char *const filename, + const unsigned int n0, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0) const { + return _save_cimg(0,filename,n0,x0,y0,z0,c0); + } + + //! Insert the image instance into into an existing .cimg file, at specified coordinates. + /** + \param file File to write data to. + \param n0 Starting index of images to write. + \param x0 Starting X-coordinates of image regions to write. + \param y0 Starting Y-coordinates of image regions to write. + \param z0 Starting Z-coordinates of image regions to write. + \param c0 Starting C-coordinates of image regions to write. + **/ + const CImgList& save_cimg(std::FILE *const file, + const unsigned int n0, + const unsigned int x0, const unsigned int y0, + const unsigned int z0, const unsigned int c0) const { + return _save_cimg(file,0,n0,x0,y0,z0,c0); + } + + static void _save_empty_cimg(std::FILE *const file, const char *const filename, + const unsigned int nb, + const unsigned int dx, const unsigned int dy, + const unsigned int dz, const unsigned int dc) { + std::FILE *const nfile = file?file:cimg::fopen(filename,"wb"); + const ulongT siz = (ulongT)dx*dy*dz*dc*sizeof(T); + std::fprintf(nfile,"%u %s\n",nb,pixel_type()); + for (unsigned int i=nb; i; --i) { + std::fprintf(nfile,"%u %u %u %u\n",dx,dy,dz,dc); + for (ulongT off = siz; off; --off) std::fputc(0,nfile); + } + if (!file) cimg::fclose(nfile); + } + + //! Save empty (non-compressed) .cimg file with specified dimensions. + /** + \param filename Filename to write data to. + \param nb Number of images to write. + \param dx Width of images in the written file. + \param dy Height of images in the written file. + \param dz Depth of images in the written file. + \param dc Spectrum of images in the written file. + **/ + static void save_empty_cimg(const char *const filename, + const unsigned int nb, + const unsigned int dx, const unsigned int dy=1, + const unsigned int dz=1, const unsigned int dc=1) { + return _save_empty_cimg(0,filename,nb,dx,dy,dz,dc); + } + + //! Save empty .cimg file with specified dimensions. + /** + \param file File to write data to. + \param nb Number of images to write. + \param dx Width of images in the written file. + \param dy Height of images in the written file. + \param dz Depth of images in the written file. + \param dc Spectrum of images in the written file. + **/ + static void save_empty_cimg(std::FILE *const file, + const unsigned int nb, + const unsigned int dx, const unsigned int dy=1, + const unsigned int dz=1, const unsigned int dc=1) { + return _save_empty_cimg(file,0,nb,dx,dy,dz,dc); + } + + //! Save list as a TIFF file. + /** + \param filename Filename to write data to. + \param compression_type Compression mode used to write data. + \param voxel_size Voxel size, to be stored in the filename. + \param description Description, to be stored in the filename. + \param use_bigtiff Allow to save big tiff files (>4Gb). + **/ + const CImgList& save_tiff(const char *const filename, const unsigned int compression_type=0, + const float *const voxel_size=0, const char *const description=0, + const bool use_bigtiff=true) const { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "save_tiff(): Specified filename is (null).", + cimglist_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + +#ifndef cimg_use_tiff + if (_width==1) _data[0].save_tiff(filename,compression_type,voxel_size,description,use_bigtiff); + else cimglist_for(*this,l) { + CImg nfilename(1024); + cimg::number_filename(filename,l,6,nfilename); + _data[l].save_tiff(nfilename,compression_type,voxel_size,description,use_bigtiff); + } +#else + ulongT siz = 0; + cimglist_for(*this,l) siz+=_data[l].size(); + const bool _use_bigtiff = use_bigtiff && sizeof(siz)>=8 && siz*sizeof(T)>=1UL<<31; // No bigtiff for small images. + TIFF *tif = TIFFOpen(filename,_use_bigtiff?"w8":"w4"); + if (tif) { + for (unsigned int dir = 0, l = 0; l<_width; ++l) { + const CImg& img = (*this)[l]; + cimg_forZ(img,z) img._save_tiff(tif,dir++,z,compression_type,voxel_size,description); + } + TIFFClose(tif); + } else + throw CImgIOException(_cimglist_instance + "save_tiff(): Failed to open stream for file '%s'.", + cimglist_instance, + filename); +#endif + return *this; + } + + //! Save list as a gzipped file, using external tool 'gzip'. + /** + \param filename Filename to write data to. + **/ + const CImgList& save_gzip_external(const char *const filename) const { + if (!filename) + throw CImgIOException(_cimglist_instance + "save_gzip_external(): Specified filename is (null).", + cimglist_instance); + CImg command(1024), filename_tmp(256), body(256); + const char + *ext = cimg::split_filename(filename,body), + *ext2 = cimg::split_filename(body,0); + std::FILE *file; + do { + if (!cimg::strcasecmp(ext,"gz")) { + if (*ext2) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext2); + else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.cimg", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + } else { + if (*ext) cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext); + else cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s.cimg", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + } + if ((file=std_fopen(filename_tmp,"rb"))!=0) cimg::fclose(file); + } while (file); + + if (is_saveable(body)) { + save(filename_tmp); + cimg_snprintf(command,command._width,"%s -c \"%s\" > \"%s\"", + cimg::gzip_path(), + CImg::string(filename_tmp)._system_strescape().data(), + CImg::string(filename)._system_strescape().data()); + cimg::system(command); + file = std_fopen(filename,"rb"); + if (!file) + throw CImgIOException(_cimglist_instance + "save_gzip_external(): Failed to save file '%s' with external command 'gzip'.", + cimglist_instance, + filename); + else cimg::fclose(file); + std::remove(filename_tmp); + } else { + CImg nfilename(1024); + cimglist_for(*this,l) { + cimg::number_filename(body,l,6,nfilename); + if (*ext) cimg_sprintf(nfilename._data + std::strlen(nfilename),".%s",ext); + _data[l].save_gzip_external(nfilename); + } + } + return *this; + } + + //! Save image sequence, using the OpenCV library. + /** + \param filename Filename to write data to. + \param fps Number of frames per second. + \param codec Type of compression (See http://www.fourcc.org/codecs.php to see available codecs). + \param keep_open Tells if the video writer associated to the specified filename + must be kept open or not (to allow frames to be added in the same file afterwards). + **/ + const CImgList& save_video(const char *const filename, const unsigned int fps=25, + const char *codec=0, const bool keep_open=false) const { +#ifndef cimg_use_opencv + cimg::unused(codec,keep_open); + return save_ffmpeg_external(filename,fps); +#else + static CvVideoWriter *writers[32] = { 0 }; + static CImgList filenames(32); + static CImg sizes(32,2,1,1,0); + static int last_used_index = -1; + + // Detect if a video writer already exists for the specified filename. + cimg::mutex(9); + int index = -1; + if (filename) { + if (last_used_index>=0 && !std::strcmp(filename,filenames[last_used_index])) { + index = last_used_index; + } else cimglist_for(filenames,l) if (filenames[l] && !std::strcmp(filename,filenames[l])) { + index = l; break; + } + } else index = last_used_index; + cimg::mutex(9,0); + + // Find empty slot for capturing video stream. + if (index<0) { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "save_video(): No already open video writer found. You must specify a " + "non-(null) filename argument for the first call.", + cimglist_instance); + else { cimg::mutex(9); cimglist_for(filenames,l) if (!filenames[l]) { index = l; break; } cimg::mutex(9,0); } + if (index<0) + throw CImgIOException(_cimglist_instance + "save_video(): File '%s', no video writer slots available. " + "You have to release some of your previously opened videos.", + cimglist_instance,filename); + if (is_empty()) + throw CImgInstanceException(_cimglist_instance + "save_video(): Instance list is empty.", + cimglist_instance); + const unsigned int W = _data?_data[0]._width:0, H = _data?_data[0]._height:0; + if (!W || !H) + throw CImgInstanceException(_cimglist_instance + "save_video(): Frame [0] is an empty image.", + cimglist_instance); + +#define _cimg_docase(x) ((x)>='a'&&(x)<='z'?(x) + 'A' - 'a':(x)) + const char + *const _codec = codec && *codec?codec:"mp4v", + codec0 = _cimg_docase(_codec[0]), + codec1 = _codec[0]?_cimg_docase(_codec[1]):0, + codec2 = _codec[1]?_cimg_docase(_codec[2]):0, + codec3 = _codec[2]?_cimg_docase(_codec[3]):0; + cimg::mutex(9); + writers[index] = cvCreateVideoWriter(filename,CV_FOURCC(codec0,codec1,codec2,codec3), + fps,cvSize(W,H)); + CImg::string(filename).move_to(filenames[index]); + sizes(index,0) = W; sizes(index,1) = H; + cimg::mutex(9,0); + if (!writers[index]) + throw CImgIOException(_cimglist_instance + "save_video(): File '%s', unable to initialize video writer with codec '%c%c%c%c'.", + cimglist_instance,filename, + codec0,codec1,codec2,codec3); + } + + if (!is_empty()) { + const unsigned int W = sizes(index,0), H = sizes(index,1); + cimg::mutex(9); + IplImage *ipl = cvCreateImage(cvSize(W,H),8,3); + cimglist_for(*this,l) { + CImg &src = _data[l]; + if (src.is_empty()) + cimg::warn(_cimglist_instance + "save_video(): Skip empty frame %d for file '%s'.", + cimglist_instance,l,filename); + if (src._depth>1 || src._spectrum>3) + cimg::warn(_cimglist_instance + "save_video(): Frame %u has incompatible dimension (%u,%u,%u,%u). " + "Some image data may be ignored when writing frame into video file '%s'.", + cimglist_instance,l,src._width,src._height,src._depth,src._spectrum,filename); + if (src._width==W && src._height==H && src._spectrum==3) { + const T *ptr_r = src.data(0,0,0,0), *ptr_g = src.data(0,0,0,1), *ptr_b = src.data(0,0,0,2); + char *ptrd = ipl->imageData; + cimg_forXY(src,x,y) { + *(ptrd++) = (char)*(ptr_b++); *(ptrd++) = (char)*(ptr_g++); *(ptrd++) = (char)*(ptr_r++); + } + } else { + CImg _src(src,false); + _src.channels(0,std::min(_src._spectrum - 1,2U)).resize(W,H); + _src.resize(W,H,1,3,_src._spectrum==1); + const unsigned char *ptr_r = _src.data(0,0,0,0), *ptr_g = _src.data(0,0,0,1), *ptr_b = _src.data(0,0,0,2); + char *ptrd = ipl->imageData; + cimg_forXY(_src,x,y) { + *(ptrd++) = (char)*(ptr_b++); *(ptrd++) = (char)*(ptr_g++); *(ptrd++) = (char)*(ptr_r++); + } + } + cvWriteFrame(writers[index],ipl); + } + cvReleaseImage(&ipl); + cimg::mutex(9,0); + } + + cimg::mutex(9); + if (!keep_open) { + cvReleaseVideoWriter(&writers[index]); + writers[index] = 0; + filenames[index].assign(); + sizes(index,0) = sizes(index,1) = 0; + last_used_index = -1; + } else last_used_index = index; + cimg::mutex(9,0); + + return *this; +#endif + } + + //! Save image sequence, using the external tool 'ffmpeg'. + /** + \param filename Filename to write data to. + \param fps Number of frames per second. + \param codec Type of compression. + \param bitrate Output bitrate + **/ + const CImgList& save_ffmpeg_external(const char *const filename, const unsigned int fps=25, + const char *const codec=0, const unsigned int bitrate=2048) const { + if (!filename) + throw CImgArgumentException(_cimglist_instance + "save_ffmpeg_external(): Specified filename is (null).", + cimglist_instance); + if (is_empty()) { cimg::fempty(0,filename); return *this; } + + const char + *const ext = cimg::split_filename(filename), + *const _codec = codec?codec:!cimg::strcasecmp(ext,"flv")?"flv":"mpeg2video"; + + CImg command(1024), filename_tmp(256), filename_tmp2(256); + CImgList filenames; + std::FILE *file = 0; + cimglist_for(*this,l) if (!_data[l].is_sameXYZ(_data[0])) + throw CImgInstanceException(_cimglist_instance + "save_ffmpeg_external(): Invalid instance dimensions for file '%s'.", + cimglist_instance, + filename); + do { + cimg_snprintf(filename_tmp,filename_tmp._width,"%s%c%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand()); + cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_000001.ppm",filename_tmp._data); + if ((file=std_fopen(filename_tmp2,"rb"))!=0) cimg::fclose(file); + } while (file); + cimglist_for(*this,l) { + cimg_snprintf(filename_tmp2,filename_tmp2._width,"%s_%.6u.ppm",filename_tmp._data,l + 1); + CImg::string(filename_tmp2).move_to(filenames); + if (_data[l]._depth>1 || _data[l]._spectrum!=3) _data[l].get_resize(-100,-100,1,3).save_pnm(filename_tmp2); + else _data[l].save_pnm(filename_tmp2); + } +#if cimg_OS!=2 + cimg_snprintf(command,command._width,"%s -i \"%s_%%6d.ppm\" -vcodec %s -b %uk -r %u -y \"%s\" >/dev/null 2>&1", + cimg::ffmpeg_path(), + CImg::string(filename_tmp)._system_strescape().data(), + _codec,bitrate,fps, + CImg::string(filename)._system_strescape().data()); +#else + cimg_snprintf(command,command._width,"\"%s -i \"%s_%%6d.ppm\" -vcodec %s -b %uk -r %u -y \"%s\"\" >NUL 2>&1", + cimg::ffmpeg_path(), + CImg::string(filename_tmp)._system_strescape().data(), + _codec,bitrate,fps, + CImg::string(filename)._system_strescape().data()); +#endif + cimg::system(command); + file = std_fopen(filename,"rb"); + if (!file) + throw CImgIOException(_cimglist_instance + "save_ffmpeg_external(): Failed to save file '%s' with external command 'ffmpeg'.", + cimglist_instance, + filename); + else cimg::fclose(file); + cimglist_for(*this,l) std::remove(filenames[l]); + return *this; + } + + //! Serialize a CImgList instance into a raw CImg buffer. + /** + \param is_compressed tells if zlib compression must be used for serialization + (this requires 'cimg_use_zlib' been enabled). + **/ + CImg get_serialize(const bool is_compressed=false) const { +#ifndef cimg_use_zlib + if (is_compressed) + cimg::warn(_cimglist_instance + "get_serialize(): Unable to compress data unless zlib is enabled, " + "storing them uncompressed.", + cimglist_instance); +#endif + CImgList stream; + CImg tmpstr(128); + const char *const ptype = pixel_type(), *const etype = cimg::endianness()?"big":"little"; + if (std::strstr(ptype,"unsigned")==ptype) + cimg_snprintf(tmpstr,tmpstr._width,"%u unsigned_%s %s_endian\n",_width,ptype + 9,etype); + else + cimg_snprintf(tmpstr,tmpstr._width,"%u %s %s_endian\n",_width,ptype,etype); + CImg::string(tmpstr,false).move_to(stream); + cimglist_for(*this,l) { + const CImg& img = _data[l]; + cimg_snprintf(tmpstr,tmpstr._width,"%u %u %u %u",img._width,img._height,img._depth,img._spectrum); + CImg::string(tmpstr,false).move_to(stream); + if (img._data) { + CImg tmp; + if (cimg::endianness()) { tmp = img; cimg::invert_endianness(tmp._data,tmp.size()); } + const CImg& ref = cimg::endianness()?tmp:img; + bool failed_to_compress = true; + if (is_compressed) { +#ifdef cimg_use_zlib + const ulongT siz = sizeof(T)*ref.size(); + uLongf csiz = (ulongT)compressBound(siz); + Bytef *const cbuf = new Bytef[csiz]; + if (compress(cbuf,&csiz,(Bytef*)ref._data,siz)) + cimg::warn(_cimglist_instance + "get_serialize(): Failed to save compressed data, saving them uncompressed.", + cimglist_instance); + else { + cimg_snprintf(tmpstr,tmpstr._width," #%lu\n",csiz); + CImg::string(tmpstr,false).move_to(stream); + CImg(cbuf,csiz).move_to(stream); + delete[] cbuf; + failed_to_compress = false; + } +#endif + } + if (failed_to_compress) { // Write in a non-compressed way. + CImg::string("\n",false).move_to(stream); + stream.insert(1); + stream.back().assign((unsigned char*)ref._data,ref.size()*sizeof(T),1,1,1,true); + } + } else CImg::string("\n",false).move_to(stream); + } + cimglist_apply(stream,unroll)('y'); + return stream>'y'; + } + + //! Unserialize a CImg serialized buffer into a CImgList list. + template + static CImgList get_unserialize(const CImg& buffer) { +#ifdef cimg_use_zlib +#define _cimgz_unserialize_case(Tss) { \ + Bytef *cbuf = 0; \ + if (sizeof(t)!=1 || cimg::type::string()==cimg::type::string()) { \ + cbuf = new Bytef[csiz]; Bytef *_cbuf = cbuf; \ + for (ulongT i = 0; i::get_unserialize(): Unable to unserialize compressed data " \ + "unless zlib is enabled.", \ + pixel_type()); +#endif + +#define _cimg_unserialize_case(Ts,Tss) \ + if (!loaded && !cimg::strcasecmp(Ts,str_pixeltype)) { \ + for (unsigned int l = 0; l::unserialize(): Invalid specified size (%u,%u,%u,%u) for " \ + "image #%u in serialized buffer.", \ + pixel_type(),W,H,D,C,l); \ + if (W*H*D*C>0) { \ + CImg raw; \ + CImg &img = res._data[l]; \ + if (err==5) _cimgz_unserialize_case(Tss) \ + else if (sizeof(Tss)==1) { \ + raw.assign((Tss*)stream,W,H,D,C,true); \ + stream+=raw.size(); \ + } else { \ + raw.assign(W,H,D,C); \ + CImg _raw((unsigned char*)raw._data,W*sizeof(Tss),H,D,C,true); \ + cimg_for(_raw,p,unsigned char) *p = (unsigned char)*(stream++); \ + } \ + if (endian!=cimg::endianness()) cimg::invert_endianness(raw._data,raw.size()); \ + raw.move_to(img); \ + } \ + } \ + loaded = true; \ + } + + if (buffer.is_empty()) + throw CImgArgumentException("CImgList<%s>::get_unserialize(): Specified serialized buffer is (null).", + pixel_type()); + CImgList res; + const t *stream = buffer._data, *const estream = buffer._data + buffer.size(); + bool loaded = false, endian = cimg::endianness(), is_bytef = false; + CImg tmp(256), str_pixeltype(256), str_endian(256); + *tmp = *str_pixeltype = *str_endian = 0; + unsigned int j, N = 0, W, H, D, C; + uint64T csiz; + int i, err; + cimg::unused(is_bytef); + do { + j = 0; while ((i=(int)*stream)!='\n' && stream::get_unserialize(): CImg header not found in serialized buffer.", + pixel_type()); + if (!cimg::strncasecmp("little",str_endian,6)) endian = false; + else if (!cimg::strncasecmp("big",str_endian,3)) endian = true; + res.assign(N); + _cimg_unserialize_case("bool",bool); + _cimg_unserialize_case("unsigned_char",unsigned char); + _cimg_unserialize_case("uchar",unsigned char); + _cimg_unserialize_case("char",char); + _cimg_unserialize_case("unsigned_short",unsigned short); + _cimg_unserialize_case("ushort",unsigned short); + _cimg_unserialize_case("short",short); + _cimg_unserialize_case("unsigned_int",unsigned int); + _cimg_unserialize_case("uint",unsigned int); + _cimg_unserialize_case("int",int); + _cimg_unserialize_case("unsigned_int64",uint64T); + _cimg_unserialize_case("uint64",uint64T); + _cimg_unserialize_case("int64",int64T); + _cimg_unserialize_case("float",float); + _cimg_unserialize_case("double",double); + if (!loaded) + throw CImgArgumentException("CImgList<%s>::get_unserialize(): Unsupported pixel type '%s' defined " + "in serialized buffer.", + pixel_type(),str_pixeltype._data); + return res; + } + + //@} + //---------------------------------- + // + //! \name Others + //@{ + //---------------------------------- + + //! Crop font along the X-axis. + /** + **/ + CImgList& crop_font() { + return get_crop_font().move_to(*this); + } + + //! Crop font along the X-axis \newinstance. + /** + **/ + CImgList get_crop_font() const { + CImgList res; + cimglist_for(*this,l) { + const CImg& letter = (*this)[l]; + int xmin = letter.width(), xmax = 0; + cimg_forXY(letter,x,y) if (letter(x,y)) { if (xxmax) xmax = x; } + if (xmin>xmax) CImg(letter._width,letter._height,1,letter._spectrum,0).move_to(res); + else letter.get_crop(xmin,0,xmax,letter._height - 1).move_to(res); + } + res[' '].resize(res['f']._width,-100,-100,-100,0); + if (' ' + 256& font(const unsigned int font_height, const bool is_variable_width=true) { + if (!font_height) return CImgList::const_empty(); + cimg::mutex(11); + + // Decompress nearest base font data if needed. + static const char *data_fonts[] = { cimg::data_font12x13, cimg::data_font20x23, cimg::data_font47x53, 0 }; + static const unsigned int data_widths[] = { 12,20,47,90 }, data_heights[] = { 13,23,53,103 }, + data_Ms[] = { 86,79,57,47 }; + const unsigned int data_ind = font_height<=13U?0U:font_height<=23U?1U:font_height<=53U?2U:3U; + static CImg base_fonts[4]; + CImg &base_font = base_fonts[data_ind]; + if (!base_font) { + const unsigned int w = data_widths[data_ind], h = data_heights[data_ind], M = data_Ms[data_ind]; + base_font.assign(256*w,h); + const char *data_font = data_fonts[data_ind]; + unsigned char *ptrd = base_font; + const unsigned char *const ptrde = base_font.end(); + + // Special case needed for 90x103 to avoid MS compiler limit with big strings. + CImg data90x103; + if (!data_font) { + ((CImg(cimg::_data_font90x103[0], + (unsigned int)std::strlen(cimg::_data_font90x103[0]),1,1,1,true), + CImg(cimg::_data_font90x103[1], + (unsigned int)std::strlen(cimg::_data_font90x103[1]) + 1,1,1,1,true))>'x'). + move_to(data90x103); + data_font = data90x103.data(); + } + + // Uncompress font data (decode RLE). + for (const char *ptrs = data_font; *ptrs; ++ptrs) { + const int c = (int)(*ptrs - M - 32), v = c>=0?255:0, n = c>=0?c:-c; + if (ptrd + n<=ptrde) { std::memset(ptrd,v,n); ptrd+=n; } + else { std::memset(ptrd,v,ptrde - ptrd); break; } + } + } + + // Find optimal font cache location to return. + static CImgList fonts[16]; + static bool is_variable_widths[16] = { 0 }; + unsigned int ind = ~0U; + for (int i = 0; i<16; ++i) + if (!fonts[i] || (is_variable_widths[i]==is_variable_width && font_height==fonts[i][0]._height)) { + ind = (unsigned int)i; break; // Found empty slot or cached font. + } + if (ind==~0U) { // No empty slots nor existing font in cache. + fonts->assign(); + std::memmove(fonts,fonts + 1,15*sizeof(CImgList)); + std::memmove(is_variable_widths,is_variable_widths + 1,15*sizeof(bool)); + std::memset(fonts + (ind=15),0,sizeof(CImgList)); // Free a slot in cache for new font. + } + CImgList &font = fonts[ind]; + + // Render requested font. + if (!font) { + const unsigned int padding_x = font_height<33U?1U:font_height<53U?2U:font_height<103U?3U:4U; + is_variable_widths[ind] = is_variable_width; + font = base_font.get_split('x',256); + if (font_height!=font[0]._height) + cimglist_for(font,l) + font[l].resize(std::max(1U,font[l]._width*font_height/font[l]._height),font_height,-100,-100, + font[0]._height>font_height?2:5); + if (is_variable_width) font.crop_font(); + cimglist_for(font,l) font[l].resize(font[l]._width + padding_x,-100,1,1,0,0,0.5); + font.insert(256,0); + cimglist_for_in(font,0,255,l) font[l].assign(font[l + 256]._width,font[l + 256]._height,1,3,1); + } + cimg::mutex(11,0); + return font; + } + + //! Compute a 1d Fast Fourier Transform, along specified axis. + /** + \param axis Axis along which the Fourier transform is computed. + \param invert Tells if the direct (\c false) or inverse transform (\c true) is computed. + **/ + CImgList& FFT(const char axis, const bool invert=false) { + if (is_empty()) return *this; + if (_width==1) insert(1); + if (_width>2) + cimg::warn(_cimglist_instance + "FFT(): Instance has more than 2 images", + cimglist_instance); + + CImg::FFT(_data[0],_data[1],axis,invert); + return *this; + } + + //! Compute a 1-D Fast Fourier Transform, along specified axis \newinstance. + CImgList get_FFT(const char axis, const bool invert=false) const { + return CImgList(*this,false).FFT(axis,invert); + } + + //! Compute a n-d Fast Fourier Transform. + /** + \param invert Tells if the direct (\c false) or inverse transform (\c true) is computed. + **/ + CImgList& FFT(const bool invert=false) { + if (is_empty()) return *this; + if (_width==1) insert(1); + if (_width>2) + cimg::warn(_cimglist_instance + "FFT(): Instance has more than 2 images", + cimglist_instance); + + CImg::FFT(_data[0],_data[1],invert); + return *this; + } + + //! Compute a n-d Fast Fourier Transform \newinstance. + CImgList get_FFT(const bool invert=false) const { + return CImgList(*this,false).FFT(invert); + } + + //! Reverse primitives orientations of a 3d object. + /** + **/ + CImgList& reverse_object3d() { + cimglist_for(*this,l) { + CImg& p = _data[l]; + switch (p.size()) { + case 2 : case 3: cimg::swap(p[0],p[1]); break; + case 6 : cimg::swap(p[0],p[1],p[2],p[4],p[3],p[5]); break; + case 9 : cimg::swap(p[0],p[1],p[3],p[5],p[4],p[6]); break; + case 4 : cimg::swap(p[0],p[1],p[2],p[3]); break; + case 12 : cimg::swap(p[0],p[1],p[2],p[3],p[4],p[6],p[5],p[7],p[8],p[10],p[9],p[11]); break; + } + } + return *this; + } + + //! Reverse primitives orientations of a 3d object \newinstance. + CImgList get_reverse_object3d() const { + return (+*this).reverse_object3d(); + } + + //@} + }; // struct CImgList { ... + + /* + #--------------------------------------------- + # + # Completion of previously declared functions + # + #---------------------------------------------- + */ + +namespace cimg { + + // Functions to return standard streams 'stdin', 'stdout' and 'stderr'. + // (throw a CImgIOException when macro 'cimg_use_r' is defined). + inline FILE* _stdin(const bool throw_exception) { +#ifndef cimg_use_r + cimg::unused(throw_exception); + return stdin; +#else + if (throw_exception) { + cimg::exception_mode(0); + throw CImgIOException("cimg::stdin(): Reference to 'stdin' stream not allowed in R mode " + "('cimg_use_r' is defined)."); + } + return 0; +#endif + } + + inline FILE* _stdout(const bool throw_exception) { +#ifndef cimg_use_r + cimg::unused(throw_exception); + return stdout; +#else + if (throw_exception) { + cimg::exception_mode(0); + throw CImgIOException("cimg::stdout(): Reference to 'stdout' stream not allowed in R mode " + "('cimg_use_r' is defined)."); + } + return 0; +#endif + } + + inline FILE* _stderr(const bool throw_exception) { +#ifndef cimg_use_r + cimg::unused(throw_exception); + return stderr; +#else + if (throw_exception) { + cimg::exception_mode(0); + throw CImgIOException("cimg::stderr(): Reference to 'stderr' stream not allowed in R mode " + "('cimg_use_r' is defined)."); + } + return 0; +#endif + } + + // Open a file (with wide character support on Windows). + inline std::FILE *win_fopen(const char *const path, const char *const mode) { +#if cimg_OS==2 + // Convert 'path' to a wide-character string. + int err = MultiByteToWideChar(CP_UTF8,0,path,-1,0,0); + if (!err) return std_fopen(path,mode); + CImg wpath(err); + err = MultiByteToWideChar(CP_UTF8,0,path,-1,wpath,err); + if (!err) return std_fopen(path,mode); + + // Convert 'mode' to a wide-character string. + err = MultiByteToWideChar(CP_UTF8,0,mode,-1,0,0); + if (!err) return std_fopen(path,mode); + CImg wmode(err); + err = MultiByteToWideChar(CP_UTF8,0,mode,-1,wmode,err); + if (!err) return std_fopen(path,mode); + return _wfopen(wpath,wmode); +#else + return std_fopen(path,mode); +#endif + } + + //! Get/set path to store temporary files. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path where temporary files can be saved. + **/ + inline const char* temporary_path(const char *const user_path, const bool reinit_path) { +#define _cimg_test_temporary_path(p) \ + if (!path_found) { \ + cimg_snprintf(s_path,s_path.width(),"%s",p); \ + cimg_snprintf(tmp,tmp._width,"%s%c%s",s_path.data(),cimg_file_separator,filename_tmp._data); \ + if ((file=std_fopen(tmp,"wb"))!=0) { cimg::fclose(file); std::remove(tmp); path_found = true; } \ + } + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + CImg tmp(1024), filename_tmp(256); + std::FILE *file = 0; + cimg_snprintf(filename_tmp,filename_tmp._width,"%s.tmp",cimg::filenamerand()); + char *tmpPath = std::getenv("TMP"); + if (!tmpPath) { tmpPath = std::getenv("TEMP"); winformat_string(tmpPath); } + if (tmpPath) _cimg_test_temporary_path(tmpPath); +#if cimg_OS==2 + _cimg_test_temporary_path("C:\\WINNT\\Temp"); + _cimg_test_temporary_path("C:\\WINDOWS\\Temp"); + _cimg_test_temporary_path("C:\\Temp"); + _cimg_test_temporary_path("C:"); + _cimg_test_temporary_path("D:\\WINNT\\Temp"); + _cimg_test_temporary_path("D:\\WINDOWS\\Temp"); + _cimg_test_temporary_path("D:\\Temp"); + _cimg_test_temporary_path("D:"); +#else + _cimg_test_temporary_path("/tmp"); + _cimg_test_temporary_path("/var/tmp"); +#endif + if (!path_found) { + *s_path = 0; + std::strncpy(tmp,filename_tmp,tmp._width - 1); + if ((file=std_fopen(tmp,"wb"))!=0) { cimg::fclose(file); std::remove(tmp); path_found = true; } + } + if (!path_found) { + cimg::mutex(7,0); + throw CImgIOException("cimg::temporary_path(): Failed to locate path for writing temporary files.\n"); + } + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to the Program Files/ directory (Windows only). + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the program files. + **/ +#if cimg_OS==2 + inline const char* programfiles_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(MAX_PATH); + *s_path = 0; + // Note: in the following line, 0x26 = CSIDL_PROGRAM_FILES (not defined on every compiler). +#if !defined(__INTEL_COMPILER) + if (!SHGetSpecialFolderPathA(0,s_path,0x0026,false)) { + const char *const pfPath = std::getenv("PROGRAMFILES"); + if (pfPath) std::strncpy(s_path,pfPath,MAX_PATH - 1); + else std::strcpy(s_path,"C:\\PROGRA~1"); + } +#else + std::strcpy(s_path,"C:\\PROGRA~1"); +#endif + } + cimg::mutex(7,0); + return s_path; + } +#endif + + //! Get/set path to the ImageMagick's \c convert binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c convert binary. + **/ + inline const char* imagemagick_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + const char *const pf_path = programfiles_path(); + for (int l = 0; l<2 && !path_found; ++l) { + const char *const s_exe = l?"convert":"magick"; + cimg_snprintf(s_path,s_path._width,".\\%s.exe",s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%.2d-\\%s.exe",pf_path,k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%d-Q\\%s.exe",pf_path,k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%d\\%s.exe",pf_path,k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%.2d-\\VISUA~1\\BIN\\%s.exe",pf_path,k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%d-Q\\VISUA~1\\BIN\\%s.exe",pf_path,k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\IMAGEM~1.%d\\VISUA~1\\BIN\\%s.exe",pf_path,k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%.2d-\\%s.exe",k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%d-Q\\%s.exe",k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%d\\%s.exe",k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%.2d-\\VISUA~1\\BIN\\%s.exe",k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%d-Q\\VISUA~1\\BIN\\%s.exe",k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\IMAGEM~1.%d\\VISUA~1\\BIN\\%s.exe",k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%.2d-\\%s.exe",k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%d-Q\\%s.exe",k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%d\\%s.exe",k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%.2d-\\VISUA~1\\BIN\\%s.exe",k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%d-Q\\VISUA~1\\BIN\\%s.exe",k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\IMAGEM~1.%d\\VISUA~1\\BIN\\%s.exe",k,s_exe); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) cimg_snprintf(s_path,s_path._width,"%s.exe",s_exe); + } +#else + std::strcpy(s_path,"./magick"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + if (!path_found) { + std::strcpy(s_path,"./convert"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"convert"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to the GraphicsMagick's \c gm binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c gm binary. + **/ + inline const char* graphicsmagick_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + const char *const pf_path = programfiles_path(); + if (!path_found) { + std::strcpy(s_path,".\\gm.exe"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%.2d-\\gm.exe",pf_path,k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%d-Q\\gm.exe",pf_path,k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%d\\gm.exe",pf_path,k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%.2d-\\VISUA~1\\BIN\\gm.exe",pf_path,k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%d-Q\\VISUA~1\\BIN\\gm.exe",pf_path,k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"%s\\GRAPHI~1.%d\\VISUA~1\\BIN\\gm.exe",pf_path,k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%.2d-\\gm.exe",k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%d-Q\\gm.exe",k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%d\\gm.exe",k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%.2d-\\VISUA~1\\BIN\\gm.exe",k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%d-Q\\VISUA~1\\BIN\\gm.exe",k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"C:\\GRAPHI~1.%d\\VISUA~1\\BIN\\gm.exe",k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%.2d-\\gm.exe",k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%d-Q\\gm.exe",k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%d\\gm.exe",k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=10 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%.2d-\\VISUA~1\\BIN\\gm.exe",k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 9; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%d-Q\\VISUA~1\\BIN\\gm.exe",k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + for (int k = 32; k>=0 && !path_found; --k) { + cimg_snprintf(s_path,s_path._width,"D:\\GRAPHI~1.%d\\VISUA~1\\BIN\\gm.exe",k); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"gm.exe"); +#else + if (!path_found) { + std::strcpy(s_path,"./gm"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"gm"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to the XMedcon's \c medcon binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c medcon binary. + **/ + inline const char* medcon_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + const char *const pf_path = programfiles_path(); + if (!path_found) { + std::strcpy(s_path,".\\medcon.exe"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) { + cimg_snprintf(s_path,s_path._width,"%s\\XMedCon\\bin\\medcon.bat",pf_path); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) { + cimg_snprintf(s_path,s_path._width,"%s\\XMedCon\\bin\\medcon.exe",pf_path); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) { + std::strcpy(s_path,"C:\\XMedCon\\bin\\medcon.exe"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"medcon.exe"); +#else + if (!path_found) { + std::strcpy(s_path,"./medcon"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"medcon"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to the FFMPEG's \c ffmpeg binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c ffmpeg binary. + **/ + inline const char *ffmpeg_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + if (!path_found) { + std::strcpy(s_path,".\\ffmpeg.exe"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"ffmpeg.exe"); +#else + if (!path_found) { + std::strcpy(s_path,"./ffmpeg"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"ffmpeg"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to the \c gzip binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c gzip binary. + **/ + inline const char *gzip_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + if (!path_found) { + std::strcpy(s_path,".\\gzip.exe"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"gzip.exe"); +#else + if (!path_found) { + std::strcpy(s_path,"./gzip"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"gzip"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to the \c gunzip binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c gunzip binary. + **/ + inline const char *gunzip_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + if (!path_found) { + std::strcpy(s_path,".\\gunzip.exe"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"gunzip.exe"); +#else + if (!path_found) { + std::strcpy(s_path,"./gunzip"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"gunzip"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to the \c dcraw binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c dcraw binary. + **/ + inline const char *dcraw_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + if (!path_found) { + std::strcpy(s_path,".\\dcraw.exe"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"dcraw.exe"); +#else + if (!path_found) { + std::strcpy(s_path,"./dcraw"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"dcraw"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to the \c wget binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c wget binary. + **/ + inline const char *wget_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + if (!path_found) { + std::strcpy(s_path,".\\wget.exe"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"wget.exe"); +#else + if (!path_found) { + std::strcpy(s_path,"./wget"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"wget"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + + //! Get/set path to the \c curl binary. + /** + \param user_path Specified path, or \c 0 to get the path currently used. + \param reinit_path Force path to be recalculated (may take some time). + \return Path containing the \c curl binary. + **/ + inline const char *curl_path(const char *const user_path, const bool reinit_path) { + static CImg s_path; + cimg::mutex(7); + if (reinit_path) s_path.assign(); + if (user_path) { + if (!s_path) s_path.assign(1024); + std::strncpy(s_path,user_path,1023); + } else if (!s_path) { + s_path.assign(1024); + bool path_found = false; + std::FILE *file = 0; +#if cimg_OS==2 + if (!path_found) { + std::strcpy(s_path,".\\curl.exe"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"curl.exe"); +#else + if (!path_found) { + std::strcpy(s_path,"./curl"); + if ((file=std_fopen(s_path,"r"))!=0) { cimg::fclose(file); path_found = true; } + } + if (!path_found) std::strcpy(s_path,"curl"); +#endif + winformat_string(s_path); + } + cimg::mutex(7,0); + return s_path; + } + + // [internal] Sorting function, used by cimg::files(). + inline int _sort_files(const void* a, const void* b) { + const CImg &sa = *(CImg*)a, &sb = *(CImg*)b; + return std::strcmp(sa._data,sb._data); + } + + //! Return list of files/directories in specified directory. + /** + \param path Path to the directory. Set to 0 for current directory. + \param is_pattern Tell if specified path has a matching pattern in it. + \param mode Output type, can be primary { 0=files only | 1=folders only | 2=files + folders }. + \param include_path Tell if \c path must be included in resulting filenames. + \return A list of filenames. + **/ + inline CImgList files(const char *const path, const bool is_pattern=false, + const unsigned int mode=2, const bool include_path=false) { + if (!path || !*path) return files("*",true,mode,include_path); + CImgList res; + + // If path is a valid folder name, ignore argument 'is_pattern'. + const bool _is_pattern = is_pattern && !cimg::is_directory(path); + bool is_root = false, is_current = false; + cimg::unused(is_root,is_current); + + // Clean format of input path. + CImg pattern, _path = CImg::string(path); +#if cimg_OS==2 + for (char *ps = _path; *ps; ++ps) if (*ps=='\\') *ps='/'; +#endif + char *pd = _path; + for (char *ps = pd; *ps; ++ps) { if (*ps!='/' || *ps!=*(ps+1)) *(pd++) = *ps; } + *pd = 0; + unsigned int lp = (unsigned int)std::strlen(_path); + if (!_is_pattern && lp && _path[lp - 1]=='/') { + _path[lp - 1] = 0; --lp; +#if cimg_OS!=2 + is_root = !*_path; +#endif + } + + // Separate folder path and matching pattern. + if (_is_pattern) { + const unsigned int bpos = (unsigned int)(cimg::basename(_path,'/') - _path.data()); + CImg::string(_path).move_to(pattern); + if (bpos) { + _path[bpos - 1] = 0; // End 'path' at last slash. +#if cimg_OS!=2 + is_root = !*_path; +#endif + } else { // No path to folder specified, assuming current folder. + is_current = true; *_path = 0; + } + lp = (unsigned int)std::strlen(_path); + } + + // Windows version. +#if cimg_OS==2 + if (!_is_pattern) { + pattern.assign(lp + 3); + std::memcpy(pattern,_path,lp); + pattern[lp] = '/'; pattern[lp + 1] = '*'; pattern[lp + 2] = 0; + } + WIN32_FIND_DATAA file_data; + const HANDLE dir = FindFirstFileA(pattern.data(),&file_data); + if (dir==INVALID_HANDLE_VALUE) return CImgList::const_empty(); + do { + const char *const filename = file_data.cFileName; + if (*filename!='.' || (filename[1] && (filename[1]!='.' || filename[2]))) { + const unsigned int lf = (unsigned int)std::strlen(filename); + const bool is_directory = (file_data.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY)!=0; + if ((!mode && !is_directory) || (mode==1 && is_directory) || mode>=2) { + if (include_path) { + CImg full_filename((lp?lp+1:0) + lf + 1); + if (lp) { std::memcpy(full_filename,_path,lp); full_filename[lp] = '/'; } + std::memcpy(full_filename._data + (lp?lp + 1:0),filename,lf + 1); + full_filename.move_to(res); + } else CImg(filename,lf + 1).move_to(res); + } + } + } while (FindNextFileA(dir,&file_data)); + FindClose(dir); + + // Unix version (posix). +#elif cimg_OS == 1 + DIR *const dir = opendir(is_root?"/":is_current?".":_path.data()); + if (!dir) return CImgList::const_empty(); + struct dirent *ent; + while ((ent=readdir(dir))!=0) { + const char *const filename = ent->d_name; + if (*filename!='.' || (filename[1] && (filename[1]!='.' || filename[2]))) { + const unsigned int lf = (unsigned int)std::strlen(filename); + CImg full_filename(lp + lf + 2); + + if (!is_current) { + full_filename.assign(lp + lf + 2); + if (lp) std::memcpy(full_filename,_path,lp); + full_filename[lp] = '/'; + std::memcpy(full_filename._data + lp + 1,filename,lf + 1); + } else full_filename.assign(filename,lf + 1); + + struct stat st; + if (stat(full_filename,&st)==-1) continue; + const bool is_directory = (st.st_mode & S_IFDIR)!=0; + if ((!mode && !is_directory) || (mode==1 && is_directory) || mode==2) { + if (include_path) { + if (!_is_pattern || (_is_pattern && !fnmatch(pattern,full_filename,0))) + full_filename.move_to(res); + } else { + if (!_is_pattern || (_is_pattern && !fnmatch(pattern,full_filename,0))) + CImg(filename,lf + 1).move_to(res); + } + } + } + } + closedir(dir); +#endif + + // Sort resulting list by lexicographic order. + if (res._width>=2) std::qsort(res._data,res._width,sizeof(CImg),_sort_files); + + return res; + } + + //! Try to guess format from an image file. + /** + \param file Input file (can be \c 0 if \c filename is set). + \param filename Filename, as a C-string (can be \c 0 if \c file is set). + \return C-string containing the guessed file format, or \c 0 if nothing has been guessed. + **/ + inline const char *ftype(std::FILE *const file, const char *const filename) { + if (!file && !filename) + throw CImgArgumentException("cimg::ftype(): Specified filename is (null)."); + static const char + *const _pnm = "pnm", + *const _pfm = "pfm", + *const _bmp = "bmp", + *const _gif = "gif", + *const _jpg = "jpg", + *const _off = "off", + *const _pan = "pan", + *const _png = "png", + *const _tif = "tif", + *const _inr = "inr", + *const _dcm = "dcm"; + const char *f_type = 0; + CImg header; + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + try { + header._load_raw(file,filename,512,1,1,1,false,false,0); + const unsigned char *const uheader = (unsigned char*)header._data; + if (!std::strncmp(header,"OFF\n",4)) f_type = _off; // OFF. + else if (!std::strncmp(header,"#INRIMAGE",9)) f_type = _inr; // INRIMAGE. + else if (!std::strncmp(header,"PANDORE",7)) f_type = _pan; // PANDORE. + else if (!std::strncmp(header.data() + 128,"DICM",4)) f_type = _dcm; // DICOM. + else if (uheader[0]==0xFF && uheader[1]==0xD8 && uheader[2]==0xFF) f_type = _jpg; // JPEG. + else if (header[0]=='B' && header[1]=='M') f_type = _bmp; // BMP. + else if (header[0]=='G' && header[1]=='I' && header[2]=='F' && header[3]=='8' && header[5]=='a' && // GIF. + (header[4]=='7' || header[4]=='9')) f_type = _gif; + else if (uheader[0]==0x89 && uheader[1]==0x50 && uheader[2]==0x4E && uheader[3]==0x47 && // PNG. + uheader[4]==0x0D && uheader[5]==0x0A && uheader[6]==0x1A && uheader[7]==0x0A) f_type = _png; + else if ((uheader[0]==0x49 && uheader[1]==0x49) || (uheader[0]==0x4D && uheader[1]==0x4D)) f_type = _tif; // TIFF. + else { // PNM or PFM. + CImgList _header = header.get_split(CImg::vector('\n'),0,false); + cimglist_for(_header,l) { + if (_header(l,0)=='#') continue; + if (_header[l]._height==2 && _header(l,0)=='P') { + const char c = _header(l,1); + if (c=='f' || c=='F') { f_type = _pfm; break; } + if (c>='1' && c<='9') { f_type = _pnm; break; } + } + f_type = 0; break; + } + } + } catch (CImgIOException&) { } + cimg::exception_mode(omode); + return f_type; + } + + //! Load file from network as a local temporary file. + /** + \param url URL of the filename, as a C-string. + \param[out] filename_local C-string containing the path to a local copy of \c filename. + \param timeout Maximum time (in seconds) authorized for downloading the file from the URL. + \param try_fallback When using libcurl, tells using system calls as fallbacks in case of libcurl failure. + \param referer Referer used, as a C-string. + \return Value of \c filename_local. + \note Use the \c libcurl library, or the external binaries \c wget or \c curl to perform the download. + **/ + inline char *load_network(const char *const url, char *const filename_local, + const unsigned int timeout, const bool try_fallback, + const char *const referer) { + if (!url) + throw CImgArgumentException("cimg::load_network(): Specified URL is (null)."); + if (!filename_local) + throw CImgArgumentException("cimg::load_network(): Specified destination string is (null)."); + + const char *const __ext = cimg::split_filename(url), *const _ext = (*__ext && __ext>url)?__ext - 1:__ext; + CImg ext = CImg::string(_ext); + std::FILE *file = 0; + *filename_local = 0; + if (ext._width>16 || !cimg::strncasecmp(ext,"cgi",3)) *ext = 0; + else cimg::strwindows_reserved(ext); + do { + cimg_snprintf(filename_local,256,"%s%c%s%s", + cimg::temporary_path(),cimg_file_separator,cimg::filenamerand(),ext._data); + if ((file=std_fopen(filename_local,"rb"))!=0) cimg::fclose(file); + } while (file); + +#ifdef cimg_use_curl + const unsigned int omode = cimg::exception_mode(); + cimg::exception_mode(0); + try { + CURL *curl = 0; + CURLcode res; + curl = curl_easy_init(); + if (curl) { + file = cimg::fopen(filename_local,"wb"); + curl_easy_setopt(curl,CURLOPT_URL,url); + curl_easy_setopt(curl,CURLOPT_WRITEFUNCTION,0); + curl_easy_setopt(curl,CURLOPT_WRITEDATA,file); + curl_easy_setopt(curl,CURLOPT_SSL_VERIFYPEER,0L); + curl_easy_setopt(curl,CURLOPT_SSL_VERIFYHOST,0L); + curl_easy_setopt(curl,CURLOPT_FOLLOWLOCATION,1L); + if (timeout) curl_easy_setopt(curl,CURLOPT_TIMEOUT,(long)timeout); + if (std::strchr(url,'?')) curl_easy_setopt(curl,CURLOPT_HTTPGET,1L); + if (referer) curl_easy_setopt(curl,CURLOPT_REFERER,referer); + res = curl_easy_perform(curl); + curl_easy_cleanup(curl); + cimg::fseek(file,0,SEEK_END); // Check if file size is 0. + const cimg_ulong siz = cimg::ftell(file); + cimg::fclose(file); + if (siz>0 && res==CURLE_OK) { + cimg::exception_mode(omode); + return filename_local; + } else std::remove(filename_local); + } + } catch (...) { } + cimg::exception_mode(omode); + if (!try_fallback) throw CImgIOException("cimg::load_network(): Failed to load file '%s' with libcurl.",url); +#endif + + CImg command((unsigned int)std::strlen(url) + 64); + cimg::unused(try_fallback); + + // Try with 'curl' first. + if (timeout) { + if (referer) + cimg_snprintf(command,command._width,"%s -e %s -m %u -f --silent --compressed -o \"%s\" \"%s\"", + cimg::curl_path(),referer,timeout,filename_local,url); + else + cimg_snprintf(command,command._width,"%s -m %u -f --silent --compressed -o \"%s\" \"%s\"", + cimg::curl_path(),timeout,filename_local,url); + } else { + if (referer) + cimg_snprintf(command,command._width,"%s -e %s -f --silent --compressed -o \"%s\" \"%s\"", + cimg::curl_path(),referer,filename_local,url); + else + cimg_snprintf(command,command._width,"%s -f --silent --compressed -o \"%s\" \"%s\"", + cimg::curl_path(),filename_local,url); + } + cimg::system(command); + + if (!(file = std_fopen(filename_local,"rb"))) { + + // Try with 'wget' otherwise. + if (timeout) { + if (referer) + cimg_snprintf(command,command._width,"%s --referer=%s -T %u -q -r -l 0 --no-cache -O \"%s\" \"%s\"", + cimg::wget_path(),referer,timeout,filename_local,url); + else + cimg_snprintf(command,command._width,"%s -T %u -q -r -l 0 --no-cache -O \"%s\" \"%s\"", + cimg::wget_path(),timeout,filename_local,url); + } else { + if (referer) + cimg_snprintf(command,command._width,"%s --referer=%s -q -r -l 0 --no-cache -O \"%s\" \"%s\"", + cimg::wget_path(),referer,filename_local,url); + else + cimg_snprintf(command,command._width,"%s -q -r -l 0 --no-cache -O \"%s\" \"%s\"", + cimg::wget_path(),filename_local,url); + } + cimg::system(command); + + if (!(file = std_fopen(filename_local,"rb"))) + throw CImgIOException("cimg::load_network(): Failed to load file '%s' with external commands " + "'wget' or 'curl'.",url); + cimg::fclose(file); + + // Try gunzip it. + cimg_snprintf(command,command._width,"%s.gz",filename_local); + std::rename(filename_local,command); + cimg_snprintf(command,command._width,"%s --quiet \"%s.gz\"", + gunzip_path(),filename_local); + cimg::system(command); + file = std_fopen(filename_local,"rb"); + if (!file) { + cimg_snprintf(command,command._width,"%s.gz",filename_local); + std::rename(command,filename_local); + file = std_fopen(filename_local,"rb"); + } + } + cimg::fseek(file,0,SEEK_END); // Check if file size is 0. + if (std::ftell(file)<=0) + throw CImgIOException("cimg::load_network(): Failed to load URL '%s' with external commands " + "'wget' or 'curl'.",url); + cimg::fclose(file); + return filename_local; + } + + // Implement a tic/toc mechanism to display elapsed time of algorithms. + inline cimg_ulong tictoc(const bool is_tic) { + cimg::mutex(2); + static CImg times(64); + static unsigned int pos = 0; + const cimg_ulong t1 = cimg::time(); + if (is_tic) { // Tic. + times[pos++] = t1; + if (pos>=times._width) + throw CImgArgumentException("cimg::tic(): Too much calls to 'cimg::tic()' without calls to 'cimg::toc()'."); + cimg::mutex(2,0); + return t1; + } + // Toc. + if (!pos) + throw CImgArgumentException("cimg::toc(): No previous call to 'cimg::tic()' has been made."); + const cimg_ulong + t0 = times[--pos], + dt = t1>=t0?(t1 - t0):cimg::type::max(); + const unsigned int + edays = (unsigned int)(dt/86400000.0), + ehours = (unsigned int)((dt - edays*86400000.0)/3600000.0), + emin = (unsigned int)((dt - edays*86400000.0 - ehours*3600000.0)/60000.0), + esec = (unsigned int)((dt - edays*86400000.0 - ehours*3600000.0 - emin*60000.0)/1000.0), + ems = (unsigned int)(dt - edays*86400000.0 - ehours*3600000.0 - emin*60000.0 - esec*1000.0); + if (!edays && !ehours && !emin && !esec) + std::fprintf(cimg::output(),"%s[CImg]%*sElapsed time: %u ms%s\n", + cimg::t_red,1 + 2*pos,"",ems,cimg::t_normal); + else { + if (!edays && !ehours && !emin) + std::fprintf(cimg::output(),"%s[CImg]%*sElapsed time: %u sec %u ms%s\n", + cimg::t_red,1 + 2*pos,"",esec,ems,cimg::t_normal); + else { + if (!edays && !ehours) + std::fprintf(cimg::output(),"%s[CImg]%*sElapsed time: %u min %u sec %u ms%s\n", + cimg::t_red,1 + 2*pos,"",emin,esec,ems,cimg::t_normal); + else{ + if (!edays) + std::fprintf(cimg::output(),"%s[CImg]%*sElapsed time: %u hours %u min %u sec %u ms%s\n", + cimg::t_red,1 + 2*pos,"",ehours,emin,esec,ems,cimg::t_normal); + else{ + std::fprintf(cimg::output(),"%s[CImg]%*sElapsed time: %u days %u hours %u min %u sec %u ms%s\n", + cimg::t_red,1 + 2*pos,"",edays,ehours,emin,esec,ems,cimg::t_normal); + } + } + } + } + cimg::mutex(2,0); + return dt; + } + + // Return a temporary string describing the size of a memory buffer. + inline const char *strbuffersize(const cimg_ulong size) { + static CImg res(256); + cimg::mutex(5); + if (size<1024LU) cimg_snprintf(res,res._width,"%lu byte%s",(unsigned long)size,size>1?"s":""); + else if (size<1024*1024LU) { const float nsize = size/1024.0f; cimg_snprintf(res,res._width,"%.1f Kio",nsize); } + else if (size<1024*1024*1024LU) { + const float nsize = size/(1024*1024.0f); cimg_snprintf(res,res._width,"%.1f Mio",nsize); + } else { const float nsize = size/(1024*1024*1024.0f); cimg_snprintf(res,res._width,"%.1f Gio",nsize); } + cimg::mutex(5,0); + return res; + } + + //! Display a simple dialog box, and wait for the user's response. + /** + \param title Title of the dialog window. + \param msg Main message displayed inside the dialog window. + \param button1_label Label of the 1st button. + \param button2_label Label of the 2nd button (\c 0 to hide button). + \param button3_label Label of the 3rd button (\c 0 to hide button). + \param button4_label Label of the 4th button (\c 0 to hide button). + \param button5_label Label of the 5th button (\c 0 to hide button). + \param button6_label Label of the 6th button (\c 0 to hide button). + \param logo Image logo displayed at the left of the main message. + \param is_centered Tells if the dialog window must be centered on the screen. + \return Indice of clicked button (from \c 0 to \c 5), or \c -1 if the dialog window has been closed by the user. + \note + - Up to 6 buttons can be defined in the dialog window. + - The function returns when a user clicked one of the button or closed the dialog window. + - If a button text is set to 0, the corresponding button (and the followings) will not appear in the dialog box. + At least one button must be specified. + **/ + template + inline int dialog(const char *const title, const char *const msg, + const char *const button1_label, const char *const button2_label, + const char *const button3_label, const char *const button4_label, + const char *const button5_label, const char *const button6_label, + const CImg& logo, const bool is_centered=false) { +#if cimg_display==0 + cimg::unused(title,msg,button1_label,button2_label,button3_label,button4_label,button5_label,button6_label, + logo._data,is_centered); + throw CImgIOException("cimg::dialog(): No display available."); +#else + static const unsigned char + black[] = { 0,0,0 }, white[] = { 255,255,255 }, gray[] = { 200,200,200 }, gray2[] = { 150,150,150 }; + + // Create buttons and canvas graphics + CImgList buttons, cbuttons, sbuttons; + if (button1_label) { CImg().draw_text(0,0,button1_label,black,gray,1,13).move_to(buttons); + if (button2_label) { CImg().draw_text(0,0,button2_label,black,gray,1,13).move_to(buttons); + if (button3_label) { CImg().draw_text(0,0,button3_label,black,gray,1,13).move_to(buttons); + if (button4_label) { CImg().draw_text(0,0,button4_label,black,gray,1,13).move_to(buttons); + if (button5_label) { CImg().draw_text(0,0,button5_label,black,gray,1,13).move_to(buttons); + if (button6_label) { CImg().draw_text(0,0,button6_label,black,gray,1,13).move_to(buttons); + }}}}}} + if (!buttons._width) + throw CImgArgumentException("cimg::dialog(): No buttons have been defined."); + cimglist_for(buttons,l) buttons[l].resize(-100,-100,1,3); + + unsigned int bw = 0, bh = 0; + cimglist_for(buttons,l) { bw = std::max(bw,buttons[l]._width); bh = std::max(bh,buttons[l]._height); } + bw+=8; bh+=8; + if (bw<64) bw = 64; + if (bw>128) bw = 128; + if (bh<24) bh = 24; + if (bh>48) bh = 48; + + CImg button(bw,bh,1,3); + button.draw_rectangle(0,0,bw - 1,bh - 1,gray); + button.draw_line(0,0,bw - 1,0,white).draw_line(0,bh - 1,0,0,white); + button.draw_line(bw - 1,0,bw - 1,bh - 1,black).draw_line(bw - 1,bh - 1,0,bh - 1,black); + button.draw_line(1,bh - 2,bw - 2,bh - 2,gray2).draw_line(bw - 2,bh - 2,bw - 2,1,gray2); + CImg sbutton(bw,bh,1,3); + sbutton.draw_rectangle(0,0,bw - 1,bh - 1,gray); + sbutton.draw_line(0,0,bw - 1,0,black).draw_line(bw - 1,0,bw - 1,bh - 1,black); + sbutton.draw_line(bw - 1,bh - 1,0,bh - 1,black).draw_line(0,bh - 1,0,0,black); + sbutton.draw_line(1,1,bw - 2,1,white).draw_line(1,bh - 2,1,1,white); + sbutton.draw_line(bw - 2,1,bw - 2,bh - 2,black).draw_line(bw - 2,bh - 2,1,bh - 2,black); + sbutton.draw_line(2,bh - 3,bw - 3,bh - 3,gray2).draw_line(bw - 3,bh - 3,bw - 3,2,gray2); + sbutton.draw_line(4,4,bw - 5,4,black,1,0xAAAAAAAA,true).draw_line(bw - 5,4,bw - 5,bh - 5,black,1,0xAAAAAAAA,false); + sbutton.draw_line(bw - 5,bh - 5,4,bh - 5,black,1,0xAAAAAAAA,false).draw_line(4,bh - 5,4,4,black,1,0xAAAAAAAA,false); + CImg cbutton(bw,bh,1,3); + cbutton.draw_rectangle(0,0,bw - 1,bh - 1,black).draw_rectangle(1,1,bw - 2,bh - 2,gray2). + draw_rectangle(2,2,bw - 3,bh - 3,gray); + cbutton.draw_line(4,4,bw - 5,4,black,1,0xAAAAAAAA,true).draw_line(bw - 5,4,bw - 5,bh - 5,black,1,0xAAAAAAAA,false); + cbutton.draw_line(bw - 5,bh - 5,4,bh - 5,black,1,0xAAAAAAAA,false).draw_line(4,bh - 5,4,4,black,1,0xAAAAAAAA,false); + + cimglist_for(buttons,ll) { + CImg(cbutton). + draw_image(1 + (bw -buttons[ll].width())/2,1 + (bh - buttons[ll].height())/2,buttons[ll]). + move_to(cbuttons); + CImg(sbutton). + draw_image((bw - buttons[ll].width())/2,(bh - buttons[ll].height())/2,buttons[ll]). + move_to(sbuttons); + CImg(button). + draw_image((bw - buttons[ll].width())/2,(bh - buttons[ll].height())/2,buttons[ll]). + move_to(buttons[ll]); + } + + CImg canvas; + if (msg) + ((CImg().draw_text(0,0,"%s",gray,0,1,13,msg)*=-1)+=200).resize(-100,-100,1,3).move_to(canvas); + + const unsigned int + bwall = (buttons._width - 1)*(12 + bw) + bw, + w = cimg::max(196U,36 + logo._width + canvas._width,24 + bwall), + h = cimg::max(96U,36 + canvas._height + bh,36 + logo._height + bh), + lx = 12 + (canvas._data?0:((w - 24 - logo._width)/2)), + ly = (h - 12 - bh - logo._height)/2, + tx = lx + logo._width + 12, + ty = (h - 12 - bh - canvas._height)/2, + bx = (w - bwall)/2, + by = h - 12 - bh; + + if (canvas._data) + canvas = CImg(w,h,1,3). + draw_rectangle(0,0,w - 1,h - 1,gray). + draw_line(0,0,w - 1,0,white).draw_line(0,h - 1,0,0,white). + draw_line(w - 1,0,w - 1,h - 1,black).draw_line(w - 1,h - 1,0,h - 1,black). + draw_image(tx,ty,canvas); + else + canvas = CImg(w,h,1,3). + draw_rectangle(0,0,w - 1,h - 1,gray). + draw_line(0,0,w - 1,0,white).draw_line(0,h - 1,0,0,white). + draw_line(w - 1,0,w - 1,h - 1,black).draw_line(w - 1,h - 1,0,h - 1,black); + if (logo._data) canvas.draw_image(lx,ly,logo); + + unsigned int xbuttons[6] = { 0 }; + cimglist_for(buttons,lll) { xbuttons[lll] = bx + (bw + 12)*lll; canvas.draw_image(xbuttons[lll],by,buttons[lll]); } + + // Open window and enter events loop + CImgDisplay disp(canvas,title?title:" ",0,false,is_centered?true:false); + if (is_centered) disp.move((CImgDisplay::screen_width() - disp.width())/2, + (CImgDisplay::screen_height() - disp.height())/2); + bool stop_flag = false, refresh = false; + int oselected = -1, oclicked = -1, selected = -1, clicked = -1; + while (!disp.is_closed() && !stop_flag) { + if (refresh) { + if (clicked>=0) + CImg(canvas).draw_image(xbuttons[clicked],by,cbuttons[clicked]).display(disp); + else { + if (selected>=0) + CImg(canvas).draw_image(xbuttons[selected],by,sbuttons[selected]).display(disp); + else canvas.display(disp); + } + refresh = false; + } + disp.wait(15); + if (disp.is_resized()) disp.resize(disp,false); + + if (disp.button()&1) { + oclicked = clicked; + clicked = -1; + cimglist_for(buttons,l) + if (disp.mouse_y()>=(int)by && disp.mouse_y()<(int)(by + bh) && + disp.mouse_x()>=(int)xbuttons[l] && disp.mouse_x()<(int)(xbuttons[l] + bw)) { + clicked = selected = l; + refresh = true; + } + if (clicked!=oclicked) refresh = true; + } else if (clicked>=0) stop_flag = true; + + if (disp.key()) { + oselected = selected; + switch (disp.key()) { + case cimg::keyESC : selected = -1; stop_flag = true; break; + case cimg::keyENTER : if (selected<0) selected = 0; stop_flag = true; break; + case cimg::keyTAB : + case cimg::keyARROWRIGHT : + case cimg::keyARROWDOWN : selected = (selected + 1)%buttons.width(); break; + case cimg::keyARROWLEFT : + case cimg::keyARROWUP : selected = (selected + buttons.width() - 1)%buttons.width(); break; + } + disp.set_key(); + if (selected!=oselected) refresh = true; + } + } + if (!disp) selected = -1; + return selected; +#endif + } + + //! Display a simple dialog box, and wait for the user's response \specialization. + inline int dialog(const char *const title, const char *const msg, + const char *const button1_label, const char *const button2_label, const char *const button3_label, + const char *const button4_label, const char *const button5_label, const char *const button6_label, + const bool is_centered) { + return dialog(title,msg,button1_label,button2_label,button3_label,button4_label,button5_label,button6_label, + CImg::_logo40x38(),is_centered); + } + + //! Evaluate math expression. + /** + \param expression C-string describing the formula to evaluate. + \param x Value of the pre-defined variable \c x. + \param y Value of the pre-defined variable \c y. + \param z Value of the pre-defined variable \c z. + \param c Value of the pre-defined variable \c c. + \return Result of the formula evaluation. + \note Set \c expression to \c 0 to keep evaluating the last specified \c expression. + \par Example + \code + const double + res1 = cimg::eval("cos(x)^2 + sin(y)^2",2,2), // will return '1'. + res2 = cimg::eval(0,1,1); // will return '1' too. + \endcode + **/ + inline double eval(const char *const expression, const double x, const double y, const double z, const double c) { + static const CImg empty; + return empty.eval(expression,x,y,z,c); + } + + template + inline CImg::type> eval(const char *const expression, const CImg& xyzc) { + static const CImg empty; + return empty.eval(expression,xyzc); + } + + // End of cimg:: namespace +} + + // End of cimg_library:: namespace +} + +//! Short alias name. +namespace cil = cimg_library_suffixed; + +#ifdef _cimg_redefine_False +#define False 0 +#endif +#ifdef _cimg_redefine_True +#define True 1 +#endif +#ifdef _cimg_redefine_min +#define min(a,b) (((a)<(b))?(a):(b)) +#endif +#ifdef _cimg_redefine_max +#define max(a,b) (((a)>(b))?(a):(b)) +#endif +#ifdef _cimg_redefine_PI +#define PI 3.141592653589793238462643383 +#endif +#ifdef _MSC_VER +#pragma warning(pop) +#endif + +#endif +// Local Variables: +// mode: c++ +// End: diff --git a/src/main/cpp/Makefile b/src/main/cpp/Makefile new file mode 100644 index 0000000..3a8602d --- /dev/null +++ b/src/main/cpp/Makefile @@ -0,0 +1,13 @@ +default: tiv + +tiv.o: tiv.cpp CImg.h + g++ -Wall -fexceptions -O2 -c tiv.cpp -o tiv.o + +tiv : tiv.o + g++ tiv.o -o tiv -pthread -s + +install: tiv + cp tiv /usr/local/bin/tiv + +clean: + rm -f tiv tiv.o diff --git a/src/main/cpp/tiv.cpp b/src/main/cpp/tiv.cpp new file mode 100644 index 0000000..430de7d --- /dev/null +++ b/src/main/cpp/tiv.cpp @@ -0,0 +1,414 @@ +#include +#include +#include +#include +#include +#include + +#define cimg_display 0 +#include "CImg.h" + +//using namespace std; + +const int FLAG_FG = 1; +const int FLAG_BG = 2; +const int FLAG_MODE_256 = 4; +const int FLAG_24BIT = 8; + +const int COLOR_STEP_COUNT = 6; +const int COLOR_STEPS[COLOR_STEP_COUNT] = {0, 0x5f, 0x87, 0xaf, 0xd7, 0xff}; + +const int GRAYSCALE_STEP_COUNT = 24; +const int GRAYSCALE_STEPS[GRAYSCALE_STEP_COUNT] = { + 0x08, 0x12, 0x1c, 0x26, 0x30, 0x3a, 0x44, 0x4e, 0x58, 0x62, 0x6c, 0x76, + 0x80, 0x8a, 0x94, 0x9e, 0xa8, 0xb2, 0xbc, 0xc6, 0xd0, 0xda, 0xe4, 0xee}; + +const unsigned int BITMAPS[] = { + 0x00000000, 0x00a0, + + // Block graphics + // 0xffff0000, 0x2580, // upper 1/2; redundant with inverse lower 1/2 + + 0x0000000f, 0x2581, // lower 1/8 + 0x000000ff, 0x2582, // lower 1/4 + 0x00000fff, 0x2583, + 0x0000ffff, 0x2584, // lower 1/2 + 0x000fffff, 0x2585, + 0x00ffffff, 0x2586, // lower 3/4 + 0x0fffffff, 0x2587, +//0xffffffff, 0x2588, // full; redundant with inverse space + + 0xeeeeeeee, 0x258a, // left 3/4 + 0xcccccccc, 0x258c, // left 1/2 + 0x88888888, 0x258e, // left 1/4 + + 0x0000cccc, 0x2596, // quadrant lower left + 0x00003333, 0x2597, // quadrant lower right + 0xcccc0000, 0x2598, // quadrant upper left +//0xccccffff, 0x2599, // 3/4 redundant with inverse 1/4 + 0xcccc3333, 0x259a, // diagonal 1/2 +//0xffffcccc, 0x259b, // 3/4 redundant +//0xffff3333, 0x259c, // 3/4 redundant + 0x33330000, 0x259d, // quadrant upper right +//0x3333cccc, 0x259e, // 3/4 redundant +//0x3333ffff, 0x259f, // 3/4 redundant + +// Line drawing subset: no double lines, no complex light lines +// Simple light lines duplicated because there is no center pixel int the 4x8 matrix + + 0x000ff000, 0x2501, // Heavy horizontal + 0x66666666, 0x2503, // Heavy vertical + + 0x00077666, 0x250f, // Heavy down and right + 0x000ee666, 0x2513, // Heavy down and left + 0x66677000, 0x2517, // Heavy up and right + 0x666ee000, 0x251b, // Heavy up and left + + 0x66677666, 0x2523, // Heavy vertical and right + 0x666ee666, 0x252b, // Heavy vertical and left + 0x000ff666, 0x2533, // Heavy down and horizontal + 0x666ff000, 0x253b, // Heavy up and horizontal + 0x666ff666, 0x254b, // Heavy cross + + 0x000cc000, 0x2578, // Bold horizontal left + 0x00066000, 0x2579, // Bold horizontal up + 0x00033000, 0x257a, // Bold horizontal right + 0x00066000, 0x257b, // Bold horizontal down + + 0x06600660, 0x254f, // Heavy double dash vertical + + 0x000f0000, 0x2500, // Light horizontal + 0x0000f000, 0x2500, // + 0x44444444, 0x2502, // Light vertical + 0x22222222, 0x2502, + + 0x000e0000, 0x2574, // light left + 0x0000e000, 0x2574, // light left + 0x44440000, 0x2575, // light up + 0x22220000, 0x2575, // light up + 0x00030000, 0x2576, // light right + 0x00003000, 0x2576, // light right + 0x00004444, 0x2575, // light down + 0x00002222, 0x2575, // light down + +// Misc technical + + 0x44444444, 0x23a2, // [ extension + 0x22222222, 0x23a5, // ] extension + + 0x0f000000, 0x23ba, // Horizontal scanline 1 + 0x00f00000, 0x23bb, // Horizontal scanline 3 + 0x00000f00, 0x23bc, // Horizontal scanline 7 + 0x000000f0, 0x23bd, // Horizontal scanline 9 + +// Geometrical shapes. Tricky because some of them are too wide. + +//0x00ffff00, 0x25fe, // Black medium small square + 0x00066000, 0x25aa, // Black small square + +//0x11224488, 0x2571, // diagonals +//0x88442211, 0x2572, +//0x99666699, 0x2573, +//0x000137f0, 0x25e2, // Triangles +//0x0008cef0, 0x25e3, +//0x000fec80, 0x25e4, +//0x000f7310, 0x25e5, + + 0, 0 // End marker +}; + + +struct CharData { + int fgColor[3] = {0}; + int bgColor[3] = {0}; + int codePoint; +}; + + +CharData getCharData(const cimg_library::CImg & image, int x0, int y0) { + int min[3] = {255, 255, 255}; + int max[3] = {0}; + + CharData result; + + // Determine the minimum and maximum value for each color channel + for (int y = 0; y < 8; y++) { + for (int x = 0; x < 4; x++) { + for (int i = 0; i < 3; i++) { + int d = image(x0 + x, y0 + y, 0, i); + min[i] = std::min(min[i], d); + max[i] = std::max(max[i], d); + } + } + } + + // Determine the color channel with the greatest range. + int splitIndex = 0; + int bestSplit = 0; + for (int i = 0; i < 3; i++) { + if (max[i] - min[i] > bestSplit) { + bestSplit = max[i] - min[i]; + splitIndex = i; + } + } + + // We just split at the middle of the interval instead of computing the median. + int splitValue = min[splitIndex] + bestSplit / 2; + + // Compute a bitmap using the given split and sum the color values for both buckets. + unsigned int bits = 0; + for (int y = 0; y < 8; y++) { + for (int x = 0; x < 4; x++) { + bits = bits << 1; + if (image(x0 + x, y0 + y, 0, splitIndex) > splitValue) { + bits |= 1; + } + } + } + + // Find the best bitmap match by counting the bits that don't match, + // including the inverted bitmaps. + int best_diff = 8; + unsigned int best_pattern = 0x0000ffff; + result.codePoint = 0x2584; + for (int i = 0; BITMAPS[i + 1] != 0; i += 2) { + unsigned int pattern = BITMAPS[i]; + for (int j = 0; j < 2; j++) { + int diff = (std::bitset<32>(pattern ^ bits)).count(); + if (diff < best_diff) { + best_pattern = BITMAPS[i]; // pattern might be inverted. + result.codePoint = BITMAPS[i + 1]; + best_diff = diff; + } + pattern = ~pattern; + } + } + + int fg_count = 0; + int bg_count = 0; + unsigned int mask = 0x80000000; + + for (int y = 0; y < 8; y++) { + for (int x = 0; x < 4; x++) { + int* avg; + if (best_pattern & mask) { + avg = result.fgColor; + fg_count++; + } else { + avg = result.bgColor; + bg_count++; + } + for (int i = 0; i < 3; i++) { + avg[i] += image(x0 + x, y0 + y, 0, i); + } + mask = mask >> 1; + } + } + + // Calculate the average color value for each bucket + for (int i = 0; i < 3; i++) { + if (bg_count != 0) { + result.bgColor[i] /= bg_count; + } + if (fg_count != 0) { + result.fgColor[i] /= fg_count; + } + } + return result; +} + + +int clamp_byte(int value) { + return value < 0 ? 0 : (value > 255 ? 255 : value); +} + +double sqr(double n) { + return n*n; +} + +int best_index(int value, const int data[], int count) { + int best_diff = std::abs(data[0] - value); + int result = 0; + for (int i = 1; i < count; i++) { + if (std::abs(data[i] - value) < best_diff) { + result = i; + } + } + return result; +} + + +void emit_color(int flags, int r, int g, int b) { + r = clamp_byte(r); + g = clamp_byte(g); + b = clamp_byte(b); + + bool bg = (flags & FLAG_BG) != 0; + + if ((flags & FLAG_MODE_256) == 0) { + std::cout << (bg ? "\x1b[48;2;" : "\x1b[38;2;") << r << ';' << g << ';' << b << 'm'; + return; + } + + int ri = best_index(r, COLOR_STEPS, COLOR_STEP_COUNT); + int gi = best_index(g, COLOR_STEPS, COLOR_STEP_COUNT); + int bi = best_index(b, COLOR_STEPS, COLOR_STEP_COUNT); + + int rq = COLOR_STEPS[ri]; + int gq = COLOR_STEPS[gi]; + int bq = COLOR_STEPS[bi]; + + int gray = std::round(r * 0.2989f + g * 0.5870f + b * 0.1140f); + + int gri = best_index(gray, GRAYSCALE_STEPS, GRAYSCALE_STEP_COUNT); + int grq = GRAYSCALE_STEPS[gri]; + + int color_index; + if (0.3 * sqr(rq-r) + 0.59 * sqr(gq-g) + 0.11 * sqr(bq-b) < + 0.3 * sqr(grq-r) + 0.59 * sqr(grq-g) + 0.11 * sqr(grq-b)) { + color_index = 16 + 36 * ri + 6 * gi + bi; + } else { + color_index = 232 + gri; // 1..24 -> 232..255 + } + std::cout << (bg ? "\x1B[48;5;" : "\u001B[38;5;") << color_index << "m"; +} + + + +void emitCodepoint(int codepoint) { + if (codepoint < 128) { + std::cout << (char) codepoint; + } else if (codepoint < 0x7ff) { + std::cout << (char) (0xc0 | (codepoint >> 6)); + std::cout << (char) (0x80 | (codepoint & 0x3f)); + } else if (codepoint < 0xffff) { + std::cout << (char) (0xe0 | (codepoint >> 12)); + std::cout << (char) (0x80 | ((codepoint >> 6) & 0x3f)); + std::cout << (char) (0x80 | (codepoint & 0x3f)); + } else if (codepoint < 0x10ffff) { + std::cout << (char) (0xf0 | (codepoint >> 18)); + std::cout << (char) (0x80 | ((codepoint >> 12) & 0x3f)); + std::cout << (char) (0x80 | ((codepoint >> 6) & 0x3f)); + std::cout << (char) (0x80 | (codepoint & 0x3f)); + } else { + std::cout << "ERROR"; + } +} + +void emit_image(const cimg_library::CImg & image, int flags) { + for (int y = 0; y < image.height() - 8; y += 8) { + for (int x = 0; x < image.width() - 4; x += 4) { + CharData charData = getCharData(image, x, y); + emit_color(flags | FLAG_BG, charData.bgColor[0], charData.bgColor[1], charData.bgColor[2]); + emit_color(flags | FLAG_FG, charData.fgColor[0], charData.fgColor[1], charData.fgColor[2]); + emitCodepoint(charData.codePoint); + } + std::cout << "\x1b[0m" << std::endl; + } +} + +void emit_usage() { + std::cerr << "Terminal Image Viewer" << std::endl << std::endl; + std::cerr << "usage: tiv [options] [...]" << std::endl << std::endl; + std::cerr << " -256 : Use 256 color mode." << std::endl; + std::cerr << " -c : Number of thumbnail columns in 'dir' mode (3)." << std::endl; + std::cerr << " -d : Force 'dir' mode. Automatially selected for more than one input." << std::endl; + std::cerr << " -f : Force 'full' mode. Automatically selected for one input." << std::endl; + std::cerr << " -help : Display this help text." << std::endl; + std::cerr << " -h : Set the maximum height to lines." << std::endl; + std::cerr << " -w : Set the maximum width to characters." << std::endl << std::endl; +} + +enum Mode {AUTO, THUMBNAILS, FULL_SIZE}; + +int main(int argc, char* argv[]) { + struct winsize w; + ioctl(STDOUT_FILENO, TIOCGWINSZ, &w); + + int maxWidth = w.ws_col * 4; + int maxHeight = w.ws_row * 8; + int flags = 0; + Mode mode = AUTO; + int columns = 3; + + std::vector file_names; + int error = 0; + + if (argc <= 1) { + emit_usage(); + return 0; + } + + for (int i = 1; i < argc; i++) { + std::string arg(argv[i]); + if (arg == "-c") { + columns = std::stoi(argv[++i]); + } else if (arg == "-d") { + mode = THUMBNAILS; + } else if (arg == "-f") { + mode = FULL_SIZE; + } else if (arg == "-w") { + maxWidth = 4 * std::stoi(argv[++i]); + } else if (arg == "-h") { + maxHeight = 8 * std::stoi(argv[++i]); + } else if (arg == "-256") { + flags |= FLAG_MODE_256; + } else if (arg == "--help" || arg == "-help") { + emit_usage(); + } else if (arg[0] == '-') { + std::cerr << "Unrecognized argument: " << arg << std::endl; + } else { + file_names.push_back(arg); + } + } + + if (mode == FULL_SIZE || (mode == AUTO && file_names.size() == 1)) { + for (unsigned int i = 0; i < file_names.size(); i++) { + try { + cimg_library::CImg image(file_names[i].c_str()); + + if (image.width() > maxWidth || image.height() > maxHeight) { + double scale = std::min(maxWidth / (double) image.width(), maxHeight / (double) image.height()); + image.resize((int) (image.width() * scale), (int) (image.height() * scale), -100, -100, 5); + } + emit_image(image, flags); + } catch(cimg_library::CImgIOException e) { + error = 1; + std::cerr << "File format not recogmized for '" << file_names[i] << "'" << std::endl; + } + } + } else { + // Thumbnail mode + + unsigned int index = 0; + int cw = (((maxWidth / 4) - 2 * (columns - 1)) / columns); + int tw = cw * 4; + cimg_library::CImg image(tw * columns + 2 * 4 * (columns - 1), tw, 1, 3); + + while (index < file_names.size()) { + image.fill(0); + int count = 0; + std::string sb; + while (index < file_names.size() && count < columns) { + std::string name = file_names[index++]; + try { + cimg_library::CImg original(name.c_str()); + unsigned int cut = name.find_last_of("/"); + sb += cut == std::string::npos ? name : name.substr(cut + 1); + int th = original.height() * tw / original.width(); + original.resize(tw, th, 1, -100, 5); + image.draw_image(count * (tw + 8), (tw - th) / 2, 0, 0, original); + count++; + unsigned int sl = count * (cw + 2); + sb.resize(sl - 2, ' '); + sb += " "; + } catch (std::exception e) { + // Probably no image; ignore. + } + } + emit_image(image, flags); + std::cout << sb << std::endl << std::endl; + } + } + return error; +}